Experimental Investigation on the Impact of Drying–Wetting Cycles on the Shrink–Swell Behavior of Clay Loam in Farmland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Properties
2.2. Experimental Design and Testing Procedure
2.2.1. Sample Preparation
2.2.2. Drying–Wetting Cycles
2.2.3. Deformation Measurement
2.3. Analysis of Soil Shrinkage and Swelling
2.3.1. Digital Image Processing
2.3.2. Shrink–Swell Parameters
2.3.3. Soil Shrinkage Curve Model (VG-Peng Model)
2.3.4. Anisotropy of Soil Deformation
2.4. Statistical Analysis
3. Results
3.1. Evolution of Soil Size and Shrinkage-Swelling Potential during Cycles
3.2. Dynamics of Soil Height and Equivalent Diameter during Drying
3.3. Changes of Soil Shrinkage Curve, Shrinkage Zones
3.4. Variation of Geometry Factor during Cycles
4. Discussion
4.1. Irreversible Deformation during Drying–Wetting Cycles
4.2. Effect of Drying–Wetting Cycles on Shrinkage Curve, Shrinkage Zones
4.3. Anisotropy of Soil Deformation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, T.; Wang, P.; Shao, L.; Guo, X. Experimental investigations of soil shrinkage characteristics and their effects on the soil water characteristic curve. Eng. Geol. 2021, 284, 106035. [Google Scholar] [CrossRef]
- Tang, C.S.; Shi, B.; Liu, C.; Suo, W.B.; Gao, L. Experimental characterization of shrinkage and desiccation cracking in thin clay layer. Appl. Clay Sci. 2011, 52, 69–77. [Google Scholar] [CrossRef]
- Li, H.D.; Tang, C.S.; Cheng, Q.; Li, S.J.; Gong, X.P.; Shi, B. Tensile strength of clayey soil and the strain analysis based on image processing techniques. Eng. Geol. 2019, 253, 137–148. [Google Scholar] [CrossRef]
- Zeng, H.; Tang, C.S.; Cheng, Q.; Zhu, C.; Yin, L.Y.; Shi, B. Drought-induced soil desiccation cracking behavior with consideration of basal friction and layer thickness. Water Resour. Res. 2020, 56, e2019WR026948. [Google Scholar] [CrossRef]
- Zhang, J.M.; Luo, Y.; Zhou, Z.; Chong, L.; Victor, C.; Zhang, Y.F. Effects of preferential flow induced by desiccation cracks on slope stability. Eng. Geol. 2021, 288, 106164. [Google Scholar] [CrossRef]
- Xing, X.; Li, Y.; Ma, X. Water retention curve correction using changes in bulk density during data collection. Eng. Geol. 2018, 233, 231–237. [Google Scholar] [CrossRef]
- Greve, A.; Andersen, M.S.; Acworth, R.I. Investigations of soil cracking and preferential flow in a weighing lysimeter filled with cracking clay soil. J. Hydrol. 2010, 393, 105–113. [Google Scholar] [CrossRef]
- Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Solaiman, Z.M.; Mosharrof, M. Biochar with alternate wetting and drying irrigation: A potential technique for paddy soil management. Agriculture 2021, 11, 367. [Google Scholar] [CrossRef]
- Paul, P.L.C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Impact of rice straw mulch on soil physical properties, sunflower root distribution and yield in a salt-affected clay-textured soil. Agriculture 2021, 11, 264. [Google Scholar] [CrossRef]
- Wang, G.; Wei, X. Modeling swelling–shrinkage behavior of compacted expansive soils during wetting–drying cycles. Can. Geotech. J. 2015, 52, 783–794. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, Z.Y.; Wang, C. Desiccation and cracking behaviour of clay loam subjected to different irrigation methods during wetting-drying cycles. Eur. J. Soil Sci. 2020, 72, 793–809. [Google Scholar] [CrossRef]
- Grossman, R.; Brasher, B.; Franzmeier, D.; Walker, J.L. Linear extensibility as calculated from natural-clod bulk density measurements1. Soil Sci. Soc. Am. J. 1968, 32, 570–573. [Google Scholar] [CrossRef]
- Klopp, H.W.; Arriaga, F.J.; Likos, W.J.; Bleam, W.F. Atterberg limits and shrink/swell capacity of soil as indicators for sodium sensitivity within a gradient of soil exchangeable sodium percentage and salinity. Geoderma 2019, 353, 449–458. [Google Scholar] [CrossRef]
- Valle, S.R.; Dörner, J.; Zúñiga, F.; Dec, D. Seasonal dynamics of the physical quality of volcanic ash soils under different land uses in southern Chile. Soil Tillage Res. 2018, 182, 25–34. [Google Scholar] [CrossRef]
- Deng, C.; Teng, X.; Peng, X.; Zhang, B. Effects of simulated puddling intensity and pre-drying on shrinkage capacity of a paddy soil under long-term fertilization. Soil Tillage Res. 2014, 140, 135–143. [Google Scholar] [CrossRef]
- Dinka, T.M.; Morgan, C.L.S.; McInnes, K.J.; Kishné, A.S.; Daren Harmel, R. Shrink–swell behavior of soil across a Vertisol catena. J. Hydrol. 2013, 476, 352–359. [Google Scholar] [CrossRef]
- Peng, X.H.; Horn, R. Anisotropic shrinkage and swelling of some organic and inorganic soils. Eur. J. Soil Sci. 2007, 58, 98–107. [Google Scholar] [CrossRef]
- Groenevelt, P.H.; Grant, C.D. Re-evaluation of the structural properties of some British swelling soils. Eur. J. Soil Sci. 2001, 52, 469–477. [Google Scholar] [CrossRef]
- McGarry, D.; Malafant, K.W.J. The analysis of volume change in unconfined units of soil. Soil Sci. Soc. Am. J. 1987, 51, 290–297. [Google Scholar] [CrossRef]
- Amenuvor, A.C.; Li, G.; Wu, J.; Hou, Y.; Chen, W. An image-based method for quick measurement of the soil shrinkage characteristics curve of soil slurry. Geoderma 2020, 363, 114165. [Google Scholar] [CrossRef]
- Shao, M.; Lv, D. Experimental study on soil shrinkage characteristic curves. Acta Pedol. Sin. 2003, 40, 471–474. [Google Scholar]
- Tariq, A.-u.-R.; Durnford, D.S. Analytical volume change model for swelling clay soils. Soil Sci. Soc. Am. J. 1993, 57, 1183–1187. [Google Scholar] [CrossRef]
- Braudeau, E.; Costantini, J.M.; Bellier, G.; Colleuille, H. New device and method for soil shrinkage curve measurement and characterization. Soil Sci. Soc. Am. J. 1999, 63, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Estabragh, A.R.; Parsaei, B.; Javadi, A.A. Laboratory investigation of the effect of cyclic wetting and drying on the behaviour of an expansive soil. Soils Found. 2015, 55, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Jong, E.D.; Kozak, L.M.; Storehouse, H.B. Comparison of shrink-swell indices of some Saskatchewan soils and their relationships to standard soil. Can. J. Soil Sci. 1992, 72, 429–439. [Google Scholar] [CrossRef]
- Gray, C.W.; Allbrook, R. Relationships between shrinkage indices and soil properties in some New Zealand soils. Geoderma 2002, 108, 287–299. [Google Scholar] [CrossRef]
- Nowamooz, H.; Jahangir, E.; Masrouri, F. Volume change behaviour of a swelling soil compacted at different initial states. Eng. Geol. 2013, 153, 25–34. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Peng, X.; Wang, L.L.; Zhao, Q.G.; Lin, H. Temporal changes in shrinkage behavior of two paddy soils under alternative flooding and drying cycles and its consequence on percolation. Geoderma 2013, 192, 12–20. [Google Scholar] [CrossRef]
- Nowamooz, H.; Masrouri, F. Hydromechanical behaviour of an expansive bentonite/silt mixture in cyclic suction-controlled drying and wetting tests. Eng. Geol. 2008, 101, 154–164. [Google Scholar] [CrossRef]
- Monroy, R.; Zdravkovic, L.; Ridley, A. Evolution of microstructure in compacted London Clay during wetting and loading. Géotechnique 2010, 60, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Shahsavani, S.; Vakili, A.H.; Mokhberi, M. The effect of wetting and drying cycles on the swelling-shrinkage behavior of the expansive soils improved by nanosilica and industrial waste. Bull. Eng. Geol. Environ. 2020, 79, 4765–4781. [Google Scholar] [CrossRef]
- Xing, X.; Ma, X. Analysis of cracking potential and modification of soil-water characteristic curve by adding wheat residues. Soil Sci. Soc. Am. J. 2019, 83, 1299–1308. [Google Scholar] [CrossRef]
- Estabragh, A.R.; Moghadas, M.; Javadi, A.A. Effect of different types of wetting fluids on the behaviour of expansive soil during wetting and drying. Soils Found. 2013, 53, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.H.; Horn, R.; Smucker, A. Pore shrinkage dependency of inorganic and organic soils on wetting and drying cycles. Soil Sci. Soc. Am. J. 2007, 71, 1095–1104. [Google Scholar] [CrossRef]
- Zhao, G.T.; Zou, W.L.; Han, Z.; Wang, D.X.; Wang, X.Q. Evolution of soil-water and shrinkage characteristics of an expansive clay during freeze-thaw and drying-wetting cycles. Cold Reg. Sci. Technol. 2021, 186, 103275. [Google Scholar] [CrossRef]
- Aksakal, E.L.; Angin, I.; Sari, S. Effects of freeze-thaw cycles on consistency limits of soils amended with diatomite. Soil Tillage Res. 2021, 213, 105144. [Google Scholar] [CrossRef]
- Yazdandoust, F.; Yasrobi, S.S. Effect of cyclic wetting and drying on swelling behavior of polymer-stabilized expansive clays. Appl. Clay Sci. 2010, 50, 461–468. [Google Scholar] [CrossRef]
- Sun, H.; Mašín, D.; Najser, J.; Neděla, V.; Navrátilová, E. Bentonite microstructure and saturation evolution in wetting–drying cycles evaluated using ESEM, MIP and WRC measurements. Géotechnique 2019, 69, 713–726. [Google Scholar] [CrossRef]
- She, D.L.; Sun, X.Q.; Gamareldawla, A.H.D.; Nazar, E.A.; Hu, W.; Edith, K.; Yu, S.E. Benefits of soil biochar amendments to tomato growth under saline water irrigation. Sci. Rep. 2018, 8, 14743. [Google Scholar] [CrossRef]
- Liu, M.; Wang, S.; Fan, J.; Fu, W.; Du, M. Rapid in-situ determination of soil evaporation with cutting ring method. Chin. J. Soil Sci. 2021, 52, 55–61. [Google Scholar]
- Pires, L.F.; Bacchi, O.O.S.; Reichardt, K. Gamma ray computed tomography to evaluate wetting/drying soil structure changes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005, 229, 443–456. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. Syst. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.H.; Horn, R. Modeling soil shrinkage curve across a wide range of soil types. Soil Sci. Soc. Am. J. 2005, 69, 584–592. [Google Scholar] [CrossRef]
- Peng, X.H.; Horn, R. Identifying six types of soil shrinkage curves from a large set of experimental data. Soil Sci. Soc. Am. J. 2013, 77, 372. [Google Scholar] [CrossRef]
- Bronswijk, J.J.B. Shrinkage geometry of a heavy clay soil at various stress. Soil Sci. Soc. Am. J. 1990, 54, 1500–1502. [Google Scholar] [CrossRef]
- Airò Farulla, C.; Ferrari, A.; Romero, E. Volume change behaviour of a compacted scaly clay during cyclic suction changes. Can. Geotech. J. 2010, 47, 688–703. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.Y.; Qi, W.; Fan, S.M. Morphological approach to quantifying soil cracks: Application to dynamic crack patterns during wetting-drying cycles. Soil Sci. Soc. Am. J. 2018, 82, 751–771. [Google Scholar] [CrossRef]
- Mawlood, Y.I.; Hummadi, R.A. Reversible and irreversible deformations of expansive clays. Proc. Inst. Civ. Eng. Geotech. Eng. 2019, 172, 442–452. [Google Scholar] [CrossRef]
- Abou Najm, M.R.; Jabro, J.D.; Iversen, W.M.; Mohtar, R.H.; Evans, R.G. New method for the characterization of three-dimensional preferential flow paths in the field. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, Z.Y.; Wang, C.; Chen, Y.; Zhang, Z.M. Crack closure and flow regimes in cracked clay loam subjected to different irrigation methods. Geoderma 2020, 358, 113978. [Google Scholar] [CrossRef]
- Carminati, A.; Kaestner, A.; Lehmann, P.; Flühler, H. Unsaturated water flow across soil aggregate contacts. Adv. Water Resour. 2008, 31, 1221–1232. [Google Scholar] [CrossRef]
- Ma, R.; Cai, C.; Li, Z.; Wang, J.; Xiao, T.; Peng, G.; Yang, W. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil Tillage Res. 2015, 149, 1–11. [Google Scholar] [CrossRef]
- Stewart, R.D.; Rupp, D.E.; Abou Najm, M.R.; Selker, J.S. A unified model for soil shrinkage, subsidence, and cracking. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Zhang, Z.; Li, D.; Liu, K.; Zhang, K.; Zhang, W.; Peng, X.; Zhou, H. Temporal dynamics of paddy soil structure as affected by different fertilization strategies investigated with soil shrinkage curve. Soil Tillage Res. 2019, 187, 102–109. [Google Scholar] [CrossRef]
- Zemenu, G.; Martine, A.; Roger, C. Analysis of the behaviour of a natural expansive soil under cyclic drying and wetting. Bull. Eng. Geol. Environ. 2009, 68, 421–436. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Cao, D.; Chen, Y.; Qi, W.; Ma, L. Crack porosity estimation model based on VG-PENG shrinkage characteristic curve and soil shrinkage anisotropy. Trans. Chin. Soc. Agric. Eng. 2021, 37, 112–121. [Google Scholar]
Drying Path | Replicate | RMSE * | NSE * | R2 * | |||||
---|---|---|---|---|---|---|---|---|---|
First | 1 | 0.644 | 1.151 | 1.165 | 20.572 | 0.102 | 0.011 | 0.997 | 0.997 |
2 | 0.662 | 1.164 | 1.149 | 18.232 | 0.110 | 0.011 | 0.996 | 0.997 | |
3 | 0.612 | 1.126 | 1.166 | 23.662 | 0.085 | 0.011 | 0.997 | 0.997 | |
Second | 1 | 0.681 | 1.080 | 1.238 | 16.658 | 0.148 | 0.010 | 0.996 | 0.997 |
2 | 0.671 | 1.076 | 1.245 | 16.137 | 0.136 | 0.009 | 0.997 | 0.997 | |
3 | 0.632 | 1.056 | 1.218 | 22.353 | 0.098 | 0.012 | 0.995 | 0.995 | |
Third | 1 | 0.706 | 1.016 | 1.435 | 14.908 | 0.188 | 0.005 | 0.998 | 0.999 |
2 | 0.705 | 1.004 | 1.421 | 12.793 | 0.189 | 0.005 | 0.998 | 0.999 | |
3 | 0.689 | 0.996 | 1.520 | 11.354 | 0.231 | 0.009 | 0.994 | 0.995 | |
Fourth | 1 | 0.714 | 0.995 | 1.529 | 12.387 | 0.229 | 0.008 | 0.995 | 0.996 |
2 | 0.718 | 0.992 | 1.423 | 14.053 | 0.177 | 0.009 | 0.994 | 0.996 | |
3 | 0.697 | 0.949 | 1.471 | 14.907 | 0.178 | 0.007 | 0.996 | 0.998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, W.; Wang, C.; Zhang, Z.; Huang, M.; Xu, J. Experimental Investigation on the Impact of Drying–Wetting Cycles on the Shrink–Swell Behavior of Clay Loam in Farmland. Agriculture 2022, 12, 245. https://doi.org/10.3390/agriculture12020245
Qi W, Wang C, Zhang Z, Huang M, Xu J. Experimental Investigation on the Impact of Drying–Wetting Cycles on the Shrink–Swell Behavior of Clay Loam in Farmland. Agriculture. 2022; 12(2):245. https://doi.org/10.3390/agriculture12020245
Chicago/Turabian StyleQi, Wei, Ce Wang, Zhanyu Zhang, Mingyi Huang, and Jiahui Xu. 2022. "Experimental Investigation on the Impact of Drying–Wetting Cycles on the Shrink–Swell Behavior of Clay Loam in Farmland" Agriculture 12, no. 2: 245. https://doi.org/10.3390/agriculture12020245
APA StyleQi, W., Wang, C., Zhang, Z., Huang, M., & Xu, J. (2022). Experimental Investigation on the Impact of Drying–Wetting Cycles on the Shrink–Swell Behavior of Clay Loam in Farmland. Agriculture, 12(2), 245. https://doi.org/10.3390/agriculture12020245