Production of Pelleted Biochar and Its Application as an Amendment in Paddy Condition for Reducing Methane Fluxes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Biochar Pellet
2.3. Experimental Design and Sampling
2.4. CH4 Monitoring
2.5. Soil Analysis
2.6. Statistical Analysis
3. Results
3.1. Rice Production
3.2. Soil Chemical Characteristics
3.3. Changes in CH4 Emission Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Miranda, M.S.; Fonseca, M.L.; Lima, A.; de Moraes, T.F.; Rodrigues, F.A. Environmental impacts of rice cultivation. Am. J. Plant Sci. 2015, 6, 2009–2018. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Song, Y.; Shen, H.; Jiang, X.; Li, B.; Xiong, Z. Biochar can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils. Environ. Pollut. 2019, 253, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Park, J.W.; Seo, D.C.; Ok, Y.S.; Park, K.D.; Choi, I.W.; Cho, J.S. Effect of biochar application on rice yield and greenhouse gas emission under different nutrient conditions from paddy soil. J. Environ. Eng. 2016, 142, 04016046. [Google Scholar] [CrossRef]
- FAO (Food and Agricultural Organization of the United Nations). OECD-FAO Agricultural Outlook 2011–2030. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2021-2030_19428846-en (accessed on 11 October 2021).
- Kim, P.; Hensley, D.; Labbé, N. Nutrient release from switchgrass-derived biochar pellet embedded with fertilizer. Geoderma 2014, 232–234, 341–351. [Google Scholar] [CrossRef]
- Jindo, K.; Suto, K.; Matsumoto, K.; García, C.; Sonoki, T.; Sanchez-Monedero, M.A. Chemical and biochemical characterization of biochar-blended composts prepared from poultry manure. Bioresour. Technol. 2012, 110, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xiao, Y.; Sun, X.; Ding, J.; Jiang, Z.; Xu, J. Biochar improved rice yield and mitigated CH4 and N2O emissions from paddy field under controlled irrigation in the Taihu Lake Region of China. Atmos. Environ. 2019, 200, 69–77. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Saud, S.; Hassan, S.; Tanveer, M.; Ihsan, M.Z.; Shah, A.N.; Ullah, A.; Nasrullah; Khan, F.; et al. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol. Biochem. 2016, 103, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.D.; Jang, E.S.; Park, S.W.; Ravindran, B.; Chang, S.W. Agro-environmental impacts, carbon sequestration and profit analysis of blended biochar pellet application in the paddy soil-water system. J. Environ. Manage. 2019, 244, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Ro, K.S.; Cantrell, K.B.; Hunt, P.G. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Ind. Eng. Chem. Res. 2010, 49, 10125–10131. [Google Scholar] [CrossRef]
- Shin, J.D.; Park, S.W. Optimization of blended biochar pellet by the use of nutrient releasing model. Appl. Sci. 2018, 8, 2274. [Google Scholar] [CrossRef] [Green Version]
- NIAST. Methods of Soil and Plant Analysis; National Institute of Agricultural Science and Technology, RDA: Suwon, Korea, 2000. [Google Scholar]
- Vanghu, S.F.; Kenar, J.A.; Thompson, A.R.; Peterson, S.C. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crops Prod. 2013, 51, 437–443. [Google Scholar] [CrossRef]
- Šimanský, V.; Šrank, D.; Juriga, M. Differences in soil properties and crop yields after application of biochar blended with farmyard manure in sandy and loamy soils. Acta Fytotechn. Zootechn. 2019, 22, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Feng, Y.; Wang, Y.; Yang, L.; Xue, L.; Xing, B. Impact of hydrochar on rice paddy CH4 and N2O emissions: A comparative study with pyrochar. Chemosphere 2018, 204, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, H.; Yang, S.; Wang, Y. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crops Res. 2016, 191, 161–167. [Google Scholar] [CrossRef]
- Kang, S.W.; Park, J.H.; Kim, S.H.; Seo, D.C.; Ok, Y.S.; Cho, J.S. Establishment of optimal barley straw biochar application conditions for rice cultivation in a paddy field. Environ. Geochem. Health 2019, 41, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, S.; Verheijen, F.G.; Van Der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Mohammadi, A.; Cowie, A.; Mai, T.L.A.; de la Rosa, R.A.; Kristiansen, P.; Brandão, M.; Joseph, S. Biochar use for climate-change mitigation in rice cropping systems. J. Clean. Prod. 2016, 116, 61–70. [Google Scholar] [CrossRef]
- Korai, P.K.; Xia, X.; Liu, X.; Bian, R.; Omondi, M.O.; Nahayo, A.; Pan, G. Extractable pool of biochar controls on crop productivity rather than greenhouse gas emission from a rice paddy under rice-wheat rotation. Sci. Rep. 2018, 8, 802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Shen, J.; Liu, J.; Qin, H.; Yuan, Q.; Fan, F.; Hu, Y.; Wang, J.; Wei, W.; Li, Y.; et al. Microbial mechanisms in the reduction of CH4 emission from double rice cropping system amended by biochar: A four-year study. Soil Biol. Biochem. 2019, 135, 251–263. [Google Scholar] [CrossRef]
- Liu, J.; Shen, J.; Li, Y.; Su, Y.; Ge, T.; Jones, D.L.; Wu, J. Effects of biochar amendment on the net greenhouse gas emission and greenhouse gas intensity in a Chinese double rice cropping system. Eur. J. Soil Biol. 2014, 65, 30–39. [Google Scholar] [CrossRef]
BET SA * | Yield | pH | Elemental Composition | Molar Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | H/C | O/C | (O + N)/C | (O + N + S)/C | |||
(m2 g−1) | (%) | (1:10H2O) | (%) | ||||||||
228 | 28.8 | 10.1 | 87.2 | 2.79 | 9.63 | 0.54 | 0.01 | 0.39 | 0.08 | 0.09 | 0.09 |
±2.56 a | ±0.02 | ±0.15 | ±0.03 | ±0.13 | ±0.02 | ±0.00 | ±0.00 | ±0.00 | ±0.00 | ±0.00 |
Year | Treatment | Plant Height | Tiller Number | Seed per Panicle | 1000 Seed Weight | Grain Yield |
---|---|---|---|---|---|---|
(cm) | (per hill−1) | (no.) | (g) | (g m−2) | ||
2016 | Control | 48.6 ± 3.24b 1 | 6.8 ± 0.45b | 32.8 ± 1.79b | 23.1 ± 0.73b | 226 ± 8.87c |
IF | 54.9 ± 2.72a | 8.6 ± 0.55a | 37.2 ± 2.17a | 26.3 ± 1.03a | 272 ± 4.10a | |
BC_PT | 49.8 ± 1.95b | 7.4 ± 0.55b | 35.4 ± 0.89ab | 24.4 ± 0.79b | 257 ± 3.11b | |
2017 | Control | 47.8 ± 3.00a | 6.4 ± 0.55b | 32.4 ± 1.52b | 22.7 ± 0.96b | 213 ± 6.52b |
IF | 52.3 ± 3.21a | 8.2 ± 0.45a | 36.8 ± 1.64a | 26.0 ± 0.75a | 270 ± 3.56a | |
BC_PT | 52.4 ± 3.33a | 8.0 ± 0.71a | 36.4 ± 0.89a | 25.8 ± 1.19a | 268 ± 3.41a | |
Statistical analysis 2 | ||||||
Year (A) | ns | ns | ns | ns | ns | |
Treatment (B) | ** | *** | *** | *** | *** | |
A × B | * | ns | ns | *** | ns |
Year | Treatment | pH | SOC | TN | Avail. P2O5 | Exch. Cations (cmolc kg−1) | |||
---|---|---|---|---|---|---|---|---|---|
(1:5) | (g kg−1) | (mg kg−1) | K | Ca | Mg | CEC | |||
2016 | Control | 5.17 ±0.05c 1 | 5.56 ±0.20b | 0.71 ±0.10b | 30.6 ±0.39b | 0.07 ±0.00c | 4.18 ±0.05b | 0.41 ±0.02a | 5.55 ±0.23b |
IF | 5.24 ±0.04b | 5.55 ±0.25b | 0.76 ±0.17a | 31.4 ±0.29ab | 0.08 ±0.00b | 4.22 ±0.07b | 0.41 ±0.02a | 5.64 ±0.12b | |
BC_PT | 5.48 ±0.02a | 5.95 ±0.20a | 0.72 ±0.16b | 32.2 ±0.87a | 0.10 ±0.00a | 4.42 ±0.07a | 0.44 ±0.01a | 5.90 ±0.06a | |
2017 | Control | 5.19 ±0.05b | 5.29 ±0.33b | 0.67 ±0.09b | 28.7 ±1.23b | 0.07 ±0.00c | 4.15 ±0.10b | 0.37 ±0.00b | 5.49 ±0.08b |
IF | 5.14 ±0.02b | 5.22 ±0.19b | 0.79 ±0.16a | 32.8 ±1.02a | 0.08 ±0.00b | 4.16 ±0.02b | 0.40 ±0.03b | 5.48 ±0.15b | |
BC_PT | 5.51 ±0.11a | 5.97 ±0.23a | 0.77 ±0.15a | 33.3 ±1.54a | 0.10 ±0.00a | 4.49 ±0.02a | 0.48 ±0.03a | 5.95 ±0.11a | |
Statistical analysis 2 | |||||||||
Year (A) | ns | ns | ns | ns | ns | ns | ns | ns | |
Treatment (B) | *** | *** | *** | *** | *** | *** | *** | *** | |
A × B | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | Total CH4 Flux (g m−2) | |||
---|---|---|---|---|
Rice Cropping Season | Fallow Season | Annual | ||
2016 | 2017 | 2016–2017 | ||
Control | 24.0a * | 25.3a | 3.67a | 53.0a |
IF | 24.4a | 23.3a | 3.48a | 51.2a |
BC_PT | 19.4b | 20.1b | 3.59a | 43.1b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.-J.; Park, J.-H.; Acharya, B.S.; Park, J.-H.; Cho, J.-S.; Kang, S.-W. Production of Pelleted Biochar and Its Application as an Amendment in Paddy Condition for Reducing Methane Fluxes. Agriculture 2022, 12, 470. https://doi.org/10.3390/agriculture12040470
Yun J-J, Park J-H, Acharya BS, Park J-H, Cho J-S, Kang S-W. Production of Pelleted Biochar and Its Application as an Amendment in Paddy Condition for Reducing Methane Fluxes. Agriculture. 2022; 12(4):470. https://doi.org/10.3390/agriculture12040470
Chicago/Turabian StyleYun, Jin-Ju, Jae-Hyuk Park, Bharat Sharma Acharya, Jong-Hwan Park, Ju-Sik Cho, and Se-Won Kang. 2022. "Production of Pelleted Biochar and Its Application as an Amendment in Paddy Condition for Reducing Methane Fluxes" Agriculture 12, no. 4: 470. https://doi.org/10.3390/agriculture12040470
APA StyleYun, J.-J., Park, J.-H., Acharya, B. S., Park, J.-H., Cho, J.-S., & Kang, S.-W. (2022). Production of Pelleted Biochar and Its Application as an Amendment in Paddy Condition for Reducing Methane Fluxes. Agriculture, 12(4), 470. https://doi.org/10.3390/agriculture12040470