Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Control Methods of Spraying System
2.2. Design of Test Platform
2.3. Test Methods
2.4. Analysis Method
3. Results
3.1. Results of Single-Factor Test
3.2. Results Analysis of Response Surface Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 2017, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- King, A. Technology: The future of agriculture. Nature 2017, 544, S21–S23. [Google Scholar] [CrossRef] [Green Version]
- Vougioukas, S.G. Agricultural robotics. Annu. Rev. Control Robot. Auton. Syst. 2019, 2, 365–392. [Google Scholar] [CrossRef]
- Sylvester, G. (Ed.) E-Agriculture in Action: Drones for Agriculture; Food and Agriculture Organization of the United Nations and International Telecommunication Union: Bangkok, Thailand, 2018. [Google Scholar]
- Xiongkui, H.; Bonds, J.; Herbst, A.; Langenakens, J. Recent development of unmanned aerial vehicle for plant protection in East Asia. Int. J. Agric. Biol. Eng. 2017, 10, 18–30. [Google Scholar]
- Huang, Y.; Thomson, S.J.; Hoffmann, W.C.; Lan, Y.; Fritz, B.K. Development and prospect of unmanned aerial vehicle technologies for agricultural production management. Int. J. Agric. Biol. Eng. 2013, 6, 1–10. [Google Scholar]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Mukherjee, A.; Misra, S.; Raghuwanshi, N.S. A survey of unmanned aerial sensing solutions in precision agriculture. J. Netw. Comput. Appl. 2019, 148, 102461. [Google Scholar] [CrossRef]
- Yang, N.; Yang, S.; Cui, W.; Zhang, Z.; Zhang, J.; Chen, J.; Chen, J.; Ma, Y.; Lao, C.; Song, Z.; et al. Effect of spring irrigation on soil salinity monitoring with UAV-borne multispectral sensor. Int. J. Remote Sens. 2021, 42, 8952–8978. [Google Scholar] [CrossRef]
- Srivastava, K.; Bhutoria, A.J.; Sharma, J.K.; Sinha, A.; Pandey, P.C. UAVs technology for the development of GUI based application for precision agriculture and environmental research. Remote Sens. Appl. Soc. Environ. 2019, 16, 100258. [Google Scholar] [CrossRef]
- Srivastava, K.; Pandey, P.C.; Sharma, J.K. An approach for route optimization in applications of precision agriculture using uavs. Drones 2020, 4, 58. [Google Scholar] [CrossRef]
- Kharim, M.N.A.; Wayayok, A.; Shariff, A.R.M.; Abdullah, A.F.; Husin, E.M. Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation. Comput. Electron. Agric. 2019, 167, 105045. [Google Scholar] [CrossRef]
- Xue, X.; Lan, Y.; Sun, Z.; Chang, C.; Hoffmann, W.C. Develop an unmanned aerial vehicle based automatic aerial spraying system. Comput. Electron. Agric. 2016, 128, 58–66. [Google Scholar] [CrossRef]
- Guo, S.; Li, J.; Yao, W.; Hu, X.; Wei, X.; Long, B.; Wu, H.; Li, H. Optimization of the factors affecting droplet deposition in rice fields by rotary unmanned aerial vehicles (UAVs). Precis. Agric. 2021, 22, 1918–1935. [Google Scholar] [CrossRef]
- Faiçal, B.S.; Freitas, H.; Gomes, P.H.; Mano, L.Y.; Pessin, G.; de Carvalho, A.C.; Krishnamachari, B.; Ueyama, J. An adaptive approach for UAV-based pesticide spraying in dynamic environments. Comput. Electron. Agric. 2017, 138, 210–223. [Google Scholar] [CrossRef]
- Wang, L.; Lan, Y.; Yue, X.; Ling, K.; Cen, Z.; Cheng, Z.; Liu, Y.; Wang, J. Vision-based adaptive variable rate spraying approach for unmanned aerial vehicles. Int. J. Agric. Biol. Eng. 2019, 12, 18–26. [Google Scholar] [CrossRef]
- Lian, Q.; Tan, F.; Fu, X.; Zhang, P.; Liu, X.; Zhang, W. Design of precision variable-rate spray system for unmanned aerial vehicle using automatic control method. Int. J. Agric. Biol. Eng. 2019, 12, 29–35. [Google Scholar] [CrossRef]
- Wen, S.; Zhang, Q.; Deng, J.; Lan, Y.; Yin, X.; Shan, J. Design and experiment of a variable spray system for unmanned aerial vehicles based on PID and PWM control. Appl. Sci. 2018, 8, 2482. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, J.; Li, W.; Xiong, B.; Zhang, S.; Zhang, W. Design and test of dynamic variable spraying system of plant protection UAV. Trans. Chin. Soc. Agric. 2017, 5, 86–93. [Google Scholar]
- Richardson, B.; Rolando, C.A.; Kimberley, M.O. Quantifying spray deposition from a UAV configured for spot spray applications to individual plants. Trans. ASABE 2020, 63, 1049–1058. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.; Li, X.; Andaloro, J.; Chen, P.; Hoffmann, W.C.; Han, X.; Chen, S.; Lan, Y. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Sci. Total Environ. 2020, 737, 139793. [Google Scholar] [CrossRef]
- Chen, S.; Lan, Y.; Jiyu, L.; Zhou, Z.; Liu, A.; Mao, Y. Effect of wind field below unmanned helicopter on droplet deposition distribution of aerial spraying. Int. J. Agric. Biol. Eng. 2017, 10, 67–77. [Google Scholar]
- Ahmad, F.; Qiu, B.; Dong, X.; Ma, J.; Huang, X.; Ahmed, S.; Chandio, F.A. Effect of operating parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application. Comput. Electron. Agric. 2020, 172, 105350. [Google Scholar] [CrossRef]
- Tang, Y.; Hou, C.J.; Luo, S.M.; Lin, J.T.; Yang, Z.; Huang, W.F. Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle. Comput. Electron. Agric. 2018, 148, 1–7. [Google Scholar] [CrossRef]
- Lou, Z.; Xin, F.; Han, X.; Lan, Y.; Duan, T.; Fu, W. Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites. Agronomy 2018, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lan, Y.; Zhou, Z.; Ouyang, F.; Wang, G.; Huang, X.; Deng, X.; Cheng, S. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV. Agronomy 2020, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Musiu, E.M.; Qi, L.; Wu, Y. Spray deposition and distribution on the targets and losses to the ground as affected by application volume rate, airflow rate and target position. Crop Prot. 2019, 116, 170–180. [Google Scholar] [CrossRef]
- Xin, F.; Zhao, J.; Zhou, Y.; Wang, G.; Han, X.; Fu, W.; Deng, J.; Lan, Y. Effects of dosage and spraying volume on cotton defoliants efficacy: A case study based on application of unmanned aerial vehicles. Agronomy 2018, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.; Zang, Y.; Luo, X.; Zhou, Z.; Lan, Y.; Zang, Y.; Gu, X.; Wu, W.; Hewitt, A.J. Optimization of variables for maximizing efficacy and efficiency in aerial spray application to cotton using unmanned aerial systems. Int. J. Agric. Biol. Eng. 2019, 12, 10–17. [Google Scholar] [CrossRef]
- Meng, Y.; Su, J.; Song, J.; Chen, W.H.; Lan, Y. Experimental evaluation of UAV spraying for peach trees of different shapes: Effects of operating parameters on droplet distribution. Comput. Electron. Agric. 2020, 170, 105282. [Google Scholar] [CrossRef]
- Civil Aviation Administration of China. Agricultural Aviation Operation Quality and Technical Indicators Part I: Spraying Operations (MH/T 1002.1-2016). National Public Service Platform for Standards Information 2016. 03.220.50. Available online: http://hbba.sacinfo.org.cn/stdDetail/e8993d4d62653dc7eaa6dd22500412d4 (accessed on 31 December 2021).
- Zhu, H.; Salyani, M.; Fox, R.D. A portable scanning system for evaluation of spray deposit distribution. Comput. Electron. Agric. 2011, 76, 38–43. [Google Scholar] [CrossRef]
- Li, J.; Shi, Y.; Lan, Y.; Guo, S. Vertical distribution and vortex structure of rotor wind field under the influence of rice canopy. Comput. Electron. Agric. 2019, 159, 140–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; He, Y.; Liu, F.; Cen, H.; Fang, H. Near ground platform development to simulate UAV aerial spraying and its spraying test under different conditions. Comput. Electron. Agric. 2018, 148, 8–18. [Google Scholar] [CrossRef]
Investigating Factor | Fixed Factors | Levels | Response Value | |||
---|---|---|---|---|---|---|
SW (m) | CDavg (No./cm2) | CV (%) | CR (%) | |||
X1 (m) | X2: 1.0 L/min X3: 1.5 m X4: 100% | 0.6 | 1.8 | 59.6 | 38.78 | 9.81 |
0.8 | 2.2 | 65.0 | 34.69 | 7.84 | ||
1.0 | 2.6 | 75.4 | 44.28 | 7.02 | ||
1.2 | 2.6 | 84.6 | 34.81 | 7.86 | ||
1.4 | 2.6 | 88.1 | 32.37 | 11.81 | ||
1.6 | 2.6 | 88.2 | 29.39 | 11.05 | ||
1.8 | 2.4 | 95.7 | 30.15 | 11.47 | ||
2.0 | 2.4 | 86.5 | 32.96 | 11.05 | ||
X2 (L/min) | X1: 1.5 m X3: 1.5 m X4: 100% | 0.50 | 1.6 | 157.0 | 50.20 | 8.54 |
0.80 | 2.4 | 101.6 | 51.10 | 8.46 | ||
1.10 | 2.8 | 98.9 | 35.45 | 15.20 | ||
1.40 | 2.8 | 88.8 | 32.59 | 17.60 | ||
1.70 | 3.2 | 52.5 | 36.66 | 20.88 | ||
2.00 | 2.8 | 96.1 | 37.17 | 22.05 | ||
2.30 | 2.8 | 87.3 | 47.63 | 29.75 | ||
X3 (m) | X1: 1.5 m X2: 1.0 L/min X4: 100% | 0.6 | 1.8 | 88.7 | 53.62 | 31.17 |
0.8 | 2.2 | 96.4 | 47.16 | 20.72 | ||
1.0 | 2.6 | 109.3 | 30.88 | 15.74 | ||
1.2 | 2.6 | 95.5 | 30.29 | 20.27 | ||
1.4 | 2.8 | 102 | 31.63 | 16.76 | ||
1.6 | 3.0 | 95.7 | 30.32 | 15.00 | ||
1.8 | 2.8 | 102.7 | 31.85 | 13.21 | ||
2.0 | 2.8 | 96.8 | 49.30 | 15.01 | ||
2.2 | 3.4 | 84.1 | 59.63 | 13.00 | ||
2.4 | 3.8 | 62.0 | 75.33 | 11.75 | ||
X4 (%) | X1: 1.5 m X2: 1.0 L/min X3: 1.5 m | 50 | 2.8 | 49.6 | 42.16 | 9.36 |
60 | 3.0 | 61.5 | 51.07 | 9.14 | ||
70 | 3.0 | 71.5 | 41.26 | 10.32 | ||
80 | 2.8 | 78.2 | 45.59 | 12.38 | ||
90 | 2.8 | 106.4 | 39.56 | 15.27 | ||
100 | 2.8 | 108.1 | 35.02 | 13.18 |
Factors | Level Values | ||
---|---|---|---|
−1 | 0 | 1 | |
X1: Spraying height (m) | 1.0 | 1.5 | 2.0 |
X2: Flow rate (L/min) | 0.50 | 1.25 | 2.00 |
X3: Distance between nozzles (m) | 0.8 | 1.5 | 2.2 |
X4: PWM duty cycle (%) | 50 | 75 | 100 |
Run | Factors | Response Value | Com. Score | ||||||
---|---|---|---|---|---|---|---|---|---|
X1 (m) | X2 (L/min) | X3 (m) | X4 (%) | SW (m) | CDavg (No./cm2) | CV (%) | CR (%) | ||
1 | 1.5 (0) | 1.25 (0) | 1.5 (0) | 75 (0) | 3.6 (1.528) | 65.0 (−0.173) | 33.77 (0.747) | 8.33 (−0.785) | 1.316 |
2 | 2.0 (1) | 2.00 (1) | 1.5 (0) | 75 (0) | 2.6 (−0.249) | 60.7 (−0.330) | 42.96 (0.128) | 17.48 (1.211) | 0.760 |
3 | 2.0 (1) | 0.50 (−1) | 1.5 (0) | 75 (0) | 2.2 (−0.959) | 96.5 (0.977) | 60.18 (−1.032) | 8.57 (−0.733) | −1.747 |
4 | 1.0 (−1) | 0.50 (−1) | 1.5 (0) | 75 (0) | 2.2 (−0.959) | 112.7 (1.569) | 61.29 (−1.106) | 9.35 (−0.563) | −1.059 |
5 | 1.5 (0) | 1.25 (0) | 0.8 (−1) | 50 (−1) | 2.2 (−0.959) | 40.4 (−1.069) | 27.95 (1.139) | 10.20 (−0.378) | −1.267 |
6 | 1.5 (0) | 2.00 (1) | 1.5 (0) | 100 (1) | 3.2 (0.817) | 72.4 (0.096) | 35.51 (0.629) | 17.75 (1.270) | 2.813 |
7 | 1.0 (−1) | 1.25 (0) | 1.5 (0) | 100 (1) | 3.4 (1.173) | 77.5 (0.284) | 41.01 (0.259) | 12.73 (0.174) | 1.890 |
8 | 1.0 (−1) | 2.00 (1) | 1.5 (0) | 75 (0) | 2.6 (−0.249) | 64.9 (−0.176) | 37.26 (0.511) | 17.35 (1.182) | 1.269 |
9 | 1.5 (0) | 2.00 (1) | 0.8 (−1) | 75 (0) | 2.2 (−0.959) | 65.6 (−0.151) | 42.93 (0.130) | 23.03 (2.423) | 1.443 |
10 | 1.5 (0) | 1.25 (0) | 2.2 (1) | 100 (1) | 3.0 (0.462) | 85.1 (0.563) | 33.37 (0.773) | 14.11 (0.475) | 2.273 |
11 | 1.5 (0) | 1.25 (0) | 1.5 (0) | 75 (0) | 3.4 (1.173) | 58.3 (−0.418) | 52.68 (−0.527) | 9.81 (−0.462) | −0.234 |
12 | 1.5 (0) | 2.00 (1) | 2.2 (1) | 75 (0) | 3.4 (1.173) | 47.0 (−0.828) | 70.34 (−1.716) | 12.33 (0.088) | −1.283 |
13 | 1.5 (0) | 2.00 (1) | 1.5 (0) | 50 (−1) | 3.0 (0.462) | 28.2 (−1.514) | 44.86 (0.000) | 9.59 (−0.511) | −1.563 |
14 | 2.0 (1) | 1.25 (0) | 1.5 (0) | 100 (1) | 2.6 (−0.249) | 78.4 (0.316) | 32.22 (0.851) | 17.97 (1.317) | 2.236 |
15 | 1.5 (0) | 1.25 (0) | 1.5 (0) | 75 (0) | 2.8 (0.107) | 57.0 (−0.463) | 38.70 (0.415) | 11.61 (−0.069) | −0.011 |
16 | 1.5 (0) | 0.50 (−1) | 0.8 (−1) | 75 (0) | 1.6 (−2.025) | 127.6 (2.111) | 36.14 (0.587) | 11.51 (−0.091) | 0.582 |
17 | 1.5 (0) | 0.50 (−1) | 1.5 (0) | 100 (1) | 2.2 (−0.959) | 142.9 (2.670) | 79.53 (−2.335) | 7.64 (−0.936) | −1.560 |
18 | 1.0 (−1) | 1.25 (0) | 0.8 (−1) | 75 (0) | 2.4 (−0.604) | 75.0 (0.193) | 35.18 (0.652) | 14.06 (0.466) | 0.706 |
19 | 1.5 (0) | 1.25 (0) | 2.2 (1) | 50 (−1) | 3.2 (0.817) | 37.2 (−1.186) | 34.28 (0.713) | 7.13 (−1.048) | −0.704 |
20 | 1.0 (−1) | 1.25 (0) | 1.5 (0) | 50 (−1) | 2.8 (0.107) | 35.5 (−1.250) | 31.88 (0.874) | 7.64 (−0.936) | −1.205 |
21 | 1.5 (0) | 1.25 (0) | 0.8 (−1) | 100 (1) | 2.0 (−1.315) | 106.3 (1.334) | 35.30 (0.644) | 21.70 (2.131) | 2.794 |
22 | 2.0 (1) | 1.25 (0) | 0.8 (−1) | 75 (0) | 2.0 (−1.315) | 76.0 (0.228) | 38.62 (0.420) | 16.42 (0.980) | 0.312 |
23 | 2.0 (1) | 1.25 (0) | 2.2 (1) | 75 (0) | 3.6 (1.528) | 56.0 (−0.502) | 58.28 (−0.904) | 7.66 (−0.932) | −0.811 |
24 | 1.5 (0) | 1.25 (0) | 1.5 (0) | 75 (0) | 3.0 (0.462) | 63.2 (−0.237) | 31.77 (0.882) | 11.21 (−0.158) | 0.949 |
25 | 1.5 (0) | 0.50 (−1) | 2.2 (1) | 75 (0) | 2.6 (−0.249) | 88.1 (0.671) | 68.25 (−1.575) | 7.66 (−0.932) | −2.085 |
26 | 1.5 (0) | 0.50 (−1) | 1.5 (0) | 50 (−1) | 2.4 (−0.604) | 56.9 (−0.466) | 76.83 (−2.153) | 5.35 (−1.435) | −4.658 |
27 | 2.0 (1) | 1.25 (0) | 1.5 (0) | 50 (−1) | 2.4 (−06.04) | 38.5 (−1.141) | 26.32 (1.248) | 8.19 (−0.817) | −1.313 |
28 | 1.0 (−1) | 1.25 (0) | 2.2 (1) | 75 (0) | 3.4 (1.173) | 59.2 (−0.383) | 46.98 (−0.143) | 10.33 (−0.349) | 0.298 |
29 | 1.5 (0) | 1.25 (0) | 1.5 (0) | 75 (0) | 3.6 (1.528) | 49.9 (−0.724) | 46.39 (−0.103) | 9.13 (−0.610) | 0.090 |
Variance Source | Sum of Squares | DOF | Mean Square | F | p-Value | Sig. | Variance Source | Sum of Squares | DOF | Mean Square | F | p | Sig. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | 66.65 | 14 | 4.76 | 4.94 | 0.0025 | * | X3X4 | 0.29 | 1 | 0.29 | 0.31 | 0.5893 | |
X1 | 0.51 | 1 | 0.51 | 0.52 | 0.4809 | X12 | 0.01 | 1 | 0.01 | 0.01 | 0.9304 | ||
X2 | 16.25 | 1 | 16.25 | 16.88 | 0.0011 | * | X22 | 6.74 | 1 | 6.74 | 6.99 | 0.0192 | * |
X3 | 3.95 | 1 | 3.95 | 4.10 | 0.0624 | X32 | 0.14 | 1 | 0.14 | 0.15 | 0.7039 | ||
X4 | 37.30 | 1 | 37.30 | 38.74 | <0.0001 | * | X42 | 0.18 | 1 | 0.18 | 0.19 | 0.6731 | |
X1X2 | 0.01 | 1 | 0.01 | 0.01 | 0.9288 | Residual | 13.48 | 14 | 0.96 | ||||
X1X3 | 0.13 | 1 | 0.13 | 0.13 | 0.7212 | Lack of fit | 11.68 | 10 | 1.17 | 2.59 | 0.1863 | ||
X1X4 | 0.05 | 1 | 0.05 | 0.05 | 0.8204 | Error | 1.80 | 4 | 0.45 | ||||
X2X3 | 0.00 | 1 | 0.00 | 0.00 | 0.9767 | Total | 8.87 | 28 | |||||
X2X4 | 0.41 | 1 | 0.41 | 0.42 | 0.5255 | - | - | - | - | - | - | - |
Run | Response Value | Test Com. Score | Predicted Com. Score | Relative Error (%) | |||
---|---|---|---|---|---|---|---|
SW (m) | CDavg (No./cm2) | CV (%) | CR (%) | ||||
1 | 2.8 (0.107) | 67.3 (−0.088) | 34.96 (0.667) | 23.11 (2.440) | 3.124 | 3.182 | −1.81 |
2 | 3.0 (0.462) | 72.6 (0.105) | 30.16 (0.990) | 20.20 (1.805) | 3.361 | 3.182 | 5.64 |
3 | 3.0 (0.462) | 65.4 (−0.158) | 32.84 (0.809) | 21.99 (2.195) | 3.309 | 3.182 | 3.98 |
AVG | 2.9 (0.284) | 68.4 (−0.048) | 32.65 (0.822) | 21.77 (2.147) | 3.205 | 3.182 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Xu, S.; Li, Z.; Cao, W. Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method. Agriculture 2022, 12, 131. https://doi.org/10.3390/agriculture12020131
Wang D, Xu S, Li Z, Cao W. Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method. Agriculture. 2022; 12(2):131. https://doi.org/10.3390/agriculture12020131
Chicago/Turabian StyleWang, Dashuai, Sheng Xu, Zhuolin Li, and Wujing Cao. 2022. "Analysis of the Influence of Parameters of a Spraying System Designed for UAV Application on the Spraying Quality Based on Box–Behnken Response Surface Method" Agriculture 12, no. 2: 131. https://doi.org/10.3390/agriculture12020131