Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Meteorological Conditions
2.3. Description of Irrigation Systems
2.4. Experimental Layout
2.5. Irrigation Water Productivity
2.6. Physicochemical Properties of the Soil
2.7. Chemical Properties of Irrigation Water
2.8. Fruit Quality Parameters
2.9. Statistical Analysis
3. Results and Discussion
3.1. Irrigation Water Quality
3.2. Applied Irrigation Water
3.3. Physicochemical Properties of the Soil
3.4. Yield and Water Productivity
3.5. Physicochemical Properties of Date Palm Fruits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faostat—F.A.O. Food and Agriculture Organization of the United Nations. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 18 January 2022).
- Aleid, S.M.; Al-Khayri, J.M.; Al-Bahrany, A.M. Date palm status and perspective in Saudi Arabia. In Date Palm Genetic Resources and Utilization; Springer: Berlin/Heidelberg, Germany, 2015; pp. 49–95. [Google Scholar]
- Dhehibi, B.; Ben Salah, M.; Frija, A. Date Palm Value Chain Analysis and Marketing Opportunities for the Gulf Cooperation Council (GCC) Countries. In Agricultural Economics—Current Issues; Kulshreshtha, S.N., Ed.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Shadeed, S. Spatio-temporal Drought Analysis in Arid and Semi-arid Regions: A Case Study from Palestine. Arab. J. Sci. Eng. 2013, 38, 2303–2313. [Google Scholar] [CrossRef]
- Alabdulkader, A.M.; Al-Amoud, A.I.; Awad, F.S. Adaptation of the agricultural sector to the effects of climate change in arid regions: Competitive advantage date palm cropping patterns under water scarcity conditions. J. Water Clim. Chang. 2016, 7, 514–525. [Google Scholar] [CrossRef]
- El-Juhany, L.I. Degradation of date palm trees and date production in Arab countries: Causes and potential rehabilitation. Aust. J. Basic Appl. Sci. 2010, 4, 3998–4010. [Google Scholar] [CrossRef]
- Baig, M.B.; Alotibi, Y.; Straquadine, G.S.; Alataway, A. Water resources in the kingdom of Saudi Arabia: Challenges and strategies for improvement. In Global Issues in Water Policy; Springer: Berlin/Heidelberg, Germany, 2020; Volume 23, pp. 135–160. [Google Scholar]
- Wang, G.; Li, J.; Sun, W.; Xue, B.; Yinglan, A.; Liu, T. Non-point source pollution risks in a drinking water protection zone based on remote sensing data embedded within a nutrient budget model. Water Res. 2019, 157, 238–246. [Google Scholar] [CrossRef]
- Wang, T.; Franz, T.E.; Yue, W.; Szilagyi, J.; Zlotnik, V.A.; You, J.; Chen, X.; Shulski, M.D.; Young, A. Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network. J. Hydrol. 2016, 533, 250–265. [Google Scholar] [CrossRef]
- Thompson, T.L.; Pang, H.-C.; Li, Y. The Potential Contribution of Subsurface Drip Irrigation to Water-Saving Agriculture in the Western USA. Agric. Sci. China 2009, 8, 850–854. [Google Scholar] [CrossRef]
- Zatari, T.M. Second National Communication: Kingdom of Saudi Arabia. A Report Prepared, Coordinated by the Presidency of Meteorology and Environment (PME), Riyadh, Saudi Arabia, and Submitted to the United Nations Framework Convention on Climate Change [UNFCCC], Bonn, Germany, 2011. Available online: https://unfccc.int/resource/docs/natc/saunc2.pdf. (accessed on 18 January 2022).
- Allbed, A.; Kumar, L.; Shabani, F. Climate change impacts on date palm cultivation in Saudi Arabia. J. Agric. Sci. 2017, 155, 1203–1218. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United (FAO); International Center for Advanced Mediterranean Agronomic Studies (CIHEAM). Workshop on Irrigation of Date Palm and Associated Crops. In Proceedings of the East, Damascus, Syria, 27–30 May 2007; Faculty of Agriculture, Damascus University: Damascus, Syria, 2007; pp. 27–30. [Google Scholar]
- Mohammed, M.; Riad, K.; Alqahtani, N. Efficient IoT-based control for a smart subsurface irrigation system to enhance irrigation management of date palm. Sensors 2021, 21, 3942. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.K.; Misra, S.; Raghuwanshi, N.S.; Das, S.K. AgriSens: IoT-Based Dynamic Irrigation Scheduling System for Water Management of Irrigated Crops. IEEE Internet Things J. 2021, 8, 5023–5030. [Google Scholar] [CrossRef]
- Al-Yahyai, R.; Khan, M.M. Date palm status and perspective in oman. In Date Palm Genetic Resources and Utilization: Volume 2: Asia and Europe; Springer: Berlin/Heidelberg, Germany, 2015; pp. 207–240. ISBN 9789401797078. [Google Scholar]
- Dhaoudi, L. Water saving in arid irrigated lands: A comparison between different irrigation techniques adopted under date palms in the Tunisian oasis. Desalin. Water Treat. 2020, 176, 190–196. [Google Scholar] [CrossRef]
- Liebenberg, P.J.; Zaid, A. Date palm irrigation. In Date Palm Cultivation. Rome (Italy): FAO Plan Production and Protection; Paper 156; Food and Agricultural Organization of the United Nations: Rome, Italy, 2002. [Google Scholar]
- Deng, X.P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Al-Omran, A.; Alshammari, F.; Eid, S.; Nadeem, M. Determination of date palm water requirements in Saudi Arabia. In Climate Change, Food Security and Natural Resource Management: Regional Case Studies from Three Continents; Behnassi, M., Pollmann, O., Gupta, H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 179–201. ISBN 9783319970912. [Google Scholar]
- Ismail, S.M.; Al-Qurashi, A.D.; Awad, M.A. Optimization of irrigation water use, yield, and quality of “Nabbut-Saif” date palm under dry land conditions. Irrig. Drain. 2014, 63, 29–37. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, M.K.V. The water relations and irrigation requirements of olive (Olea europaea L.): A review. Exp. Agric. 2013, 49, 597–639. [Google Scholar] [CrossRef]
- Dewidar, A.Z.; Al-Fehaid, Y.; Al-Hilal, S.; ben Saleh, M. Water saving in arid regions: A comparison of surface and subsurface drip irrigation systems. Am. J. Innov. Res. Appl. Sci. 2016, 2, 289–296. [Google Scholar]
- Olimovich, M.S. Methods of teaching ethics of water use in water economy. Acad. J. Digit. Econ. Stab. 2021, 6, 54–63. [Google Scholar]
- Al-Amoud, A.I.; Bacha, M.A.; Al-Darby, A.M. Seasonal water use of date palms in the central region of Saudi Arabia. Int. Agric. Eng. J. 2000, 9, 51–62. [Google Scholar]
- Phocaides, A. Technical Handbook on Pressurized Irrigation Techniques; FAO: Rome, Italy, 2000; p. 372. [Google Scholar]
- Elfeky, A.; Elfaki, J. A Review: Date Palm Irrigation Methods and Water Resources in the Kingdom of Saudi Arabia. J. Eng. Res. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Al-Amoud, A.I. Performance of Bubbler Irrigation System as Compared to Trickle for Large Size Date Palm Tree Farm; Paper No. 08-172; The Canadian Society for Bioengineering: St. Joseph, MI, Canada, 2008. [Google Scholar]
- Bravdo, B.; Proebsting, E.L. Use of Drip Irrigation in Orchards. Horttechnology 1993, 3, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Machiani, S.B.; Khaledian, M.; Biglouei, A.A. Evaluation of drip irrigation systems in the kiwifruit gardens of east Guilan province. Water Manag. Agric. 2014, 1, 55–62. [Google Scholar]
- Tagar, A.; Chandio, F.A.; Mari, I.A.; Wagan, B. Comparative study of drip and furrow irrigation methods at farmer’s field in Umarkot. World Acad. Sci. Eng. Technol. 2012, 69, 863–867. [Google Scholar]
- Bourziza, R.; Hammani, A.; Kuper, M.; Bouaziz, A. Water saving in arid regions: Comparison of innovative techniques for irrigation of young date palms. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2014, 8, 771–776. [Google Scholar]
- Hassanli, A.M.; Ebrahimizadeh, M.A.; Beecham, S. The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region. Agric. Water Manag. 2009, 96, 93–99. [Google Scholar] [CrossRef]
- Tindula, G.N.; Orang, M.N.; Snyder, R.L. Survey of Irrigation Methods in California in 2010. J. Irrig. Drain. Eng. 2013, 139, 233–238. [Google Scholar] [CrossRef]
- Soil and Water Terminology; ASAE S 526.1; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2015; Available online: https://elibrary.asabe.org/abstract.asp?aid=46413&t=2 (accessed on 18 January 2022).
- Lamm, F.R.; Trooien, T.P. Subsurface drip irrigation for corn production: A review of 10 years of research in Kansas. Irrig. Sci. 2003, 22, 195–200. [Google Scholar] [CrossRef]
- Lamm, F.R.; Bordovsky, J.P.; Schwankl, L.J.; Grabow, G.L.; Enciso-Medina, J.; Peters, R.T.; Colaizzi, P.D.; Trooien, T.P.; Porter, D.O. Subsurface drip irrigation: Status of the technology in 2010. Trans. ASABE 2012, 55, 483–491. [Google Scholar] [CrossRef]
- Hanson, B.; May, D. Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agric. Water Manag. 2004, 68, 1–17. [Google Scholar] [CrossRef]
- Mohammed, M.; Sallam, A.; Munir, M.; Ali-Dinar, H. Effects of deficit irrigation scheduling on water use, gas exchange, yield, and fruit quality of date palm. Agronomy 2021, 11, 2256. [Google Scholar] [CrossRef]
- Mohammed, M.E.A.; Alhajhoj, M.R.; Ali-Dinar, H.M.; Munir, M. Impact of a novel water-saving subsurface irrigation system on water productivity, photosynthetic characteristics, yield, and fruit quality of date palm under arid conditions. Agronomy 2020, 10, 1265. [Google Scholar] [CrossRef]
- Camp, C.R. Subsurface drip irrigation: A review. Trans. Am. Soc. Agric. Eng. 1998, 41, 1353–1367. [Google Scholar] [CrossRef]
- Lamm, F.R. Advantages and Disadvantages of Drip Irrigation. In Proceedings of the International Meeting on Advances in Drip/Micro Irrigation, Puerto de La Cruz, Spain, 2–5 December 2002; Volume C, p. 13. [Google Scholar]
- Shock, C.C. Drip Irrigation: An Introduction Extension Service; Oregon State University: Corvallis, OR, USA, 2006. [Google Scholar]
- Saxena, N.N. A Literature Review on Drip Irrigation System. Int. J. Mod. Agric. 2021, 10, 690–696. [Google Scholar]
- Al-Amoud, A.I. Subsurface drip irrigation for date palm trees to conserve water. Acta Hortic. 2010, 882, 103–114. [Google Scholar] [CrossRef]
- Al-Amoud, A.I.; Mohammad, F.S.; Al-Hamed, S.A.; Al-Abdulkader, A.M. Reference evapotranspiration and date palm water use in the kingdom of Saudi Arabia. Int. Res. J. Agric. Sci. Soil Sci. 2012, 2, 155–169. [Google Scholar]
- Mohammed, M.; ElMahmoudi, A.; Almolhem, Y. Applications of Electromagnetic Induction and Electrical Resistivity Tomography for Digital Monitoring and Assessment of the Soil: A Case Study of Al-Ahsa Oasis, Saudi Arabia. Appl. Sci. 2022, 12, 2067. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and improvement of saline and alkaline soils. Soil Sci. 1947, 64, 432. Available online: https://journals.lww.com/soilsci/Fulltext/1947/11000/Diagnosis_and_Improvement_of_Saline_and_Alkaline.13.aspx (accessed on 18 January 2022). [CrossRef]
- Klute, A. Method of Soil Analysis, Agronomy 9, Part 1: Physical and Mineralogical Methods; ASA: Madison, WI, USA, 1986. [Google Scholar]
- Jackson, M.L. Collaborative International Pesticides Analytical Council (CIPAC), Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; 498p. [Google Scholar]
- Blume, H. Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1985; ISBN 0044-3263. [Google Scholar]
- Rhoades, J.D. Potential for Using Saline Agricultural Drainage Waters for Irrigation. In Proceedings of the Water Management for Irrigation and Drainage, Reno, NV, USA, 20–22 July 1977; ASAE: Reno, NV, USA, 1992; pp. 85–96. [Google Scholar]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Nitrogen-inorganic forms. In Method of Soil Analysis, Agronomy 9, Part 2: Chemical and Microbiological Properties, 2nd ed.; ASA: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29, ISBN 9251022631. [Google Scholar]
- Kovda, V.A.; Hagan, R.M.; van den Berg, C. Irrigation, Drainage and Salinity: An International Source Book; FAO: Rome, Italy, 1973; ISBN 0091022606. [Google Scholar]
- Rhoades, J.D.; Kandiah, A.; Mashali, A.M. The Use of Saline Waters for Crop Production. Irrigation and Drainage Paper 48, 16th ed.; FAO: Rome, Italy, 1992. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Irrigation and Drainage Paper 00100; FAO: Rome, Italy, 1976; ISBN 92-5-100093-X. [Google Scholar]
- Gamea, G.R.; Aboamera, M.A.; Mohmed, M.E. Design and Manufacturing of Prototype for Orange Grading Using Phototransistor. Misr J. Agric. Eng. 2011, 28, 505–523. [Google Scholar] [CrossRef]
- Mohammed, M.E.A.; El-Shafie, H.A.; Sallam, A.A.A. A solar-powered heat system for management of almond moth, Cadra cautella (Lepidoptera: Pyralidae) in stored dates. Postharvest Biol. Technol. 2019, 154, 121–128. [Google Scholar] [CrossRef]
- Mohammed, M.E.A.; El-Shafie, H.A.F.; Alhajhoj, M.R. Design and efficacy evaluation of a modern automated controlled atmosphere system for pest management in stored dates. J. Stored Prod. Res. 2020, 89, 101719. [Google Scholar] [CrossRef]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International; AOAC: Arlington, VA, USA, 1995; Volume 16. [Google Scholar]
- Ramoliya, P.J.; Pandey, A.N. Soil salinity and water status affect growth of Phoenix dactylifera seedlings. N. Z. J. Crop Hortic. Sci. 2003, 31, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Tripler, E.; Shani, U.; Mualem, Y.; Ben-Gal, A. Long-term growth, water consumption and yield of date palm as a function of salinity. Agric. Water Manag. 2011, 99, 128–134. [Google Scholar] [CrossRef]
- Sperling, O.; Lazarovitch, N.; Schwartz, A.; Shapira, O. Effects of high salinity irrigation on growth, gas-exchange, and photoprotection in date palms (Phoenix dactylifera L., cv. Medjool). Environ. Exp. Bot. 2014, 99, 100–109. [Google Scholar] [CrossRef]
- Wilcox, L.V. Determining the Quality of Irrigation Water; US Department of Agriculture: Washington, DC, USA, 1958; ISBN 0065-4639.
- AbdelNasser, G.; Harhash, M.M. Response of some olive cultivars grown in Siwa Oasis to well water quality. Mansoura Univ. J. Agric. Sci. 2000, 25, 2877. [Google Scholar]
- Dahdoh, M.S.A.; Hassan, F.A. Combined effect of sewage sludge and saline water irrigation on growth and elements composition of broad bean. Egypt. J. Soil Sci. 1997, 37, 189–204. [Google Scholar]
- Matteodo, M.; Grand, S.; Sebag, D.; Rowley, M.C.; Vittoz, P.; Verrecchia, E.P. Decoupling of topsoil and subsoil controls on organic matter dynamics in the Swiss Alps. Geoderma 2018, 330, 41–51. [Google Scholar] [CrossRef]
- Pushkareva, E.; Eckhardt, K.U.; Hotter, V.; Frossard, A.; Leinweber, P.; Frey, B.; Karsten, U. Chemical composition of soil organic matter and potential enzyme activity in the topsoil along a moisture gradient in the High Arctic (Svalbard). Geoderma 2020, 368, 114304. [Google Scholar] [CrossRef]
- Al-Omran, A.M.; Al-Harbi, A.R.; Wahb-Allah, M.A.; Mahmoud, N.; Al-Eter, A. Impact of irrigation water quality, irrigation systems, irrigation rates and soil amendments on tomato production in sandy calcareous soil. Turk. J. Agric. For. 2010, 34, 59–73. [Google Scholar] [CrossRef]
- Rafie, R.M.; El-Boraie, F.M. Effect of Drip Irrigation System on Moisture and Salt Distribution Patterns under North Sinai Conditions. Egypt. J. Soil Sci. 2017, 57, 247–260. [Google Scholar] [CrossRef]
- Barreveld, W.H. Date Palm Products, 101st ed.; FAO: Rome, Italy, 1993; ISBN 9251032513. [Google Scholar]
- Soliman, S.S.; Osman, S.M. Effect of nitrogen and potassium fertilization on yield, fruit quality and some nutrients content of Samany date palm. Ann. Agric. Sci. 2003, 48, 283–296. [Google Scholar]
- Bainbridge, D.A. Deep Pipe Irrigation. The Overstory# 175; Permanent Agriculture Resources: Holualoa, HI, USA, 2006; p. 6. [Google Scholar]
- Manzoor Alam, S. Nutrient Uptake by Plants Under Stress Conditions. Handb. Plant Crop Stress 1999, 2, 285–313. [Google Scholar] [CrossRef]
- Al Wahaibi, H.S. Effects of drip subsurface irrigation system on date palm production and water productivity. In Proceedings of the International Center for Agricultural Research in the Dry Areas (ICARDA): The Sixth International Date Palm Conference (SIDPC), Abu Dhabi, United Arab Emirates, 19–21 March 2018; pp. 19–21. [Google Scholar]
- Al-Amoud, A.I. Dat Palm Response to Subsurface Drip Irrigation; Paper No. 06-204; The Canadian Society for Bioengineering: St. Joseph, MI, Canada, 2006. [Google Scholar]
- Albasha, R.; Mailhol, J.C.; Cheviron, B. Compensatory uptake functions in empirical macroscopic root water uptake models—Experimental and numerical analysis. Agric. Water Manag. 2015, 155, 22–39. [Google Scholar] [CrossRef] [Green Version]
- Sinobas, L.R.; Rodríguez, M.G.; Lee, T.S. A review of subsurface drip irrigation and its management. In Water Quality, Soil and Managing Irrigation of Crops; InTech: Rijeka, Croatia, 2012; pp. 171–194. [Google Scholar]
- Shareef, H.J.; Alhamd, A.S.; Naqvi, S.A.; Eissa, M.A. Adapting date palm offshoots to long-term irrigation using groundwater in sandy soil. Folia Oecol. 2021, 48, 55–62. [Google Scholar] [CrossRef]
- Hazzouri, K.M.; Flowers, J.M.; Nelson, D.; Lemansour, A.; Masmoudi, K.; Amiri, K.M.A. Prospects for the Study and Improvement of Abiotic Stress Tolerance in Date Palms in the Post-genomics Era. Front. Plant Sci. 2020, 11, 293. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.B.; Chu, L.Y.; Jaleel, C.A.; Zhao, C.X. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus-Biol. 2008, 331, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Alikhani-Koupaei, M.; Fatahi, R.; Zamani, Z.; Salimi, S. Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’ date palm and the fruit wilting and dropping disorder. Agric. Water Manag. 2018, 209, 219–227. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Response of plum trees to deficit irrigation under two crop levels: Tree growth, yield and fruit quality. Irrig. Sci. 2010, 28, 525–534. [Google Scholar] [CrossRef]
- Sadik, A.; Ali, A.A.; El-Ghany, A.; Yosri, A. Irrigation Water Management of Date Palm Under El-Baharia Oasis Conditions. Egypt. J. Soil Sci. 2018, 58, 27–43. [Google Scholar] [CrossRef] [Green Version]
Months | Meteorological Parameters | |||||
---|---|---|---|---|---|---|
Min T (°C) | Max T (°C) | Avg. RH (%) | Avg. WS (km day−1) | Avg. SH (h) | Avg. Rad (MJ m−2 day−1) | |
January | 10.2 ± 3.3 | 24.1 ± 4.1 | 60.9 ± 28.3 | 192 ± 20.9 | 8.01 ± 0.2 | 16.3 ± 0.8 |
February | 11.6 ± 2.4 | 25.9 ± 2.9 | 81.2 ± 19.7 | 151 ± 24.4 | 7.91 ± 0.1 | 18.1 ± 0.7 |
March | 14.8 ± 3.6 | 29.4 ± 3.1 | 59.9 ± 22.6 | 173 ± 16.5 | 7.51 ± 0.1 | 22.1 ± 0.9 |
April | 20.2 ± 3.8 | 35.3 ± 4.3 | 56.4 ± 19.6 | 194 ± 14.9 | 9.99 ± 0.1 | 23.1 ± 0.7 |
May | 25.4 ± 3.5 | 42.9 ± 2.9 | 40.2 ± 14.3 | 173 ± 25.5 | 9.91 ± 0.2 | 23.2 ± 1.1 |
June | 28.1 ± 2.8 | 46.8 ± 2.8 | 38.4 ± 19.6 | 199 ± 18.9 | 7.57 ± 0.2 | 23.9 ± 0.9 |
July | 30.2 ± 3.8 | 47.3 ± 2.8 | 49.3 ± 19.8 | 197 ± 21.3 | 10.2 ± 0.2 | 26.6 ± 0.8 |
August | 30.8 ± 2.9 | 46.8 ± 3.4 | 63.1 ± 21.3 | 191 ± 29.1 | 10.1 ± 0.1 | 25.9 ± 1.1 |
September | 27.2 ± 2.8 | 43.9 ± 2.1 | 61.8 ± 19.6 | 183 ± 24.1 | 10.1 ± 0.2 | 23.6 ± 1.1 |
October | 23.1 ± 3.2 | 39.3 ± 3.1 | 67.3 ± 18.2 | 183 ± 19.9 | 9.71 ± 0.2 | 23.1 ± 0.9 |
November | 16.9 ± 4.2 | 31.1 ± 2.7 | 77.5 ± 21.2 | 182 ± 18.3 | 8.11 ± 0.2 | 20.3 ± 0.8 |
December | 11.9 ± 5.3 | 23.8 ± 3.1 | 78.3 ± 22.4 | 201 ± 20.1 | 8.01 ± 0.2 | 15.3 ± 0.8 |
Chemical Properties | Mean Values | |
---|---|---|
pH | 7.48 | |
EC (dS m−1) | 2.78 | |
TDS (mg L−1) | 17,778 | |
SAR value | 4.25 | |
RSC (mg L−1) | −9.21 | |
SSP (%) | 40.56 | |
Potential Salinity (PS mg L−1) | 25.65 | |
SMgP (%) | 33.78 | |
Soluble cations (meq L−1) | Ca++ | 12.9 |
Mg++ | 6.85 | |
Na+ | 13.3 | |
K+ | 0.02 | |
Soluble anions (meq L−1) | CO3−− | 0 |
HCO3− | 3.46 | |
Cl− | 21.46 | |
SO4−− | 8.4 | |
NO3− | 4.02 | |
Micronutrients (mg L−1) | Fe | 3.69 |
Mn | 0.51 | |
Zn | 0.2 | |
Cu | 0.15 | |
Mo | 0.006 | |
B | 0.19 |
Soil Depth (cm) | Soil Particle Size (%) | SP (%) | FC (%) | PWP (%) | AW (%) | Ks | Bd (gm cm−3) | |||
---|---|---|---|---|---|---|---|---|---|---|
Soil Texture | Sand | Silt | Clay | |||||||
0–30 | Sandy Loam | 80.25 | 8.31 | 11.44 | 37.33 | 18.37 | 9.40 | 8.97 | 8.57 | 1.54 |
30–60 | Sandy Loam | 82.40 | 7.00 | 10.6 | 39.67 | 18.67 | 9.83 | 8.84 | 9.03 | 1.57 |
60–90 | Sandy Loam | 82.95 | 6.74 | 10.31 | 38.33 | 17.10 | 9.20 | 7.9 B | 8.00 | 1.62 |
Soil Properties | Soil Depth (cm) | Irrigation Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CSI | SDI | SSDI | ||||||||
100% | 75% | 50% | 100% | 75% | 50% | 100% | 75% | 50% | ||
EC (dS m−1) | 0–30 | 2.48 | 2.60 | 2.67 | 2.29 | 2.41 | 2.44 | 2.59 | 2.51 | 2.60 |
30–60 | 2.75 | 2.89 | 2.96 | 2.54 | 2.67 | 2.70 | 2.34 | 2.27 | 2.35 | |
60–90 | 2.79 | 2.93 | 3.00 | 2.57 | 2.71 | 2.74 | 2.62 | 2.54 | 2.63 | |
pH | 0–30 | 7.78 | 8.17 | 8.36 | 7.17 | 7.55 | 7.63 | 7.32 | 7.10 | 7.35 |
30–60 | 7.61 | 7.99 | 8.18 | 7.01 | 7.38 | 7.46 | 7.16 | 6.95 | 7.19 | |
60–90 | 7.47 | 7.84 | 8.03 | 6.89 | 7.25 | 7.33 | 7.03 | 6.82 | 7.06 | |
OM (%) | 0–30 | 0.36 | 0.38 | 0.39 | 0.33 | 0.35 | 0.35 | 0.34 | 0.33 | 0.34 |
30–60 | 0.24 | 0.25 | 0.26 | 0.22 | 0.23 | 0.23 | 0.22 | 0.21 | 0.22 | |
60–90 | 0.14 | 0.15 | 0.15 | 0.13 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | |
Ca++ | 0–30 | 10.38 | 10.90 | 11.16 | 9.57 | 10.07 | 10.18 | 9.77 | 9.48 | 9.81 |
30–60 | 11.22 | 11.78 | 12.06 | 10.34 | 10.88 | 11.00 | 10.56 | 10.24 | 10.60 | |
60–90 | 12.25 | 12.86 | 13.17 | 11.29 | 11.88 | 12.01 | 11.53 | 11.18 | 11.57 | |
Mg++ | 0–30 | 1.55 | 1.63 | 1.67 | 1.43 | 1.50 | 1.52 | 1.46 | 1.42 | 1.47 |
30–60 | 1.81 | 1.90 | 1.95 | 1.67 | 1.76 | 1.78 | 1.71 | 1.66 | 1.72 | |
60–90 | 2.05 | 2.15 | 2.20 | 1.89 | 1.99 | 2.01 | 1.93 | 1.87 | 1.94 | |
Na+ | 0–30 | 18.94 | 19.89 | 20.36 | 17.45 | 18.37 | 18.57 | 21.69 | 21.04 | 21.78 |
30–60 | 23.05 | 24.20 | 24.78 | 21.24 | 22.36 | 22.61 | 17.82 | 17.29 | 17.90 | |
60–90 | 23.67 | 24.85 | 25.45 | 21.81 | 22.96 | 23.21 | 22.27 | 21.60 | 22.36 | |
K+ | 0–30 | 0.63 | 0.66 | 0.68 | 0.58 | 0.61 | 0.62 | 0.59 | 0.57 | 0.59 |
30–60 | 0.71 | 0.75 | 0.76 | 0.66 | 0.69 | 0.70 | 0.67 | 0.65 | 0.67 | |
60–90 | 0.91 | 0.96 | 0.98 | 0.84 | 0.88 | 0.89 | 0.86 | 0.83 | 0.86 | |
HCO3− | 0–30 | 8.89 | 9.33 | 9.56 | 8.19 | 8.62 | 8.71 | 8.36 | 8.11 | 8.39 |
30–60 | 10.42 | 10.94 | 11.20 | 9.60 | 10.11 | 10.22 | 9.80 | 9.51 | 9.84 | |
60–90 | 11.00 | 11.55 | 11.83 | 10.14 | 10.67 | 10.79 | 10.35 | 10.04 | 10.39 | |
Cl−1 | 0–30 | 11.99 | 12.59 | 12.89 | 11.05 | 11.63 | 11.76 | 11.28 | 10.94 | 11.32 |
30–60 | 13.64 | 14.32 | 14.66 | 12.57 | 13.23 | 13.38 | 12.83 | 12.45 | 12.89 | |
60–90 | 17.49 | 18.36 | 18.80 | 16.12 | 16.97 | 17.16 | 16.46 | 15.97 | 16.53 | |
SO4− | 0–30 | 10.63 | 11.16 | 11.43 | 9.79 | 10.31 | 10.42 | 10.00 | 9.70 | 10.04 |
30–60 | 10.39 | 13.36 | 13.67 | 11.72 | 12.34 | 12.48 | 11.97 | 11.61 | 12.02 | |
60–90 | 11.08 | 10.91 | 11.17 | 9.58 | 10.08 | 10.19 | 9.78 | 9.49 | 9.82 | |
SAR | 0–30 | 12.90 | 11.63 | 11.91 | 10.21 | 10.75 | 10.87 | 10.42 | 10.11 | 10.46 |
30–60 | 12.65 | 13.55 | 13.87 | 11.88 | 12.51 | 12.65 | 12.13 | 11.77 | 12.18 | |
60–90 | 13.12 | 13.28 | 13.60 | 11.66 | 12.27 | 12.40 | 11.90 | 11.54 | 11.94 | |
ESP | 0–30 | 13.09 | 13.74 | 14.07 | 12.09 | 12.73 | 12.87 | 12.34 | 11.97 | 12.39 |
30–60 | 14.41 | 14.49 | 15.09 | 13.83 | 14.56 | 14.72 | 14.12 | 13.70 | 14.18 | |
60–90 | 15.01 | 15.31 | 15.62 | 13.28 | 13.98 | 14.13 | 13.56 | 13.15 | 13.61 |
Factors | Treatments | Yield (kg palm−1) | IWP (kg m−3) | |
---|---|---|---|---|
IM | CSI | 55.39 ± 25.96 b | 1.01 ± 0.27 b | |
SDI | 55.12 ± 27.81 b | 0.99 ± 0.32 b | ||
SSDI | 84.68 ± 10.18 a | 1.72 ± 0.30 a | ||
IWR | 100% IWR | 88.45 ± 6.35 a | 1.28 ± 0.09 b | |
75% IWR | 68.68 ± 11.81 b | 1.33 ± 0.23 a | ||
50% IWR | 38.07 ± 25.13 c | 1.11 ± 0.73 c | ||
IM × IWR | CSI | 100% IWR | 83.86 ± 1.38 b | 1.22 ± 0.02 d |
75% IWR | 59.96 ± 1.93 d | 1.16 ± 0.04 d | ||
50% IWR | 22.35 ± 4.56 e | 0.65 ± 0.13 e | ||
SDI | 100% IWR | 84.86 ± 3.83 b | 1.23 ± 0.05 d | |
75% IWR | 61.23 ± 1.31 d | 1.19 ± 0.02 d | ||
50% IWR | 19.28 ± 3.65 e | 0.56 ± 0.11 e | ||
SSDI | 100% IWR | 96.62 ± 1.11 a | 1.40 ± 0.02 c | |
75% IWR | 84.84 ± 2.48 b | 1.64 ± 0.05 b | ||
50% IWR | 72.57 ± 2.01 c | 2.11 ± 0.06 a |
Factors | Treatments | Fruit Length (mm) | Fruit Width (mm) | Fruit Weight (gm) | Pulp Weight (gm) | Seed Weight (gm) | Pulp/Seed Ratio | |
---|---|---|---|---|---|---|---|---|
IM | CSI | 31.65 c | 20.05 b | 9.02 a | 7.83 b | 0.83 b | 9.43 c | |
SDI | 32.46 b | 20.59 a | 9.03 a | 8.66 a | 0.89 a | 9.65 b | ||
SSDI | 32.63 a | 20.53 a | 9.03 a | 8.48 a | 0.87 a | 9.78 a | ||
IWR | 100% IWR | 33.76 b | 20.74 b | 9.78 a | 8.76 b | 0.90 a | 9.77 b | |
75% IWR | 34.51 a | 21.38 a | 9.14 b | 9.06 a | 0.87 b | 10.41a | ||
50% IWR | 28.47 c | 19.05 c | 8.16 c | 7.15 c | 0.82 c | 8.67 c | ||
IM × IWR | CSI | 100% IWR | 31.87 f | 19.08 f | 9.59 c | 7.56 f | 0.80 e | 9.44 d |
75% IWR | 34.55 c | 21.61 c | 9.20 d | 8.95 d | 0.84 cd | 10.64 c | ||
50% IWR | 28.25 h | 18.75 i | 8.28 g | 6.97 i | 0.85 c | 8.21 h | ||
SDI | 100% IWR | 36.25 b | 22.21 b | 9.81 b | 9.83 a | 0.92 b | 10.67 b | |
75% IWR | 32.18 e | 20.12 e | 9.09 f | 8.98 c | 0.96 a | 9.23 e | ||
50% IWR | 28.95 g | 19.44 g | 8.19 h | 7.18 h | 0.79 e | 9.06 f | ||
SSDI | 100% IWR | 33.16 d | 20.21 d | 9.95 a | 8.90 e | 0.97a | 9.21 e | |
75% IWR | 36.81 a | 22.43 a | 9.12 e | 9.25 b | 0.81 de | 11.37 a | ||
50% IWR | 27.93 i | 18.96 h | 8.10 i | 7.29 g | 0.83 ce | 8.75 g |
Factors | Treatments | Moisture Content (%) | TSS (Brix) | Total Sugars (%) | Reducing Sugars (%) | Non-Reducing Sugars (%) | |
---|---|---|---|---|---|---|---|
IM | CSI | 13.29 b | 52.78 b | 68.73 b | 66.90 b | 1.82 c | |
SDI | 13.20 c | 52.32 c | 68.63 c | 66.76 c | 1.87 b | ||
SSDI | 15.15 a | 52.90 a | 69.45 a | 67.50 a | 1.95 a | ||
IWR | 100% IWR | 14.89 a | 52.92 b | 68.82 b | 66.91 b | 1.91 b | |
75% IWR | 12.88 c | 53.35 a | 70.30 a | 68.64 a | 1.66 c | ||
50% IWR | 13.87 b | 51.74 c | 67.69 c | 65.62 c | 2.07 a | ||
IM × IWR | CSI | 100% IWR | 14.77 b | 51.93 e | 67.12 f | 65.09 g | 2.03 c |
75% IWR | 11.77 g | 54.47 a | 70.96 b | 69.54 b | 1.42 e | ||
50% IWR | 13.33 e | 51.95 e | 68.09 e | 66.08 e | 2.01 c | ||
SDI | 100% IWR | 12.77 f | 54.46 a | 70.95 b | 69.46 c | 1.49 d | |
75% IWR | 13.33 e | 51.44 f | 68.09 e | 66.06 ef | 2.03 c | ||
50% IWR | 13.51 d | 51.06 g | 66.85 g | 64.76 h | 2.10 b | ||
SSDI | 100% IWR | 17.13 a | 52.36 c | 68.38 c | 66.17 d | 2.21 a | |
75% IWR | 13.55 c | 54.14 b | 71.85 a | 70.33 a | 1.52 d | ||
50% IWR | 14.76 b | 52.20 d | 68.12 d | 66.01 f | 2.11 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnaim, M.A.; Mohamed, M.S.; Mohammed, M.; Munir, M. Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm. Agriculture 2022, 12, 343. https://doi.org/10.3390/agriculture12030343
Alnaim MA, Mohamed MS, Mohammed M, Munir M. Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm. Agriculture. 2022; 12(3):343. https://doi.org/10.3390/agriculture12030343
Chicago/Turabian StyleAlnaim, Mishari A., Magdy S. Mohamed, Maged Mohammed, and Muhammad Munir. 2022. "Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm" Agriculture 12, no. 3: 343. https://doi.org/10.3390/agriculture12030343
APA StyleAlnaim, M. A., Mohamed, M. S., Mohammed, M., & Munir, M. (2022). Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm. Agriculture, 12(3), 343. https://doi.org/10.3390/agriculture12030343