Requirement of Non-Phytate Phosphorus in 1- to 28-Day-Old Geese Based on Growth Performance, Serum Variables, and Bone Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal and Housing
2.2. Diets
2.3. Growth Performance and Sample Collection
2.4. Skeleta Weight, Length, Strength, and Specific Gravity
2.5. Skeletal Ash, Ca, and P Content
2.6. Measurement of Feed Ingredients
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Serum Ca, P Contents, and ALP Activity
3.3. Bone Characteristics
3.4. The NPP Requirement of Goslings
4. Discussion
4.1. Growth Performance
4.2. Serum P Contents and ALP Activity
4.3. Bone Characteristics
4.4. Overall Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calvo, M.S.; Lamberg–allardt, C.J. Phosphorus. Adv. Nutr. 2015, 6, 860–862. [Google Scholar] [CrossRef] [PubMed]
- Eeckhout, W.; Paepe, M.D. Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Anim. Feed Sci. Technol. 1994, 47, 19–29. [Google Scholar] [CrossRef]
- Walk, C.L.; Santos, T.T.; Bedfor, M.R. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult. Sci. 2014, 93, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Jing, M.; Zhao, S.; Rogiewicz, A.; Slominski, B.A.; House, J.D. Effects of phytase supplementation on production performance, egg and bone quality, plasma biochemistry and mineral excretion of layers fed varying levels of phosphorus. Animal 2021, 15, 100010. [Google Scholar] [CrossRef] [PubMed]
- Ansar, M.; Khan, S.A.; Chaudhary, Z.I.; Mian, N.A.; Tipu, M.Y.; Rai, M.F. Effects of high dietary calcium and low phosphorus on urinary system of broiler chicks. Pak. Vet. J. 2004, 24, 113–116. [Google Scholar]
- Khoshniat, S.; Bourgine, A.; Julien, M.; Weiss, P.; Guicheux, J.; Beck, L. The emergence of phosphate as a specific signaling molecule in bone and other cell types in mammals. Cell. Mol. Life. Sci. 2011, 68, 205–218. [Google Scholar] [CrossRef]
- Xu, L.; Li, N.; Farnell, Y.Z.; Wan, X.; Yang, H.; Zhong, X.; Farnell, M.B. Effect of feeding a high calcium: Phosphorus ratio, phosphorous deficient diet on hypophosphatemic rickets onset in broilers. Agriculture 2021, 11, 955. [Google Scholar] [CrossRef]
- Vuuren, D.P.V.; Bouwman, A.F.; Beusen, A.H.W. Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Glob. Environ. Change. 2010, 20, 428–439. [Google Scholar] [CrossRef]
- GB/T 36784-2018; Yangzhou Goose. National Standard of the People’s Republic of China. China Standards Press: Beijing, China, 2018.
- Wang, Y.; Wang, W.; Li, L.; Gou, Z.; Lin, X.; Jiang, S. Effects and interaction of dietary calcium and nonphytate phosphorus for slow-growing yellow-feathered broilers between 56 and 84 d of age. Poult. Sci. 2021, 100, 101024. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Bello, A.; Dersjant-Li, Y.; Adeola, O. Evaluation of the responses of broiler chickens to varying concentrations of phytate phosphorus and phytase. II. Grower phase (day 12–23 post hatching). Poult. Sci. 2022, 101, 101616. [Google Scholar] [CrossRef]
- Bar, A.; Shinder, D.; Yosefi, S.; Vax, E.; Plavnik, I. Metabolism and requirements for calcium and phosphorus in the fast-growing chicken as affected by age. Br. J. Nutr. 2003, 89, 51–60. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liu, S.B.; Liao, X.D.; Lu, L.; Li, S.F.; Luo, X.G. Dietary non–phytate phosphorus requirement of broilers fed a conventional corn–soybean meal diet from 1 to 21 d of age. Poult. Sci. 2017, 96, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Waldroup, P.W.; Kersey, J.H.; Saleh, E.A.; Fritts, C.A.; Yan, F.; Stilborn, H.L.; Crum, R.C.; Raboy, V. Nonphytate phosphorus requirement and phosphorus excretion of broiler chicks fed diets composed of normal or high available phosphate corn with and without microbial phytase. Poult. Sci. 2000, 79, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Dhandu, A.S.; Angel, R. Broiler nonphytin phosphorus requirement in the finisher and withdrawal phases of a commercial four–phase feeding system. Poult. Sci. 2003, 82, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Bedford, M.R.; Sadeghi, G.; Ghobadi, Z. Influence of dietary non–phytate phosphorous levels and phytase sup-plementation on the performance and bone characteristics of broilers. Rev. Bras. De Ciência Avícola 2011, 13, 43–51. [Google Scholar] [CrossRef]
- Fallah, H.; Karim, A.; Sadeghi, A.; Behroozi–Khazaei, N. Modelling and optimizing of calcium and non–phytate phosphorus requirements of male broiler chickens from 1 to 21 days of age using response surface methodology. Animal 2020, 14, 1598–1609. [Google Scholar] [CrossRef]
- Rao, S.V.R.; Reddy, V.R.; Reddy, V.R. Non–phytin phosphorus requirements of commercial broilers and White Leghorn layers. Anim. Feed Sci. Technol. 1999, 80, 1–10. [Google Scholar]
- Yan, J.H.; Kerse, P.W.; Waldroup, P.W. Phosphorus requirements of broiler chicks to six weeks of age as influenced by phytase supplementation. Poult. Sci. 2001, 80, 455–459. [Google Scholar] [CrossRef]
- Chen, Y.J.; Yang, H.M.; Wan, X.L.; Wan, Y.; Zhang, H.; Wang, Z.Y. The effect of different dietary levels of sodium and chloride on performance and blood parameters in goslings (1–28 days of age). J. Anim. Physiol. Anim. Nutr. 2020, 104, 507–516. [Google Scholar] [CrossRef]
- Liang, J.R.; Xiao, X.; Yang, H.M.; Wang, Z.Y. Assessment of vitamin a requirement of gosling in 0–28 d based on growth performance and bone indexes. Poult. Sci. 2021, 100, 101015. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 9th ed.; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Wang, Z.Y.; Yang, H.M.; Lu, J.; Li, W.Z.; Zou, J.M. Influence of whole hulled rice and rice husk feeding on the performance, carcass yield and digestive tract development of geese. Anim. Feed Sci. Technol. 2014, 194, 99–105. [Google Scholar] [CrossRef]
- Kääntee, E. Effects of Ca and P levels in the feed on serum calcium, phosphorus, alkaline phosphatase, hydroxyproline and 25-hydroxycholecalciferol levels, and on the ash content of the third metacarpal bone in pigs. Nord. Vet. Med. 1983, 35, 273–286. [Google Scholar] [PubMed]
- GB/T 6438–2007; Animal Feeding Stuffs—Determination of Crude Ash. National Standard of the People’s Republic of China. China Standards Press: Beijing, China, 2007.
- GB/T 6436–2018; Determination of Calcium in Feeds. National Standard of the People’s Republic of China. China Standards Press: Beijing, China, 2018.
- GB/T 6437–2018; Determination of Phosphorus in Feeds–Spectrophotometry. National Standard of the People’s Republic of China. China Standards Press: Beijing, China, 2018.
- Leytem, A.B.; Willing, B.P.; Thacker, P.A. Phytate utilization and phosphorus excretion by broiler chickens fed diets containing cereal grains varying in phytate and phytase content. Anim. Feed Sci. Technol. 2008, 146, 160–168. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Chung, T.K.; Morel, P.C.; Moughan, P.J. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low–phosphorus diet for broilers. Poult. Sci. 2004, 83, 61–68. [Google Scholar] [CrossRef]
- Matuszewski, A.; Lukasiewicz, M.; Niemiec, J. Calcium and phosphorus and their nanoparticle forms in poultry nutrition. World’s Poult. Sci. J. 2020, 76, 328–345. [Google Scholar] [CrossRef]
- Wang, Z.W.; Mou, X.L.; Yang, G.W.; Li, J.K.; Liu, D.S. Effect of dietary nutrient levels on growth performance and serum parameters for northeast geese (1~28 d). J. Nucl. Agric. Sci. 2009, 16, 27–31. [Google Scholar]
- Cozannet, P.; Davin, R.; Jlali, M.; Jachacz, J.; Preynat, A.; Molist, F. Dietary metabolizable energy, digestible lysine, available phosphorus levels and exogenous enzymes affect broiler chicken performance. Animal 2021, 15, 100206. [Google Scholar] [CrossRef]
- Hu, Y.; Liao, X.; Wen, Q.; Lu, L.; Zhang, L.; Luo, X. Phosphorus absorption and gene expression levels of related transporters in the small intestine of broilers. Br. J. Nutr. 2018, 119, 1346–1354. [Google Scholar] [CrossRef]
- Rousseau, X.; Valable, A.S.; Letourneau–montminy, M.P.; Meme, N.; Godet, E.; Magnin, M.; Nys, Y.; Duclos, M.J.; Narcy, A. Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poult. Sci. 2016, 95, 2849–2860. [Google Scholar] [CrossRef]
- Baradaran, N.; Shahir, M.H.; Asadi Kermani, Z.; Waldroup, P.W.; Sirjani, M.A. Effects of high non–phytate phosphorus starter diet on subsequent growth performance and carcass characteristics of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2014, 98, 643–650. [Google Scholar] [CrossRef]
- Ayres, V.E.; Boltz, T.P.; Lessard, P.A.; Raab, R.M.; Moeitz, J.S. The effects of two corn-expressed phytases on broiler growth performance and tibia mineralization. J. Appl. Poult. Res. 2021, 30, 100131. [Google Scholar] [CrossRef]
- Du, G.B.; Wang, Y.B.; Jiang, B.L. Effects of dietary high non-phytate phosphorus level on growth performance, tibia bone composition and metabolism of calcium and phosphorus of geese. China Feed 2018, 23, 891–897. [Google Scholar]
- Wang, Z.W.; Mou, X.L.; Yang, G.W.; Li, J.K.; Liu, D.S. Effects of Dietary Nutritional Levels on Calcium, Phosphorus Concentrations and ALK Activity in Serum and Calcium, Phosphorus Contents in Tibia for Geese. China Poult. 2009, 31, 16–20. [Google Scholar]
- Alizadeh–Ghamsari, A.; Hassanabadi, A.; Leslie, M.A. Effects of Dietary Phytase, Calcium and Phosphorus on Performance, Nutrient Utilization and Blood Parameters of Male Broiler Chickens. J. Anim. Vet. Adv. 2007, 6, 1434–1442. [Google Scholar]
- Namini, B.B.; Nezhad, Y.E.; Sarikhan, M.; Ahmadzadeh, A.R.; Hosseinzadeh, M.H.; Gholizadeh, B. Effects of dietary available phosphorus and microbial phytase on growth performance, carcass traits, serum minerals and toe ash content in broiler chicks. Int. J. Agric. Biol. 2012, 14, 435–439. [Google Scholar]
- Li, T.; Xing, G.; Shao, Y.; Zhang, L.; Li, S.; Lu, L.; Liu, Z.; Liao, X.; Luo, X. Dietary calcium or phosphorus deficiency impairs the bone development by regulating related calcium or phosphorus metabolic utilization parameters of broilers. Poult. Sci. 2020, 99, 3207–3214. [Google Scholar] [CrossRef] [PubMed]
- Huyghebaert, G. The response of broiler chicks to phase feeding for P, Ca and Phytase. Arch. Fuer. Geflugelkd 1996, 60, 132–141. [Google Scholar]
- Jiang, S.; Jiang, Z.; Zhou, G.; Chen, Z.; Li, D. Non–phytate phosphorus requirements and efficacy of a genetically engineered yeast phytase in male Lingnan Yellow broilers from 1 to 21 days of age. J. Anim. Physiol. Anim. Nutr. 2011, 95, 47–55. [Google Scholar] [CrossRef]
- Han, J.C.; Qu, H.X.; Wang, J.G.; Chen, G.H.; Yan, Y.F.; Zhang, G.L.; Hu, F.M.; You, L.Y.; Cheng, Y.H. Comparison of the Growth and Mineralization of the Femur, Tibia, and Metatarsus of Broiler Chicks. Braz. J. Poult. Sci. 2015, 17, 333–340. [Google Scholar] [CrossRef]
- Wu, Y.B.; Ravindran, V.; Morel, P.C.H.; Hendriks, W.H.; Pierce, J. Evaluation of a microbial phytase, produced by solid–state fermentation, in broiler diets. 1. influence on performance, toe ash contents, and phosphorus equivalency estimates. J. Appl. Poult. Res. 2004, 13, 373–383. [Google Scholar] [CrossRef]
- Driver, J.P.; Pesti, G.M.; Bakalli, R.I.; Edwards, H.M., Jr. The effect of feeding calcium-and phosphorus-deficient diets to broiler chickens during the starting and growing–finishing phases on varcass quality. Poult. Sci. 2006, 85, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Coto, C.; Mussini, F.; Goodgame, S.; Lu, C.; Yuan, J.; Bedford, M.R.; Waldroup, P.W. Interactions between phytase and xylanase enzymes in male broiler chicks fed phosphorus deficient diets from 1 to 18 days of age. Poult. Sci. 2013, 92, 1818–1823. [Google Scholar] [CrossRef] [PubMed]
- Schaly, L.M.; Goncalves, B.N.; Oliveira, M.; Laurentiz, A.C.; Junqueira, O.M. Effect of Nonphytate phosphorus and phytase levels on broiler femur. Biotemas 2009, 22, 81–85. [Google Scholar]
- Venäläinen, E.; Valaja, J.; Jalava, T. Effects of dietary metabolisable energy, calcium and phosphorus on bone mineralisation, leg weakness and performance of broiler chickens. Br. Poult. Sci. 2006, 47, 301–310. [Google Scholar] [CrossRef]
- Alagawany, M.; Ashour, E.A.; El–Kholy, M.S.; Mohamed, L.A.; El–Hack, M.E.A. Effect of dietary calcium and phosphorus levels on growth, carcass characteristics and liver and kidney functions of growing Egyptian geese. Poult. Sci. 2021, 100, 101244. [Google Scholar] [CrossRef]
- Wang, B.W.; Zhang, M.A.; Li, W.L.; Liu, G.L.; Jia, X.H.; Wu, X.P.; Yang, S.L. Effect of different level of calcium and phosphorus on early growth in fast–growth lines of Wulong goose. J. Northeast Agric. Univ. 2004, 35, 723–729. [Google Scholar]
- Zhu, Y.W.; Wang, C.Y.; Wen, J.; Wang, W.C.; Yang, L. Effect of dietary high non–phytate phosphorus level on growth performance and metabolism of calcium and phosphorus in Lion–head geese. Animal 2018, 236, 115–121. [Google Scholar] [CrossRef]
Items | Dietary Non-phytate Phosphorus (NPP) Level | ||||
---|---|---|---|---|---|
0.18% | 0.28% | 0.37% | 0.47% | 0.59% | |
Ingredients, % | |||||
Corn, % | 58.30 | 58.30 | 58.30 | 58.30 | 58.30 |
Soybean meal (CP 2, 43%), % | 31.60 | 31.60 | 31.60 | 31.60 | 31.60 |
Wheat bran, % | 2.60 | 2.60 | 2.60 | 2.60 | 2.60 |
Rice husk, % | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Lime stone, % | 1.75 | 1.58 | 1.42 | 1.26 | 1.10 |
Calcium dihydrogen phosphate, % | 0.50 | 0.94 | 1.38 | 1.81 | 2.24 |
Vermiculite, % | 1.75 | 1.48 | 1.20 | 0.93 | 0.66 |
DL–methionine, % | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
NaCl, % | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Premix 1, % | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Total, % | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Nutrient levels 3 | |||||
ME (MJ/kg) | 11.24 | 11.24 | 11.24 | 11.24 | 11.24 |
CP, % | 18.29 | 18.37 | 18.44 | 18.40 | 18.38 |
Crude fiber, % | 4.27 | 4.27 | 4.27 | 4.27 | 4.27 |
Calcium (Ca), % | 0.78 | 0.75 | 0.77 | 0.78 | 0.76 |
Total phosphorus (TP), % | 0.46 | 0.56 | 0.67 | 0.75 | 0.87 |
Non-phytate P (NPP), % | 0.18 | 0.28 | 0.39 | 0.47 | 0.59 |
Methionine, % | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 |
Lysine, % | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Items | Dietary NPP Level | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|---|
0.18% | 0.28% | 0.39% | 0.47% | 0.59% | NPP Level | Linear | Quadratic | ||
BW, g | |||||||||
Day 14 | 604.7 | 654.8 | 627.3 | 656.9 | 666.1 | 8.06 | 0.082 | 0.025 | 0.693 |
Day 28 | 1695 b | 1812 a | 1802 a | 1818 a | 1824 a | 12.19 | 0.001 | <0.001 | 0.016 |
ADG, g/bird·d | |||||||||
Day 14 | 33.51 | 37.59 | 36.13 | 37.08 | 38.06 | 0.62 | 0.147 | 0.050 | 0.448 |
Day 28 | 55.24 | 59.43 | 57.69 | 58.25 | 58.80 | 0.66 | 0.241 | 0.122 | 0.489 |
ADFI, g/bird·d | |||||||||
Day 14 | 71.25 | 73.39 | 73.02 | 75.97 | 76.33 | 1.18 | 0.652 | 0.149 | 0.982 |
Day 28 | 112.5 | 118.4 | 117.8 | 118.3 | 119.3 | 2.07 | 0.897 | 0.515 | 0.513 |
F/G, g/g | |||||||||
Day 14 | 2.03 | 1.96 | 1.98 | 1.93 | 1.93 | 0.02 | 0.536 | 0.124 | 0.725 |
Day 28 | 2.04 | 2.00 | 2.04 | 2.03 | 2.03 | 0.03 | 0.992 | 0.894 | 0.862 |
Items 1 | Dietary NPP Level | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|---|
0.18% | 0.28% | 0.39% | 0.47% | 0.59% | NPP Level | Linear | Quadratic | ||
Serum Ca content, mmol/L | |||||||||
Day 14 | 2.78 | 2.61 | 2.48 | 2.49 | 2.53 | 0.040 | 0.105 | 0.013 | 0.244 |
Day 28 | 2.52 | 2.32 | 2.35 | 2.36 | 2.42 | 0.026 | 0.074 | 0.057 | 0.097 |
Serum P content, mmol/L | |||||||||
Day 14 | 1.98 b | 2.34 a | 2.59 a | 2.53 a | 2.58 a | 0.064 | 0.003 | 0.001 | 0.038 |
Day 28 | 1.46 c | 1.71 b | 1.87 a | 1.89 a | 1.87 a | 0.035 | <0.001 | <0.001 | 0.001 |
Serum ALP activity, U/L | |||||||||
Day 14 | 883.8 | 796.2 | 741.7 | 815.0 | 744.0 | 22.82 | 0.266 | 0.110 | 0.395 |
Day 28 | 1120 b | 908.0 a | 803.8 a | 819.8 a | 855.8 a | 28.49 | <0.001 | <0.001 | 0.001 |
Items 1 | Dietary NPP Level | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|---|
0.18% | 0.28% | 0.39% | 0.47% | 0.59% | NPP Level | Linear | Quadratic | ||
Length, cm | 11.06 b | 11.58 a | 11.61 a | 11.72 a | 11.76 a | 0.08 | 0.016 | 0.003 | 0.122 |
Width, cm | 0.795 | 0.798 | 0.818 | 0.803 | 0.826 | 0.06 | 0.483 | 0.116 | 0.447 |
Fresh weight, g | 10.21 | 10.27 | 10.62 | 11.00 | 11.19 | 0.15 | 0.160 | 0.014 | 0.814 |
Skim weight, g | 4.98 c | 5.36 bc | 5.70 ab | 5.71 ab | 6.06 a | 0.10 | 0.004 | <0.001 | 0.576 |
Bone strength, N | 267 b | 334 a | 376 a | 385 a | 386 a | 12.18 | 0.002 | <0.001 | 0.045 |
Volume, mL | 8.00 | 7.78 | 7.88 | 8.17 | 7.83 | 0.13 | 0.916 | 0.961 | 0.967 |
Specific gravity, g/cm3 | 1.28 b | 1.32 ab | 1.34 a | 1.35 a | 1.35 a | 0.01 | 0.020 | 0.002 | 0.185 |
Ash, % | 49.93 b | 52.50 a | 53.30 a | 53.48 a | 53.72 a | 0.37 | 0.006 | 0.001 | 0.043 |
Ca, % | 16.96 | 18.28 | 18.61 | 18.39 | 18.52 | 0.29 | 0.367 | 0.123 | 0.230 |
P, % | 7.96 b | 8.65 a | 8.99 a | 8.96 a | 9.00 a | 0.10 | 0.001 | <0.001 | 0.013 |
Items 1 | Dietary NPP Level | SEM | p Values | ||||||
---|---|---|---|---|---|---|---|---|---|
0.18% | 0.28% | 0.39% | 0.47% | 0.59% | NPP Level | Linear | Quadratic | ||
Length, cm | 6.07 b | 6.43 a | 6.48 a | 6.56 a | 6.56 a | 0.04 | <0.001 | <0.001 | 0.007 |
Width, cm | 0.81 | 0.80 | 0.82 | 0.81 | 0.83 | 0.01 | 0.521 | 0.228 | 0.342 |
Fresh weight, g | 4.96 b | 5.78 a | 6.04 a | 6.09 a | 6.07 a | 0.12 | 0.003 | 0.001 | 0.022 |
Skim weight, g | 2.34 b | 2.89 a | 3.07 a | 3.03 a | 3.07 a | 0.06 | <0.001 | <0.001 | 0.001 |
Ash, % | 47.56 | 50.21 | 50.32 | 50.57 | 50.62 | 0.45 | 0.156 | 0.043 | 0.171 |
Ca, % | 18.83 | 19.83 | 20.73 | 20.34 | 20.23 | 0.24 | 0.096 | 0.041 | 0.066 |
P, % | 8.42 | 9.18 | 9.37 | 9.42 | 9.65 | 0.15 | 0.073 | 0.009 | 0.298 |
Ash Ca, % | 38.39 | 39.50 | 40.63 | 40.24 | 40.27 | 0.38 | 0.799 | 0.776 | 0.242 |
Ash P, % | 17.77 | 18.42 | 18.67 | 18.62 | 18.54 | 0.24 | 0.379 | 0.107 | 0.258 |
Items | Regression Equations | p Values | R2 | NPP Requirements, % |
---|---|---|---|---|
Broken-line regression | ||||
Body weight (BW), g | Y = 1814.8 − 1162.5 (0.2829 − x) | <0.001 | 0.52 | 0.28 |
Serum phosphorus (P), % | Y = 1.8759 − 2.5167 (0.3453 − x) | <0.001 | 0.77 | 0.35 |
Tibia bone strength, N | Y = 382.3 − 670.8 (0.3524 − x) | <0.001 | 0.48 | 0.35 |
Tibia P, % | Y = 8.9819 − 6.9333 (0.3267 − x) | <0.001 | 0.53 | 0.33 |
Tibia ash, % | Y = 53.4994 − 25.6998 (0.3267 − x) | 0.010 | 0.40 | 0.33 |
Femur fresh weight, g | Y = 3.0576 − 5.45 (0.3117 − x) | <0.001 | 0.67 | 0.31 |
Third phalanx’s skim weight, g | Y = 1.6633 − 2.1267 (0.3029 − x) | <0.001 | 0.72 | 0.30 |
Quadratic regression | ||||
BW, g | Y = 1527.2 + 1250.7 x − 1290.8 x2 | <0.001 | 0.45 | 0.48 |
Serum P, % | Y = 0.815 + 4.42 x − 4.471 x2 | <0.001 | 0.70 | 0.49 |
Tibia bone strength, N | Y = 98.033 + 1146.4 x − 1121.1 x2 | <0.001 | 0.44 | 0.51 |
Tibia ash, % | Y = 44.91 + 35.35 x − 35.01 x2 | 0.001 | 0.34 | 0.50 |
Tibia P, % | Y = 6.427 + 10.755 x − 10.974 x2 | <0.001 | 0.48 | 0.49 |
Third phalanx’s ash, % | Y = 21.015 + 51.993 x − 55.929 x2 | 0.001 | 0.38 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Chen, Y.; Xu, L.; Su, G.; Wang, Z.; Yang, H. Requirement of Non-Phytate Phosphorus in 1- to 28-Day-Old Geese Based on Growth Performance, Serum Variables, and Bone Characteristics. Agriculture 2022, 12, 479. https://doi.org/10.3390/agriculture12040479
Li N, Chen Y, Xu L, Su G, Wang Z, Yang H. Requirement of Non-Phytate Phosphorus in 1- to 28-Day-Old Geese Based on Growth Performance, Serum Variables, and Bone Characteristics. Agriculture. 2022; 12(4):479. https://doi.org/10.3390/agriculture12040479
Chicago/Turabian StyleLi, Ning, Yuanjing Chen, Lei Xu, Guoqiang Su, Zhiyue Wang, and Haiming Yang. 2022. "Requirement of Non-Phytate Phosphorus in 1- to 28-Day-Old Geese Based on Growth Performance, Serum Variables, and Bone Characteristics" Agriculture 12, no. 4: 479. https://doi.org/10.3390/agriculture12040479
APA StyleLi, N., Chen, Y., Xu, L., Su, G., Wang, Z., & Yang, H. (2022). Requirement of Non-Phytate Phosphorus in 1- to 28-Day-Old Geese Based on Growth Performance, Serum Variables, and Bone Characteristics. Agriculture, 12(4), 479. https://doi.org/10.3390/agriculture12040479