Comparison of Yield and Yield Components of Several Crops Grown under Agro-Photovoltaic System in Korea
Abstract
:1. Introduction
2. Materials & Methods
2.1. Solar Panel
2.2. Field Experiment with Crop Species
2.3. Rice Cultivation
2.4. Soybean and Adzuki Bean Cultivation
2.5. Onion Cultivation
2.6. Garlic Cultivation
2.7. Rye Cultivation
2.8. Monocropping Forage Corn Cultivation
2.9. Mixed Planting Corn with Soybean Cultivation
2.10. Statistical Analysis
3. Results
3.1. Effect of APV System on Yield and Yield Components of Rice
3.2. Yield and Yield Components of Legume Crops: Soybean and Adzuki Bean
3.3. Yield of Garlic (Allium sativum L.) and Onion (Allium cepa L.)
3.4. Forage Yield and Forage Quality of Rye (Secale cereale L.)
3.5. Effect of APV Shading on Mixed Planting of Corn with Soybean, and Monocropping Corn
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, T.H.; Chun, K.S.; Yang, S.R. Analyzing the Impact of Agrophotovoltaic Power Plants on the Amenity Value of Agricultural Landscape: The Case of the Republic of Korea. Sustainability 2021, 13, 11325. [Google Scholar] [CrossRef]
- Lineman, M.; Do, Y.; Kim, J.Y.; Joo, G.J. Talking about climate change and Global warming. PLoS ONE 2015, 10, 0138996. [Google Scholar] [CrossRef]
- Sampei, Y.; Aoyagi-Usui, M. Mass-media coverage, its influence on public awareness of climate-change issues, and implications for Japan’s national campaign to reduce greenhouse gas emissions. Glob. Environ. Chang. 2009, 19, 203–212. [Google Scholar] [CrossRef]
- Bruckner, T.; Bashmakov, I.A.; Mulugetta, Y.; Chum, H.; de la Vega Navarro, A.; Edmonds, J.; Faaij, A.; Fungtammasan, B.; Garg, A.; Hertwich, E.; et al. Energy systems. In Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 511–597. [Google Scholar] [CrossRef]
- Kern, F.; Rogge, K.S. The pace of governed energy transitions: Agency, international dynamics and the Global Paris agreement accelerating decarbonisation processes? Energy Res. Soc. Sci. 2016, 22, 13–17. [Google Scholar] [CrossRef]
- UN Environment Programme. 2019. Available online: http://www.unenvironment.org/resources/emissions-gap-report-2019 (accessed on 18 March 2022).
- Bulgari, R.; Cola, G.; Ferrante, A.; Franzoni, G.; Mariani, L.; Martinetti, L. Micrometeorological environment in traditional and photovoltaic greenhouses and effects on growth and quality of tomato (Solanum lycopersicum L.). Ital. J. Agrometeorol. 2015, 20, 27–38. [Google Scholar]
- Zambon, I.; Colantoni, A.; Cecchini, M.; Mosconi, E.M. Rethinking sustainability within the viticulture realities integrating economy, landscape and energy. Sustainability 2018, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.; Bopp, G.; Goetzberger, A.; Obergfell, T.; Reise, C.; Schindele, S. Combining PV and food crops to Agrophotovoltaic–optimization of orientation and harvest. EU PVSEC Proc. 2012, 1, 4096–4100. [Google Scholar] [CrossRef]
- Chopard, J.; Bisson, A.; Lopez, G.; Persello, S.; Richert, C.; Fumey, D. Development of a decision support system to evaluate crop performance under dynamic solar panels. AIP Publ. 2021, 2361, 050001. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Thompson, E.P.; Bombelli, E.L.; Shubham, S.; Watson, H.; Everard, A.; D’Ardes, V.; Schievano, A.; Bocchi, S.; Zand, N.; Howe, C.J.; et al. Tinted semi-transparent solar panels allow concurrent production of crops and electricity on the same cropland. Adv. Energy Mater. 2020, 10, 2001189. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Schindele, S.; Trommsdorff, M.; Schlaak, A.; Obergfell, T.; Bopp, G.; Reise, C.; Braun, C.; Weselek, A.; Bauerle, A.; Högy, P.; et al. Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Appl. Energy 2020, 265, 114737. [Google Scholar] [CrossRef]
- Emmott, C.J.; Röhr, J.A.; Campoy-Quiles, M.; Kirchartz, T.; Urbina, A.; Ekins-Daukes, N.J.; Nelson, J. Organic photovoltaic greenhouses: A unique application for semi-transparent PV? Energy Environ. Sci. 2015, 8, 1317–1328. [Google Scholar] [CrossRef]
- Fraunhofer ISE. Harvesting the Sun for Power and Produce—Agrophotovoltaics Increases the Land Use Efficiency by over 60 Percent; Fraunhofer ISE: Freiburg, Germany, 2017. [Google Scholar]
- Gonocruz, R.A.; Nakamura, R.; Yoshino, K.; Homma, M.; Doi, T.; Yoshida, Y.; Tani, A. Analysis of the rice yield under an Agrivoltaic system: A case study in Japan. Environments 2021, 8, 65. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2010. [Google Scholar]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Graham, M.; Ates, S.; Melathopoulos, A.P.; Moldenke, A.R.; DeBano, S.J.; Best, L.R.; Higgins, C.W. Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Sci. Rep. 2021, 11, 7452. [Google Scholar] [CrossRef]
- Cho, J.; Park, S.M.; Park, A.R.; Lee, O.C.; Nam, G.; Ra, I.H. Application of photovoltaic systems for agriculture: A study on the relationship between power generation and farming for the improvement of photovoltaic applications in agriculture. Energies 2020, 13, 4815. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Hartung, J.; Zikeli, S.; Lewandowski, I.; Högy, P. Agrivoltaic system impacts on microclimate and yield of different crops within an organic crop rotation in a temperate climate. Agron. Sustain. Dev. 2021, 41, 59. [Google Scholar] [CrossRef]
- Byeon, J.Y. Analysis of Rural Solar Power Project to Improve Farm. Income; National Assembly Budget Office: Seoul, Korea, 2021. [Google Scholar]
- Sekiyama, T.; Nagashima, A. Solar sharing for both food and clean energy production: Performance of agrivoltaic systems for corn, a typical shade-intolerant crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Al Mamun, M.A.; Dargusch, P.; Wadley, D.; Zulkarnain, N.A.; Aziz, A.A. A review of research on agrivoltaic systems. Renew. Sustain. Energy Rev. 2022, 161, 112351. [Google Scholar] [CrossRef]
- Brohm, R.; Khanh, N.Q. Dual Use Approaches for Solar Energy and Food Production—International Experience and Potentials for Vietnam; Green Innovation and Development Centre (GreenID): Hanoi, Vietnam, 2018; pp. 51–52. [Google Scholar]
- Lee, J.D.; Kim, M.; Kulkarni, K.P.; Song, J.T. Agronomic traits and fatty acid composition of high–oleic acid cultivar Hosim. Plant Breed. Biotechnol. 2018, 6, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.G.; Son, B.Y.; Cha, S.W.; Jung, T.W.; Lee, Y.H.; Seo, J.H.; Min, H.K.; Choi, K.J.; Huh, C.S.; Kim, S.D. A new single cross hybrid for silage “Kwangpyeongok”. Korean J. Breed. Sci. 2021, 33, 350–351. [Google Scholar]
- Seo, J.D.; Kim, M.; Song, Y.; Jo, D.; Song, J.T.; Kim, J.D.; Kwon, C.H.; Jo, H.; Lee, J.D. Selection of Soybean Germplasm for Mixed Cropping with Corn on the Same Row to Produce Better Yield and Value-Added Forage. Korean J. Breed. Sci. 2019, 51, 1–8. [Google Scholar] [CrossRef]
- Seo, J.D.; Jo, H.; Kim, M.; Song, J.T.; Lee, J.D. Agronomic Traits and Forage Production in a Mixed-Planting with Corn for Forage Soybean Cultivars, Chookdu 1 and Chookdu 2. Plant Breed. Biotechnol. 2019, 7, 123–131. [Google Scholar] [CrossRef]
- Asekova, S.; Han, S.I.; Choi, H.J.; Park, S.J.; Shin, D.H.; Kwon, C.H.; Shannon, J.G.; Lee, J.D. Determination of forage quality by near-infrared reflectance spectroscopy in soybean. Turk. J. Agric. For. 2016, 40, 45–52. [Google Scholar] [CrossRef] [Green Version]
- U.S. Energy Information Administration. Available online: https://eia.gov/ (accessed on 18 March 2022).
- Homma, M.; Doi, T.; Yoshida, Y. A field experiment and the simulation on agrivoltaic-systems regarding to rice in a paddy field. J. Jpn Soc. Energy Resour. 2016, 37, 23–31. [Google Scholar]
- Lott, J.E.; Ong, C.K.; Black, C.R. Understorey microclimate and crop performance in a Grevillea robusta-based agroforestry system in semi-arid Kenya. Agric. For. Meteorol. 2009, 149, 1140–1151. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Chang, Z.; Wang, S.; Ding, Y.; Ding, C. Transcriptomic analysis of field-grown rice (Oryza sativa L.) reveals responses to shade stress in reproductive stage. Plant Growth Regul. 2018, 84, 583–592. [Google Scholar] [CrossRef]
- Egli, D.B. Soybean reproductive sink size and short-term reductions in photosynthesis during flowering and pod set. Crop Sci. 2010, 50, 1971–1977. [Google Scholar] [CrossRef]
- Early, E.B.; McIlrath, W.O.; Seif, R.D.; Hageman, R.H. Effects of Shade Applied at Different Stages of Plant Development on Corn (Zea mays L.) Production 1. Crop Sci. 1967, 7, 151–156. [Google Scholar] [CrossRef]
- Yuan, L.; Tang, J.; Wang, X.; Li, C. QTL analysis of shading sensitive related traits in maize under two shading treatments. PLoS ONE 2012, 7, 38696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kephart, K.D.; Buxton, D.R. Forage quality responses of C3 and C4 perennial grasses to shade. Crop Sci. 1993, 33, 831–837. [Google Scholar] [CrossRef]
- Pang, K.; Van Sambeek, J.W.; Navarrete-Tindall, N.E.; Lin, C.H.; Jose, S.; Garrett, H.E. Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agrofor. Syst. 2019, 93, 11–24. [Google Scholar] [CrossRef]
Year | Treatment | Yield (t/ha) | 1000-Seed Weight (g) | Number of Spikelets/Hill | Number of Ripened Grains/Hill | Number of Unfilled Spikelets/Hill | Plant Height (cm) | Percentage of Ripen Grain (%) |
---|---|---|---|---|---|---|---|---|
2018 | Open field | 7.5 | 24.1 | 1309.1 | 1213.2 | 95.8 | 93.0 | 92.6 |
APV system | 6.1 | 23.6 | 1119.5 | 1017.2 | 101.6 | 93.2 | 90.9 | |
T-Test (n = 5) | ** | ns | ** | *** | ns | ns | ||
2019 | Open field | 7.9 | 24.9 | 1559.2 | 1463.3 | 95.9 | 87.5 | 93.8 |
APV system | 7.2 | 24.0 | 1367.6 | 1253.0 | 114.5 | 91.3 | 91.6 | |
T-Test (n = 5) | ** | ns | * | * | ns | * |
Crops | Year | Treatment | Yield (t/ha) | Plant Height (cm) | Number of Branches | Number of Nodes | Number of Pods | 100-Seed Weight (g) |
---|---|---|---|---|---|---|---|---|
Soybean | 2019 | Open field | 2.2 | 64.5 | 5.8 | 17.6 | 109.1 | 15.9 |
APV system | 2.2 | 69.8 | 5.4 | 18.8 | 89.3 | 14.9 | ||
T-Test (n = 3) | ns | ns | ns | ns | ns | ns | ||
2020 | Open field | 1.6 | 77.6 | 3.5 | 15.0 | 85.9 | . | |
APV system | 0.5 | 58.1 | 2.7 | 13.2 | 45.3 | . | ||
T-Test (n = 3) | *** | *** | *** | *** | *** | . | ||
Adzuki bean | 2019 | Open field | 2.3 | 96.6 | 2.6 | 17.6 | 36.4 | 17.7 |
APV system | 2.0 | 101.1 | 2.1 | 18.8 | 26.87 | 15.8 | ||
T-Test (n = 3) | ns | ns | ns | ns | ns | * | ||
2020 | Open field | 1.5 | 72.6 | 2.6 | 18.2 | 32.5 | . | |
APV system | 0.4 | 47.1 | 1.9 | 15.2 | 14.6 | . | ||
T-Test (n = 3) | ** | *** | * | *** | *** | . |
Crops | Year | Open Field | APV System | T-Test (n = 3) | Yield Index (%) |
---|---|---|---|---|---|
(t/ha) | (t/ha) | (Yield of APV System/Yield of Open Field) | |||
Garlic | 2018–2019 | 13.5 | 10.7 | * | 78.7 |
2019–2020 | 21.9 | 18.1 | ns | 82.9 | |
Mean | 17.7 | 14.4 | ns | 81.3 | |
Onion | 2018–2019 | 82.4 | 66.4 | * | 80.6 |
2019–2020 | 84.3 | 76.3 | ns | 90.6 | |
Mean | 83.3 | 71.3 | ns | 85.6 |
Year | Treatment | Forage Yield (t/ha) | Plant Height (cm) | CP | NDF | ADF | TDN | RFV | DMI | DDM |
---|---|---|---|---|---|---|---|---|---|---|
2018–2019 | Open field | 19.7 | 148.0 | 9.1 | 62.5 | 37.9 | 58.9 | 88.5 | 1.9 | 59.3 |
APV system | 19.1 | 155.4 | 9.3 | 64.0 | 39.6 | 57.5 | 84.2 | 1.8 | 57.9 | |
T-Test (n = 4) | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
2019–2020 | Open field | 23.0 | 157.8 | . | . | . | . | . | . | . |
APV system | 19.9 | 162.0 | . | . | . | . | . | . | . | |
T-Test (n = 4) | ns | ns | . | . | . | . | . | . | . |
Year | Treatment | Corn (Mixed Cropping) | Soybean (Mixed Cropping) | Corn + Soybean | Yield Index from Mixed Cropping (%) | Corn (Mon-Crop) | |||
---|---|---|---|---|---|---|---|---|---|
Plant Height (cm) | Forage Yield (t/ha) | Plant Height (cm) | Forage Yield (t/ha) | Forage Yield (t/ha) | Plant Height(cm) | Forage Yield (t/ha) | |||
2019 | Open field | 277.7 | 57.4 | 136.5 | 3.3 | 60.7 | 110.2 | 291.1 | 55.1 |
APV system | 278.4 | 51.7 | 119.5 | 2.0 | 53.6 | 97.1 | 287.0 | 55.2 | |
T-Test (n = 3) | ns | ns | * | ns | * | ns | ns | ||
2020 | Open field | 215.4 | 40.0 | 100.3 | 6.8 | 46.8 | 112.0 | 217.6 | 41.8 |
APV system | 220.4 | 33.4 | 125.6 | 6.2 | 39.6 | 127.7 | 210.4 | 31.0 | |
T-Test (n = 3) | ns | ns | * | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, H.; Asekova, S.; Bayat, M.A.; Ali, L.; Song, J.T.; Ha, Y.-S.; Hong, D.-H.; Lee, J.-D. Comparison of Yield and Yield Components of Several Crops Grown under Agro-Photovoltaic System in Korea. Agriculture 2022, 12, 619. https://doi.org/10.3390/agriculture12050619
Jo H, Asekova S, Bayat MA, Ali L, Song JT, Ha Y-S, Hong D-H, Lee J-D. Comparison of Yield and Yield Components of Several Crops Grown under Agro-Photovoltaic System in Korea. Agriculture. 2022; 12(5):619. https://doi.org/10.3390/agriculture12050619
Chicago/Turabian StyleJo, Hyun, Sovetgul Asekova, Mohammad Amin Bayat, Liakat Ali, Jong Tae Song, Yu-Shin Ha, Dong-Hyuck Hong, and Jeong-Dong Lee. 2022. "Comparison of Yield and Yield Components of Several Crops Grown under Agro-Photovoltaic System in Korea" Agriculture 12, no. 5: 619. https://doi.org/10.3390/agriculture12050619