Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = Khalas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2216 KiB  
Article
Assessing the Physico-Mechanical Properties of Three Date Fruit Varieties for Conserving the Keeping and Appearance Qualities
by Mohamed Ghonimy, Raed Alayouni, Garsa Alshehry, Hassan Barakat and Mohamed M. Ibrahim
Foods 2025, 14(11), 1838; https://doi.org/10.3390/foods14111838 - 22 May 2025
Cited by 1 | Viewed by 501
Abstract
The physico-mechanical properties of date fruit varieties can indicate their quality and freshness. These properties, which include firmness, moisture content, and mechanical resistance, are closely linked to the fruit’s overall quality and can be used to assess its ripeness and suitability for consumption. [...] Read more.
The physico-mechanical properties of date fruit varieties can indicate their quality and freshness. These properties, which include firmness, moisture content, and mechanical resistance, are closely linked to the fruit’s overall quality and can be used to assess its ripeness and suitability for consumption. Therefore, the current study evaluated the physico-mechanical properties of three date varieties—Sukkari, Khalas, and Saqie—across different ripening stages to enhance food quality and optimize postharvest handling. The study uniquely focused on how ripening stages affect the stress–strain behavior of dates, offering new insights into their mechanical resistance, deformability, and structural stability, all of which are critical parameters for maintaining food quality during storage, transportation, and processing. Significant changes in physical characteristics, including size, mass, moisture content, and density, were observed as the fruit progressed through ripening stages. Sukkari showed the most notable decrease in moisture content, from 61.8% at the Khalal stage to 17.3% at the Tamar stage, resulting in softening and reduced mechanical resistance, potentially impacting shelf life and consumer acceptance. Khalas exhibited a more gradual decline in mechanical properties, with moisture content dropping to 24.6%. At the same time, Saqie demonstrated minimal changes in mechanical properties and moisture content, suggesting better structural and nutritional quality retention. Additionally, the dynamic coefficient of friction increased with temperature and pressure at the Tamr stage, with Sukkari showing the highest values (up to 0.496), followed by Khalas (up to 0.451) and Saqie (up to 0.406). This study introduced the concept of variety-specific differences in frictional behavior, providing valuable insights for improving mechanical processing, reducing physical damage, and preserving date fruits’ nutritional and sensory quality. In conclusion, findings highlight the importance of variety-specific mechanical profiling in improving processing protocols, reducing postharvest losses, and maintaining the nutritional and sensory quality of date fruits for industrial-scale operations. Full article
Show Figures

Figure 1

23 pages, 3027 KiB  
Article
The Potential of Using Bisr Date Powder as a Novel Ingredient in Biscuits Made of Wheat Flour Only or Mixed with Barley
by Haiam O. Elkatry, Sukainah E. H. Almubarak, Heba I. Mohamed, Khaled M. A. Ramadan and Abdelrahman R. Ahmed
Foods 2024, 13(12), 1940; https://doi.org/10.3390/foods13121940 - 19 Jun 2024
Cited by 5 | Viewed by 2309
Abstract
An overproducing date fruit with limited industrial utilization leads to significant waste and losses, especially in the early stage of date maturity known as bisr. This study aimed to investigate the potential use of bisr date powder (BDP) at different concentrations (25%, 50%, [...] Read more.
An overproducing date fruit with limited industrial utilization leads to significant waste and losses, especially in the early stage of date maturity known as bisr. This study aimed to investigate the potential use of bisr date powder (BDP) at different concentrations (25%, 50%, and 100%) as a natural sweetener instead of sugar and barley flour as a source of dietary fiber, vitamins, and minerals instead of wheat flour (50%) in biscuit production over storage periods of 7, 14, and 21 days. The analysis revealed that the bisr Al-Khalas powder sample had a moisture content of 11.84%, ash content of 2.30%, and crude fiber content of 10.20%. Additionally, it had a low protein (2.50%) and fat (0.77%) content, with total carbohydrates at 82.59%. The gradual substitution of bisr Al-Khalas in biscuit production resulted in an increased moisture, ash, fat, protein, crude fiber, and iron content, as well as a decrease in total carbohydrate percentage. A chemical analysis of bisr Al-Khalas powder demonstrated high levels of antioxidants, with 248.49 mg gallic acid/g of phenolic compounds, 31.03 mg quercetin/g of flavonoids, and an antioxidant activity ranging from 42.30%, as shown by the DPPH test. The peroxide content was 0.009 mg equivalent/kg. Biscuit samples with different proportions of bisr Al-Khalas showed an improved resistance to oxidation compared to samples without bisr Al-Khalas, with increased resistance as the percentage of replacement increased during storage. Physical properties such as the diameter, height, and spread percentage, as well as organoleptic properties like color, flavor, aroma, and taste, were significantly enhanced with higher levels of bisr Al-Khalas in the mixture. Biscuit samples fortified with 100% pure bisr Al-Khalas powder were found to be less acceptable, while samples with a 25% substitution did not negatively impact sensory properties. In addition, acrylamide and hydroxymethylfurfural (HMF) were not detected in bisr powder and biscuit samples prepared at different concentrations (25%, 50%, and 100%). In conclusion, the study suggests that bisr Al-Khalas powder, an underutilized waste product, has the potential to add value to commercial biscuit production due to its high nutritional value and extended storage period resulting from its potent antioxidant activity. Full article
(This article belongs to the Special Issue Novel Technologies to Improve the Nutritional Properties of Food)
Show Figures

Figure 1

27 pages, 8233 KiB  
Article
Drought-Tolerance Screening of Date Palm Cultivars under Water Stress Conditions in Arid Regions
by Hassan Ali-Dinar, Muhammad Munir and Maged Mohammed
Agronomy 2023, 13(11), 2811; https://doi.org/10.3390/agronomy13112811 - 13 Nov 2023
Cited by 14 | Viewed by 2764
Abstract
Drought stress poses a considerable challenge to agriculture sustainability in arid regions. Water scarcity severely affects date palm growth and productivity in these regions. However, as water resources become increasingly scarce in arid regions, understanding the drought tolerance of date palm cultivars becomes [...] Read more.
Drought stress poses a considerable challenge to agriculture sustainability in arid regions. Water scarcity severely affects date palm growth and productivity in these regions. However, as water resources become increasingly scarce in arid regions, understanding the drought tolerance of date palm cultivars becomes imperative for developing drought-resistant cultivars and optimizing irrigation water usage for sustainable agriculture. This research examines the impact of different drought stress levels based on evapotranspiration (ETc), i.e., 40%, 60%, 80%, and 100% ETc, and time intervals (0, 6, 12, 18, and 24 months) on leaf growth, net photosynthesis, chlorophyll a and b content, and leaf relative water content (LRWC) of four prominent date palm cultivars, Khalas, Barhee, Hilali, and Ashrasee. In addition, the study also examines the effects of drought stress on dry weight, potassium and calcium content of leaf, stem, and root, and proline content in fresh leaves of these four cultivars. A solar-powered drip irrigation system with automated time-based irrigation scheduling was used to accurately control the irrigation water amount. To real-time estimate ETc in the study area, meteorological data were collected using a cloud-based IoT system. The findings of this study revealed that severe drought conditions (40 and 60 % ETc) significantly reduced leaf growth, plant dry biomass, and physiological and biochemical attributes; however, date palm cultivars can be grown under moderate drought conditions (80% ETc) with minimal effect on phenotypic, physiological, and biochemical traits to conserve water. The study also revealed that the drought-related characteristics decreased gradually with an increase in water stress time over 24 months. Comparing the date palm cultivars revealed that the Khalas and Barhee cultivars are more drought-tolerant, followed by Hilali, while Ashrasee is susceptible. The study elucidated a water conservation strategy employed in response to drought-induced stress based on the physiological and morphological parameters of date palm cultivars. It provides valuable insights into irrigation practices in arid regions. However, future studies can be focused on other nondestructive innovative techniques such as pulse-amplitude-modulation (PAM) fluorimetry, infrared radiation (IR), and video imaging system (VIS) methods to identify drought stress in date palms. Full article
(This article belongs to the Special Issue Plant–Water Relationships for Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 1160 KiB  
Article
The Effect of Sugar Replacement with Different Proportions of Khalas Date Powder and Molasses on the Nutritional and Sensory Properties of Kleicha
by Raya S. A. Almuziree and Raghad M. Alhomaid
Processes 2023, 11(11), 3077; https://doi.org/10.3390/pr11113077 - 26 Oct 2023
Cited by 5 | Viewed by 2506
Abstract
Evidence from the scientific community suggests that high levels of added sugar consumption contribute to the global epidemics of glucose intolerance, diabetes, and cardiovascular disease. The study aims to develop a local traditional food product (Kleicha) with healthy ingredients and to take advantage [...] Read more.
Evidence from the scientific community suggests that high levels of added sugar consumption contribute to the global epidemics of glucose intolerance, diabetes, and cardiovascular disease. The study aims to develop a local traditional food product (Kleicha) with healthy ingredients and to take advantage of the most productive crops in Saudi Arabia, namely dates, where Khalas date powder and molasses will be manufactured as an alternative to sugar in the Kleicha product. Six Kleicha samples with different fillings were manufactured as follows: Kleicha filled with sugar filling (KS), Kleicha with Khalas date powder filling (KD), Kleicha filled with Khalas date molasses filling (KM), Kleicha filled with sugar and Khalas date powder (1:1) filling (KSD), Kleicha filled with sugar and Khalas date molasses (1:1) filling (KSM), and Kleicha filled with Khalas date powder and Khalas date molasses (1:1) filling (KDM). In order to evaluate the prepared Kleicha samples, the proximate chemical composition, mineral content, phytochemical content and their antioxidant activities, sugar profiles using HPLC, in vitro glycemic index, glycemic load, and sensory evaluation were investigated. The results indicated that KM had the highest moisture content, while the KS sample had the lowest content. KD and KM had significantly higher ash contents compared with the other Kleicha samples. The protein and fat contents did not differ significantly. KD, KSD, and KDM demonstrated a significantly higher dietary fiber content than the other Kleicha samples. KS had the highest value of available carbohydrates. Regarding mineral content, the KDM sample had the highest K, Na, Ca, and P contents, while KD and KM had the highest Mg, Fe, and Mn contents. The Cu content indicated that KM had the highest content, representing a 25% increase compared with KS. Similarly, the Zn content in KM and KSD was significantly higher than in the other Kleicha samples. Replacing sucrose with Khalas date or molasses significantly changed the sucrose, glucose, and fructose contents. The phenolic content in KD, KM, and KDM was higher compared with KS, KSM, and KSD. Furthermore, the oxidative activity increased associatively with the addition of Khalas date powder and molasses. The percentage of sucrose decreased in KD and KDM. There was no significant difference in the general acceptance rate between the control sample and the other samples containing Khalas date powder, Khalas date molasses, and sugar or their mixture. In conclusion, it is possible to replace the sugar in the filling of the Kleicha with Khalas date powder and molasses or their mixture as it increases the health benefits; scaling up is recommended. Full article
Show Figures

Figure 1

19 pages, 5249 KiB  
Article
Date Palm Extract (Phoenix dactylifera) Encapsulated into Palm Oil Nanolipid Carrier for Prospective Antibacterial Influence
by Heba S. Elsewedy, Tamer M. Shehata, Nashi K. Alqahtani, Hany Ezzat Khalil and Wafaa E. Soliman
Plants 2023, 12(21), 3670; https://doi.org/10.3390/plants12213670 - 25 Oct 2023
Cited by 6 | Viewed by 2261
Abstract
It is worthwhile to note that using natural products today has shown to be an effective strategy for attaining the therapeutic goal with the highest impact and the fewest drawbacks. In Saudi Arabia, date palm (Phoenix dactylifera) is considered the principal fruit owing [...] Read more.
It is worthwhile to note that using natural products today has shown to be an effective strategy for attaining the therapeutic goal with the highest impact and the fewest drawbacks. In Saudi Arabia, date palm (Phoenix dactylifera) is considered the principal fruit owing to its abundance and incredible nutritional benefits in fighting various diseases. The main objective of the study is to exploit the natural products as well as the nanotechnology approach to obtain great benefits in managing disorders. The present investigation focused on using the powder form of date palm extract (DPE) of Khalas cultivar and incorporates it into a nanolipid formulation such as a nanostructured lipid carrier (NLC) prepared with palm oil. Using the quality by design (QbD) methodology, the most optimized formula was chosen based on the number of assigned parameters. For more appropriate topical application, the optimized DP-NLC was combined with a pre-formulated hydrogel base forming the DP-NLC-hydrogel. The developed DP-NLC-hydrogel was evaluated for various physical properties including pH, viscosity, spreadability, and extrudability. Additionally, the in vitro release of the formulation as well as its stability upon storage under two different conditions of room temperature and refrigerator were investigated. Eventually, different bacterial strains were utilized to test the antibacterial efficacy of the developed formulation. The optimized DP-NLC showed proper particle size (266.9 nm) and in vitro release 77.9%. The prepared DP-NLC-hydrogel showed acceptable physical properties for topical formulation, mainly, pH 6.05, viscosity 9410 cP, spreadability 57.6 mm, extrudability 84.5 (g/cm2), and in vitro release 42.4%. Following three months storage under two distinct conditions, the formula exhibited good stability. Finally, the antibacterial activity of the developed DP-NLC-hydrogel was evaluated and proved to be efficient against various bacterial strains. Full article
(This article belongs to the Special Issue Nanotechnology in Plant Science)
Show Figures

Figure 1

33 pages, 7428 KiB  
Article
Impact of Modified Atmosphere Packaging Conditions on Quality of Dates: Experimental Study and Predictive Analysis Using Artificial Neural Networks
by Abdelrahman R. Ahmed, Salah M. Aleid and Maged Mohammed
Foods 2023, 12(20), 3811; https://doi.org/10.3390/foods12203811 - 17 Oct 2023
Cited by 8 | Viewed by 3497
Abstract
Dates are highly perishable fruits, and maintaining their quality during storage is crucial. The current study aims to investigate the impact of storage conditions on the quality of dates (Khalas and Sukary cultivars) at the Tamer stage and predict their quality attributes during [...] Read more.
Dates are highly perishable fruits, and maintaining their quality during storage is crucial. The current study aims to investigate the impact of storage conditions on the quality of dates (Khalas and Sukary cultivars) at the Tamer stage and predict their quality attributes during storage using artificial neural networks (ANN). The studied storage conditions were the modified atmosphere packing (MAP) gases (CO2, O2, and N), packaging materials, storage temperature, and storage time, and the evaluated quality attributes were moisture content, firmness, color parameters (L*, a*, b*, and ∆E), pH, water activity, total soluble solids, and microbial contamination. The findings demonstrated that the storage conditions significantly impacted (p < 0.05) the quality of the two stored date cultivars. The use of MAP with 20% CO2 + 80% N had a high potential to decrease the rate of color transformation and microbial growth of dates stored at 4 °C for both stored date cultivars. The developed ANN models efficiently predicted the quality changes of stored dates closely aligned with observed values under the different storage conditions, as evidenced by low Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) values. In addition, the reliability of the developed ANN models was further affirmed by the linear regression between predicted and measured values, which closely follow the 1:1 line, with R2 values ranging from 0.766 to 0.980, the ANN models demonstrate accurate estimating of fruit quality attributes. The study’s findings contribute to food quality and supply chain management through the identification of optimal storage conditions and predicting the fruit quality during storage under different atmosphere conditions, thereby minimizing food waste and enhancing food safety. Full article
Show Figures

Figure 1

20 pages, 4422 KiB  
Article
Influence of Ventilation Openings on the Energy Efficiency of Metal Frame Modular Constructions in Brazil Using BIM
by Mohammad K. Najjar, Luis Otávio Cocito De Araujo, Olubimbola Oladimeji, Mohammad Khalas, Karoline V. Figueiredo, Dieter Boer, Carlos A. P. Soares and Assed Haddad
Eng 2023, 4(2), 1635-1654; https://doi.org/10.3390/eng4020093 - 7 Jun 2023
Cited by 4 | Viewed by 2443
Abstract
Construction projects demand a higher amount of energy predominantly for heating, ventilation, and illumination purposes. Modular construction has come into the limelight in recent years as a construction method that uses sustainable building materials and optimizes energy efficiency. Ventilation openings in buildings are [...] Read more.
Construction projects demand a higher amount of energy predominantly for heating, ventilation, and illumination purposes. Modular construction has come into the limelight in recent years as a construction method that uses sustainable building materials and optimizes energy efficiency. Ventilation openings in buildings are designed to facilitate air circulation by naturally driven ventilation and could aid in reducing energy consumption in construction projects. However, a knowledge gap makes it difficult to propose the best dimensions of ventilation openings in buildings. Hence, the aim of this work is to empower the decision-making process in terms of proposing the best ventilation opening dimensions toward sustainable energy use and management in buildings. A novel framework is presented herein to evaluate the impact and propose the best dimensions of ventilation openings for metal frame modular construction in Brazil, using building information modeling. The ventilation openings were constructed and their dimensions evaluated in eight Brazilian cities, based on the bioclimatic zone (BioZ) classification indicated in ABNT NBR 15220: Curitiba (1st BioZ); Rio Negro (2nd BioZ); São Paulo (3rd BioZ); Brasília (4th BioZ); Campos (5th BioZ); Paranaíbe (6th BioZ); Goiás (7th BioZ); and Rio de Janeiro (8th BioZ). The study results show that the energy consumption of the same building model would vary based on the dimensions of ventilation openings for each BioZ in Brazil. For instance, modeling the same modular construction unit in the city of Rio Negro could consume around 50% of the energy compared to the same unit constructed in the city of Rio de Janeiro, using the small opening sizes based on the smallest dimensions of the ventilation openings. Similarly, modeling the construction unit in Curitiba, São Paulo, Brasília, Campos, Paranaíba, and Goiás could reduce energy consumption by around 40%, 34%, 36%, 18%, 20%, and 16%, respectively, compared to constructing the same building in the city of Rio de Janeiro, using the small opening sizes based on the smallest dimensions of the ventilation openings. This work could help practitioners and professionals in modular construction projects to design the best dimensions of the ventilation openings based on each BioZ towards increasing energy efficiency and sustainability. Full article
(This article belongs to the Special Issue Green Engineering for Sustainable Development 2023)
Show Figures

Figure 1

21 pages, 5180 KiB  
Article
Development and Validation of Innovative Machine Learning Models for Predicting Date Palm Mite Infestation on Fruits
by Maged Mohammed, Hamadttu El-Shafie and Muhammad Munir
Agronomy 2023, 13(2), 494; https://doi.org/10.3390/agronomy13020494 - 8 Feb 2023
Cited by 15 | Viewed by 2852
Abstract
The date palm mite (DPM), Oligonychus afrasiaticus (McGregor), is a key pest of unripe date fruits. The detection of this mite depends largely on the visual observations of the webs it produces on the green fruits. One of the most important problems of [...] Read more.
The date palm mite (DPM), Oligonychus afrasiaticus (McGregor), is a key pest of unripe date fruits. The detection of this mite depends largely on the visual observations of the webs it produces on the green fruits. One of the most important problems of DPM control is the lack of an accurate decision-making approach for monitoring and predicting infestation on date fruits. Therefore, this study aimed to develop, evaluate, and validate prediction models for DPM infestation on fruits based on meteorological variables (temperature, relative humidity, wind speed, and solar radiation) and the physicochemical properties of date fruits (weight, firmness, moisture content, total soluble solids, total sugar, and tannin content) using two machine learning (ML) algorithms, i.e., linear regression (LR) and decision forest regression (DFR). The meteorological variables data in the study area were acquired using an IoT-based weather station. The physicochemical properties of two popular date palm cultivars, i.e., Khalas and Barhee, were analyzed at different fruit development stages. The development and performance of the LR and DFR prediction models were implemented using Microsoft Azure ML. The evaluation of the developed models indicated that the DFR was more accurate than the LR model in predicting the DPM based on the input variables, i.e., meteorological variables (R2 = 0.842), physicochemical properties variables (R2 = 0.895), and the combination of both meteorological and the physicochemical properties variables (R2 = 0.921). Accordingly, the developed DFR model was deployed as a fully functional prediction web service into the Azure cloud platform and the Excel add-ins. The validation of the deployed DFR model showed that it was able to predict the DPM count on date palm fruits based on the combination of meteorological and physicochemical properties variables (R2 = 0.918). The deployed DFR model by the web service of Azure Ml studio enhanced the prediction of the DPM count on the date fruits as a fast and easy-to-use approach. These findings demonstrated that the DFR model using Azure Ml Studio integrated into the Azure platform can be a powerful tool in integrated DPM management. Full article
Show Figures

Figure 1

24 pages, 3851 KiB  
Article
Design and Evaluation of a Smart Ex Vitro Acclimatization System for Tissue Culture Plantlets
by Maged Mohammed, Muhammad Munir and Hesham S. Ghazzawy
Agronomy 2023, 13(1), 78; https://doi.org/10.3390/agronomy13010078 - 26 Dec 2022
Cited by 15 | Viewed by 8359
Abstract
One of the technological advancements in agricultural production is the tissue culture propagation technique, commonly used for mass multiplication and disease-free plants. The necessity for date palm tissue culture emerged from the inability of traditional propagation methods’ offshoots to meet the immediate demands [...] Read more.
One of the technological advancements in agricultural production is the tissue culture propagation technique, commonly used for mass multiplication and disease-free plants. The necessity for date palm tissue culture emerged from the inability of traditional propagation methods’ offshoots to meet the immediate demands for significant amounts of planting material for commercial cultivars. Tissue culture plantlets are produced in a protected aseptic in vitro environment where all growth variables are strictly controlled. The challenges occur when these plantlets are transferred to an ex vitro climate for acclimatization. Traditional glasshouses are frequently used; however, this has substantial mortality consequences. In the present study, a novel IoT-based automated ex vitro acclimatization system (E-VAS) was designed and evaluated for the acclimatization of date palm plantlets (cv. Khalas) to enhance their morpho-physiological attributes and reduce the mortality rate and the contamination risk through minimal human contact. The experimental findings showed that the morpho-physiological parameters of 6- and 12-month-old plants were higher when acclimatized in the prototype E-VAS compared to the traditional glasshouse acclimatization system (TGAS). The maximum plant mortality percentage occurred within the first month of the transfer from the in vitro to ex vitro environment in both systems, which gradually declined up to six months; after that, no significant plant mortality was observed. About 6% mortality was recorded in E-VAS, whereas 18% in TGAS within the first month of acclimatization. After six months of study, an overall 14% mortality was recorded in E-VAS compared to 41% in TGAS. The proposed automated system has a significant potential to address the growing demand for the rapid multiplication of tissue culture-produced planting materials since the plant survival rate and phenotype quality were much higher in E-VAS than in the conventional manual system that the present industry follows for commercial production. Full article
Show Figures

Figure 1

30 pages, 10382 KiB  
Article
Design and Validation of Automated Sensor-Based Artificial Ripening System Combined with Ultrasound Pretreatment for Date Fruits
by Maged Mohammed and Nashi K. Alqahtani
Agronomy 2022, 12(11), 2805; https://doi.org/10.3390/agronomy12112805 - 10 Nov 2022
Cited by 10 | Viewed by 3220
Abstract
Climate change affects fruit crops’ growth and development by delaying fruit ripening, reducing color development, and lowering fruit quality and yield. The irregular date palm fruit ripening in the past few years is assumed to be related to climatic change. The current study [...] Read more.
Climate change affects fruit crops’ growth and development by delaying fruit ripening, reducing color development, and lowering fruit quality and yield. The irregular date palm fruit ripening in the past few years is assumed to be related to climatic change. The current study aimed to design and validate an automated sensor-based artificial ripening system (S-BARS) combined with ultrasound pretreatment for artificial ripening date fruits cv. Khalas. A sensor-based control system was constructed to allow continuous real-time recording and control over the process variables. The impact of processing variables, i.e., the artificial ripening temperature (ART-temp) and relative humidity (ART-RH) using the designed S-BARS combined with ultrasound pretreatment variables, i.e., time (USP-Time) and temperature (USP-Temp) on the required time for fruit ripening (RT), the percentage of ripened fruits (PORF), the percentage of damaged fruits (PODF), and the electrical energy consumption (EEC) were investigated. The quadratic predictive models were developed using the Box–Behnken Design (B-BD) to predict the RT, PORF, PODF, and EEC experimentally via Response Surface Methodology(RSM). Design Expert software (Version 13) was used for modeling and graphically analyzing the acquired data. The artificial ripening parameter values were determined by solving the regression equations and analyzing the 3D response surface plots. All parameters were simultaneously optimized by RSM using the desirability function. The Mean Absolute Percentage Error (MAPE) and the Root Mean Square Error (RMSE) between the predicted and actual experimental values were used to evaluate the developed models. The physicochemical properties of the ripened fruit were assessed under the optimization criteria. The results indicated that the pretreated unripe date fruits with 40 kHz ultrasound frequency, 110 W power, and USP-Temp of 32.49 °C for 32.03 min USP-Time under 60 °C ART-Temp and 59.98% ART-RH achieved the best results. The designed S-BARS precisely controlled the temperature and relative humidity at the target setpoints. The ultrasound pretreatment improved the color and density of the artificially ripened date fruits, decreased the RT and EEC, and increased the PORF without negatively affecting the studied fruit quality attributes. The developed models could effectively predict the RT, PORF, PODF, and EEC. The designed S-BARS combined with ultrasound pretreatment is an efficient approach for high-quality ripening date fruits. Full article
(This article belongs to the Special Issue Agricultural Automation and Innovative Agricultural Systems)
Show Figures

Figure 1

19 pages, 3644 KiB  
Article
High-Quality Bioethanol and Vinegar Production from Saudi Arabia Dates: Characterization and Evaluation of Their Value and Antioxidant Efficiency
by Zeineb Hamden, Yassine El-Ghoul, Fahad M. Alminderej, Sayed M. Saleh and Hatem Majdoub
Antioxidants 2022, 11(6), 1155; https://doi.org/10.3390/antiox11061155 - 13 Jun 2022
Cited by 29 | Viewed by 4099
Abstract
Dates are very rich in various nutritious compounds, especially reducing sugars. Sugars ensure both anaerobic and aerobic fermentation, carried out respectively for the production of bioethanol and vinegar. Currently, the world production of dates is constantly increasing owing to the significant improvement in [...] Read more.
Dates are very rich in various nutritious compounds, especially reducing sugars. Sugars ensure both anaerobic and aerobic fermentation, carried out respectively for the production of bioethanol and vinegar. Currently, the world production of dates is constantly increasing owing to the significant improvement in production conditions following the continuous scientific and technological development of this field. The Kingdom of Saudi Arabia is one of the most important world producers of dates, occupying the second place by producing 17% of the total world production. This is why it has become a national priority to find new ways to exploit and further valorize dates and palm waste in the development of new and sustainable products. The present study was designed to explore the possible study of a variety of date palm by-products in the production of bioethanol and vinegar via Saccharomyces cerevisiae. Different parameters of bioethanol and vinegar production, including pH, time, fermentation temperature, and yeast concentration, were studied and optimized. Chemical, physicochemical, purity behavior, and antioxidant performance were carried out via NMR, FTIR, and antioxidant activity essays (TPC, DPPH, FRAP, and β-carotene bleaching test) with the aim to evaluate the potential of the bioethanol and vinegar samples extracted from date palm by-products. Khalas date vinegar revealed significantly more phenolic content (5.81 mg GAE/mL) (p < 0.05) than the different kinds of vinegar tested (Deglet Nour and Black dates; 2.3 and 1.67 mg GAE/mL, respectively) and the commercial vinegar (1.12 mg GAE/mL). The Khalas date vinegar generally showed a higher carotenoid value and better antioxidant activity than the other vinegars extracted from other date varieties and commercially available vinegar. The results confirmed the high quality of the bioethanol and vinegar products, and the efficiency of the developed production processes. Full article
Show Figures

Figure 1

20 pages, 5726 KiB  
Article
Green Extraction of Date Palm Fruits via Ultrasonic-Assisted Approach: Optimizations and Antioxidant Enrichments
by Hisham Mohamed, Mohamed Al-Hajhoj, Mohamed Al-Saikhan, Nashi Alqahtani, Mohammad Zayed, Mahmoud Moawad, Waleed Alsenaien and Maged E. Mohamed
Processes 2022, 10(6), 1049; https://doi.org/10.3390/pr10061049 - 24 May 2022
Cited by 7 | Viewed by 2747
Abstract
Background: Green extraction involves using green solvents, such as water, to reduce energy consumption, avoid health and environmental hazards and induce the quality and quantity of the extract. Date palm fruits are a vital source of food and medicinal activities, as they contain [...] Read more.
Background: Green extraction involves using green solvents, such as water, to reduce energy consumption, avoid health and environmental hazards and induce the quality and quantity of the extract. Date palm fruits are a vital source of food and medicinal activities, as they contain a high diversity of phytochemicals, mainly phenolic and flavonoid compounds. The main aim of this study is to investigate the use of water as a green solvent, when assisted by different ultrasonic frequencies, in the extraction of four different cultivars of date palm fruits, by evaluating the phenolic and flavonoid composition as well as the antioxidant capacity of the extract. Methods: Four date palm fruits’ cultivars (Agwa, Anbarah, Khalas, and Reziz) were extracted using conventional methods (by water and ethanol) and by ultrasonic means, using two frequencies, 28 and 40 kHz, and applying temperatures (30, 45, and 60 °C), also measuring extraction times (20, 40, 60 min.). Response surface methodology was used for the statistical analysis, applying three factors (temperature, time, and ultrasonic frequency), four responses (total phenolic content, total flavonoid content, FRAP, and ABTS), and four cultivars (categories). Results: Conventional water extraction obtained minimal phenolic and flavonoid compounds (up to 52% of ethanol extraction). This percent improved to reach 60% when heat was utilized. The application of ultrasonic frequencies significantly enhanced the extraction of phenolics/flavonoids and the antioxidant ability of the extract to nearly 90% and 80%, respectively. The use of 40 kHz ultrasonic power managed to extract more phenolic and flavonoid components; however, the antioxidant capacities of the extract were less than when the 28 kHz power was utilized. Agwa and Khalas demonstrated themselves to be the best cultivars for ultrasonic-assisted extraction, depending on the results of the optimized responses. Conclusion: This study could be implemented in the industry to produce date palm fruits’ enriched extracts with phenolic and flavonoid components and/or antioxidants. Full article
Show Figures

Figure 1

21 pages, 2743 KiB  
Article
Effects of Automated Irrigation Systems and Water Regimes on Soil Properties, Water Productivity, Yield and Fruit Quality of Date Palm
by Mishari A. Alnaim, Magdy S. Mohamed, Maged Mohammed and Muhammad Munir
Agriculture 2022, 12(3), 343; https://doi.org/10.3390/agriculture12030343 - 28 Feb 2022
Cited by 24 | Viewed by 7530
Abstract
Applications of modern micro-irrigation methods are inevitable for optimum water use due to the limitations imposed by irrigation water resource scarcity. Regardless of water shortages and associated challenges in dry areas, the irrigation of date palm trees consumes an excessive quantity of water [...] Read more.
Applications of modern micro-irrigation methods are inevitable for optimum water use due to the limitations imposed by irrigation water resource scarcity. Regardless of water shortages and associated challenges in dry areas, the irrigation of date palm trees consumes an excessive quantity of water annually using conventional irrigation methods. Therefore, the present study was designed to evaluate the effects of modern surface and subsurface micro-irrigation systems, i.e., subsurface drip irrigation (SSDI), controlled surface irrigation (CSI), and surface drip-irrigation methods (SDI), with different irrigation water regimes, i.e., 50%, 75%, and 100% irrigation water requirements (IWRs), on the yield and fruit quality of date palms (cv. Khalas) and water conservation in the dryland region of Al-Ahsa, Saudi Arabia. The effects of three irrigation methods and IWRs were studied on macronutrients and soil chemical properties at three depths (0–30, 30–60, and 60–90 cm), as well as on water productivity, yield, and the fruit quality of date palms. The study was carried out over two years and was designed using a two-factorial randomized complete block design (RCBD) with nine replications. The results indicated that electrical conductivity (EC) increased as the depth of the soil increased. The soil chemical properties did not change much in all experimental treatments, while soil pH values decreased with the soil depth from 0–30 to 60–90 cm. Although the maximum fruit yield (96.62 kg palm−1) was recorded when 100% irrigation water was applied in the SSDI system, other treatment combinations, such as SDI at 100% IWR (84.86 kg palm−1), SSDI at 75% IWR (84.84 kg palm−1), and CSI at 100% IWR (83.86 kg palm−1) behaved alike and showed promising results. Similarly, the highest irrigation water productivity (2.11 kg m−3) was observed in the SSDI system at 50% IWR, followed by the SSDI at 75% IWR (1.64 kg m−3) and 100% IWR (1.40 kg m−3). Fruit quality attributes were also promoted with the SSDI system at 75% IWR. Hence, the SSDI method at 75% IWR appeared to be an optimal choice for date palm irrigation in arid areas due to its positive impact on water conservation and fruit characteristics without affecting soil chemical properties. Full article
Show Figures

Figure 1

14 pages, 2913 KiB  
Article
Antioxidant Potential of Cookies Formulated with Date Seed Powder
by Zein Najjar, Jaleel Kizhakkayil, Hira Shakoor, Carine Platat, Constantinos Stathopoulos and Meththa Ranasinghe
Foods 2022, 11(3), 448; https://doi.org/10.3390/foods11030448 - 3 Feb 2022
Cited by 49 | Viewed by 7319
Abstract
Utilising major waste products from the food industry can have both a great environmental impact and be a means to improve consumer health. Date seed is a food industry byproduct that has been proven to have high nutritional value. The aim of this [...] Read more.
Utilising major waste products from the food industry can have both a great environmental impact and be a means to improve consumer health. Date seed is a food industry byproduct that has been proven to have high nutritional value. The aim of this work was to measure the total polyphenolic content (TPC), flavonoids, and antioxidant activity of the seeds of six date fruit varieties, Fard, Khalas, Khinaizi, Sukkary, Shaham, and Zahidi, and to use those seeds to enhance the antioxidant value of cookies by partially substituting flour with ground date seed. Date seed powder (DSP) was extracted at three levels of sample to solvent ratio (5:1, 10:1 and 15:1 mg/mL). Cookies were prepared using three substitution levels of wheat flour (2.5, 5.0, and 7.5%, w/w) by DSP and two types of flour (white and whole wheat), and were baked at two different temperatures, 180 and 200 °C. The composite cookies were found to contain a significant amount of TPC and flavonoids, and showed increased antioxidant activity compared with the control samples. Full article
Show Figures

Figure 1

13 pages, 4356 KiB  
Article
Physical Chemical and Textural Characteristics and Sensory Evaluation of Cookies Formulated with Date Seed Powder
by Zein Najjar, Maitha Alkaabi, Khulood Alketbi, Constantinos Stathopoulos and Meththa Ranasinghe
Foods 2022, 11(3), 305; https://doi.org/10.3390/foods11030305 - 24 Jan 2022
Cited by 36 | Viewed by 8899
Abstract
Date seeds are a major waste product that can be utilised as a valuable and nutritional material in the food industry. The aim of the present study was to improve cookies quality in terms of functional and textural value and assess the effect [...] Read more.
Date seeds are a major waste product that can be utilised as a valuable and nutritional material in the food industry. The aim of the present study was to improve cookies quality in terms of functional and textural value and assess the effect of date seed powder flour substitution on the physical and chemical characteristics of cookies. Three substitution levels (2.5, 5 and 7.5%) of flour by fine date seed powder from six varieties locally named Khalas, Khinaizi, Sukkary, Shaham, Zahidi and Fardh were prepared. Two types of flour were used (white flour and whole wheat) at two different baking temperatures: 180 and 200 °C. The incorporation of date seed had no or slight effect on moisture, ash, fat and protein content of the baked cookies. On the other hand, incorporation significantly affected the lightness and hardness of cookies; the higher level of addition, the darker and crispier the resulting cookies. The sensory analysis indicated that the produced cookies were acceptable in terms of smell, taste, texture and overall acceptability. The results indicate that the most acceptable cookies across all evaluated parameters were produced using whole wheat flour with 7.5% levels of date seed powder using Khalas and Zahidi varieties. Overall, the analysis indicated that cookies with acceptable physical characteristics and an improved nutritional profile could be produced with partial replacement of the white/whole wheat flour by date seed powder. Full article
(This article belongs to the Special Issue By-Products: Characterisation and Use as Food)
Show Figures

Figure 1

Back to TopTop