Assessment of Feed Efficiency and Its Relationship with Egg Quality in Two Purebred Chicken Lines and Their Reciprocal Crosses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Population and Management
2.2. Feed Efficiency Determination
2.3. Egg Quality Evaluation
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics of Traits
3.2. Phenotypic Correlations among DFI, FCR, and RFI
3.3. Relationships between Feed Efficiency and Egg Quality Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, K.R.; Bollam, S.; Pujarula, V.; Pusuluri, M.; Singh, R.B.; Potupureddi, G.; Gupta, R. Exploitation of Heterosis in Pearl Millet: A Review. Plants 2020, 9, 807. [Google Scholar] [CrossRef] [PubMed]
- Mehraj, H.; Kawanabe, T.; Shimizu, M.; Miyaji, N.; Akter, A.; Dennis, E.S.; Fujimoto, R. In Arabidopsis thaliana Heterosis Level Varies among Individuals in an F1 Hybrid Population. Plants 2020, 9, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Sun, Y.; Ni, A.; Li, Y.; Yuan, J.; Ma, H.; Wang, P.; Shi, L.; Zong, Y.; Zhao, J.; et al. Research Note: Heterosis for egg production and oviposition pattern in reciprocal crossbreeds of indigenous and elite laying chickens. Poult. Sci. 2022, 24, 102201. [Google Scholar] [CrossRef] [PubMed]
- Bain, M.M.; Nys, Y.; Dunn, I.C. Increasing persistency in lay and stabilizing egg quality in longer laying cycles. What are the challenges? Br. Poult. Sci. 2016, 57, 330–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, D.; Goshu, G.; Esatu, W.; Cahaner, A. Dual-purpose production of genetically different chicken crossbreeds in Ethiopia. 2. Egg and meat production of the final-crossbreed females and males. Poult. Sci. 2019, 98, 3405–3417. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Lim, A.J.; Muir, W.I.; Groves, P.J. Comparison of performance and carcass composition of a novel slow-growing crossbred broiler with fast-growing broiler for chicken meat in Australia. Poult. Sci. 2021, 100, 100966. [Google Scholar] [CrossRef]
- Mai, C.; Wen, C.; Xu, Z.; Xu, G.; Chen, S.; Zheng, J.; Sun, C.; Yang, N. Genetic basis of negative heterosis for growth traits in chickens revealed by genome-wide gene expression pattern analysis. J. Anim. Sci. Biotechnol. 2021, 12, 52. [Google Scholar] [CrossRef]
- Sutherland, D.A.T.; Honaker, C.F.; Dorshorst, B.; Andersson, L.; Siegel, P.B. Asymmetries, heterosis, and phenotypic profiles of red junglefowl, White Plymouth Rocks, and F1 and F2 reciprocal crosses. J. Appl. Genet. 2018, 59, 193–201. [Google Scholar] [CrossRef]
- Williams, S.M.; Price, S.E.; Siegel, P.B. Heterosis of growth and reproductive traits in fowl. Poult. Sci. 2002, 81, 1109–1112. [Google Scholar] [CrossRef]
- Amuzu-Aweh, E.N.; Bovenhuis, H.; de Koning, D.; Bijma, P. Predicting heterosis for egg production traits in crossbred offspring of individual White Leghorn sires using genome-wide SNP data. Genet. Sel. Evol. 2015, 47, 27. [Google Scholar] [CrossRef]
- Soliman, M.A.; Khalil, M.H.; El-Sabrout, K.; Shebl, M.K. Crossing effect for improving egg production traits in chickens involving local and commercial strains. Vet. World 2020, 13, 407–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isa, A.M.; Sun, Y.; Shi, L.; Jiang, L.; Li, Y.; Fan, J.; Wang, P.; Ni, A.; Huang, Z.; Ma, H.; et al. Hybrids generated by crossing elite laying chickens exhibited heterosis for clutch and egg quality traits. Poult. Sci. 2020, 99, 6332–6340. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.; Kokoszyński, D.; Mousa, M.A.; Abuoghaba, A.A. Effect of Date Palm Pollen Supplementation on the Egg Production, Ovarian Follicles Development, Hematological Variables and Hormonal Profile of Laying Hens. Animals 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Wang, K.; Yi, G.; Ma, M.; Dou, T.; Sun, C.; Qu, L.J.; Shen, M.; Qu, L.; Yang, N. Genome-wide association studies for feed intake and efficiency in two laying periods of chickens. Genet. Sel. Evol. 2015, 47, 82. [Google Scholar] [CrossRef] [Green Version]
- Sell-Kubiak, E.; Wimmers, K.; Reyer, H.; Szwaczkowski, T. Genetic aspects of feed efficiency and reduction of environmental footprint in broilers: A review. J. Appl. Genet. 2017, 58, 87–498. [Google Scholar] [CrossRef] [Green Version]
- Aggrey, S.E.; Karnuah, A.B.; Sebastian, B.; Anthony, N.B. Genetic properties of feed efficiency parameters in meat-type chickens. Genet. Sel. Evol. 2010, 42, 25. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, D.M.; Mercadante, M.; Pires, A.V.; Branco, R.H.; Ribeiro, E.G.; Dallago, G.M.; Schorer, M.; Rocha, P.R. The phenotypic relationship between residual intake and gain and other feed efficiency traits in Nellore cattle. Trop. Anim. Health Prod. 2019, 51, 449–456. [Google Scholar] [CrossRef]
- Yuan, J.; Dou, T.; Ma, M.; Yi, G.; Chen, S.; Qu, L.; Shen, M.; Qu, L.; Wang, K.; Yang, N. Genetic parameters of feed efficiency traits in laying period of chickens. Poult. Sci. 2015, 94, 1470–1475. [Google Scholar] [CrossRef]
- Koch, R.M.; Swiger, L.; Chambers, D.; Gregory, K. Efficiency of feed use in beef cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Luiting, P.; Urff, E.M. Residual feed consumption in laying hens. 2. Genetic variation and correlations. Poult. Sci. 1991, 70, 1663–1672. [Google Scholar] [CrossRef]
- Schulman, N.; Tuiskula-Haavisto, M.; Siitonen, L.; Mäntysaari, E. Genetic variation of residual feed consumption in a selected Finnish egg-layer population. Poult. Sci. 1994, 73, 1479–1484. [Google Scholar] [CrossRef] [PubMed]
- Wolc, A.; Arango, J.; Jankowski, T.; Settar, P.; Fulton, J.E.; O’Sullivan, N.P.; Fernando, R.; Garrick, D.J.; Dekkers, J.C.M. Pedigree and genomic analyses of feed consumption and residual feed intake in laying hens. Poult. Sci. 2013, 92, 2270–2275. [Google Scholar] [CrossRef] [PubMed]
- Varkoohi, S.; Pakdel, A.; Babak, M.M.S.; Javaremi, A.N.; Kause, A.; Zaghari, M. Genetic parameters for feed utilization traits in Japanese quail. Poult. Sci. 2011, 90, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Yan, W.; Zheng, J.; Ji, C.; Zhang, D.; Sun, C.; Yang, N. Feed efficiency measures and their relationships with production and meat quality traits in slower growing broilers. Poult. Sci. 2018, 97, 2356–2364. [Google Scholar] [CrossRef]
- Zeng, T.; Zhang, H.; Liu, J.; Chen, L.; Tian, Y.; Shen, J.; Lu, L. Genetic parameters of feed efficiency traits and their relationships with egg quality traits in laying period of ducks. Poult. Sci. 2018, 97, 758–763. [Google Scholar] [CrossRef]
- Gao, J.; Xu, W.; Zeng, T.; Tian, Y.; Wu, C.; Liu, S.; Zhao, Y.; Zhou, S.; Lin, X.; Cao, H.; et al. Genome-Wide Association Study of Egg-Laying Traits and Egg Quality in LingKun Chickens. Front. Vet. Sci. 2022, 20, 877739. [Google Scholar] [CrossRef]
- Geng, A.L.; Liu, H.G.; Zhang, Y.; Zhang, J.; Wang, H.H.; Chu, Q.; Yan, Z.X. Effects of indoor stocking density on performance, egg quality, and welfare status of a native chicken during 22 to 38 weeks. Poult. Sci. 2020, 99, 163–171. [Google Scholar] [CrossRef]
- Mai, C.; Wen, C.; Sun, C.; Xu, Z.; Chen, S.; Yang, N. Implications of Gene Inheritance Patterns on the Heterosis of Abdominal Fat Deposition in Chickens. Genes 2019, 10, 824. [Google Scholar] [CrossRef]
- Abdalla, E.A.; Makanjuola, B.O.; van Staaveren, N.; Wood, B.J.; Baes, C.F. Accuracy of genomic selection for reducing susceptibility to pendulous crop in turkey (Meleagris gallopavo). Poult. Sci. 2022, 101, 101601. [Google Scholar] [CrossRef]
- Klein, V.D.S.A.; Berghof, T.V.L.; Arts, J.A.J.; Parmentier, H.K.; Poel, V.D.J.J.; Bovenhuis, H. Genetic relations between natural antibodies binding keyhole limpet hemocyanin and production traits in a purebred layer chicken line. Poult. Sci. 2015, 94, 875–882. [Google Scholar] [CrossRef]
- Moore, M.P.; Whiteman, H.H.; Martin, R.A. A mother’s legacy: The strength of maternal effects in animal populations. Ecol. Lett. 2019, 22, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Berger, Q.; Guettier, E.; Bernard, J.; Ganier, P.; Chahnamian, M.; le Bihan-Duval, E.; Mignon-Grasteau, S. Profiles of genetic parameters of body weight and feed efficiency in two divergent broiler lines for meat ultimate pH. BMC Genom. Data 2022, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.N.; Notter, D.R.; Taylor, J.B.; Brown, D.J.; Mousel, M.R.; Lewis, R.M. Model definition for genetic evaluation of purebred and crossbred lambs including heterosis. J. Anim. Sci. 2022, 100, 188. [Google Scholar] [CrossRef] [PubMed]
- Herd, R.M.; Arthur, P.F. Physiological basis for residual feed intake. J. Anim. Sci. 2009, 87, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Luiting, P. Genetic variation of energy partitioning in laying hens: Causes of variation in residual feed consumption. World Poult. Sci. J. 1990, 46, 133–152. [Google Scholar] [CrossRef]
- Flock, D.K. Genetic-economic aspects of feed efficiency in laying hens. World Poult. Sci. J. 1998, 54, 225–239. [Google Scholar] [CrossRef]
- Hurnik, J.F.; Summers, J.D.; Reinhart, B.S.; Swierczewska, E.M. Effect of Age on the Performance of Laying Hens during the First Year of Production. Poult. Sci. 1977, 56, 222–230. [Google Scholar] [CrossRef]
- Li, F.; Xu, L.M.; Shan, A.S.; Hu, J.W.; Zhang, Y.Y.; Li, Y.H. Effect of daily feed intake in laying period on laying performance, egg quality and egg composition of genetically fat and lean lines of chickens. Br. Poult. Sci. 2011, 52, 163–168. [Google Scholar] [CrossRef]
- Anene, D.O.; Akter, Y.; Thomson, P.C.; Groves, P.; Liu, S.; Shea, C.J.O. Hens That Exhibit Poorer Feed Efficiency Produce Eggs with Lower Albumen Quality and Are Prone to Being Overweight. Animals 2021, 11, 2986. [Google Scholar] [CrossRef]
- Gu, H.; Qi, X.; Jia, Y.; Zhang, Z.; Nie, C.; Li, X.; Li, J.; Jiang, Z.; Wang, Q.; Qu, L. Inheritance patterns of the transcriptome in hybrid chickens and their parents revealed by expression analysis. Sci. Rep. 2019, 9, 5750. [Google Scholar] [CrossRef]
Trait 1 | Group 2 | N | Mean 3 | SD | CV (%) | Maximum | Minimum | Heterosis (%) 4 |
---|---|---|---|---|---|---|---|---|
DFI1 (g/d) | WW | 198 | 100.41 a | 11.71 | 11.66 | 133.87 | 62.17 | - |
YY | 245 | 90.84 c | 12.01 | 13.22 | 119.12 | 59.79 | - | |
YW | 238 | 103.27 a | 14.99 | 14.52 | 143.78 | 59.79 | 7.99 | |
WY | 223 | 95.00 b | 12.25 | 12.89 | 128.69 | 52.13 | −0.65 | |
FCR1 (g/g) | WW | 198 | 2.70 | 5.15 | 190.71 | 50.02 | 1.70 | - |
YY | 245 | 3.32 | 5.97 | 180.18 | 58.73 | 1.75 | - | |
YW | 238 | 2.94 | 5.11 | 173.67 | 57.14 | 1.72 | −1.99 | |
WY | 223 | 2.09 | 0.63 | 30.51 | 8.12 | 1.70 | −30.98 | |
RFI1 (g/d) | WW | 198 | 1.87 a | 9.51 | 508.56 | 34.79 | −36.97 | - |
YY | 245 | −2.28 b | 8.98 | −393.86 | 27.21 | −32.57 | - | |
YW | 238 | 3.70 a | 12.39 | 334.86 | 48.39 | −39.04 | ns | |
WY | 223 | −3.10 b | 10.45 | −337.10 | 27.92 | −46.87 | ns | |
DFI2 (g/d) | WW | 181 | 102.37 b | 14.83 | 14.49 | 138.41 | 48.13 | - |
YY | 209 | 94.80 c | 15.44 | 16.28 | 134.93 | 28.16 | - | |
YW | 256 | 110.41 a | 16.50 | 14.94 | 154.50 | 60.19 | 12.28 | |
WY | 214 | 104.16 b | 15.86 | 15.22 | 145.28 | 49.10 | 5.97 | |
FCR2 (g/g) | WW | 181 | 4.09 | 7.25 | 177.31 | 55.63 | 1.71 | - |
YY | 209 | 3.99 | 5.30 | 132.64 | 44.13 | 1.79 | - | |
YW | 256 | 3.54 | 12.27 | 345.92 | 47.57 | 1.72 | −4.28 | |
WY | 214 | 4.00 | 7.11 | 177.85 | 67.33 | 1.71 | −0.99 | |
RFI2 (g/d) | WW | 181 | −0.22 ab | 10.68 | −4938.96 | 35.86 | −36.38 | - |
YY | 209 | −2.91 b | 12.19 | −418.49 | 25.97 | −55.74 | - | |
YW | 256 | 2.25 a | 11.50 | 511.00 | 39.75 | −40.59 | ns | |
WY | 214 | 0.34 ab | 11.15 | 3325.85 | 38.56 | −40.40 | ns |
Traits 1 | Group 2 | N | Mean 3 | SD | CV (%) | Maximum | Minimum | Heterosis (%) 4 |
---|---|---|---|---|---|---|---|---|
MBW1, g | WW | 198 | 1656.50 c | 206.24 | 12.45 | 2478.80 | 1077.50 | - |
YY | 245 | 1826.15 b | 220.43 | 12.07 | 2595.75 | 1277.05 | - | |
YW | 238 | 1923.33 a | 273.50 | 14.22 | 2821.25 | 1286.25 | 10.45 | |
WY | 223 | 1812.30 b | 202.06 | 11.15 | 2476.10 | 1292.85 | 4.08 | |
DEM1, g/d | WW | 198 | 51.87 a | 11.99 | 23.12 | 65.73 | 1.48 | - |
YY | 245 | 36.81 c | 7.97 | 21.65 | 60.09 | 1.32 | - | |
YW | 238 | 45.32 b | 9.64 | 21.26 | 62.22 | 1.81 | 2.21 | |
WY | 223 | 47.23 b | 7.53 | 15.95 | 60.40 | 9.35 | 6.52 | |
BWG1, g/d | WW | 198 | −1.35 b | 2.06 | −152.69 | 5.08 | −11.68 | - |
YY | 245 | −0.07 a | 4.65 | −6776.89 | 32.68 | −35.76 | - | |
YW | 238 | −1.59 bc | 3.10 | −195.16 | 19.94 | −12.27 | ns | |
WY | 223 | −2.54 c | 3.55 | −139.86 | 5.10 | −18.01 | ns | |
MBW2, g | WW | 181 | 1724.88 c | 225.85 | 13.09 | 2459.30 | 1143.45 | - |
YY | 209 | 1964.11 b | 251.39 | 12.80 | 2810.80 | 1309.85 | - | |
YW | 256 | 2055.24 a | 296.30 | 14.42 | 2910.75 | 1388.75 | 11.54 | |
WY | 214 | 1933.13 b | 236.05 | 12.21 | 2759.55 | 1252.45 | 4.72 | |
DEM2, g/d | WW | 181 | 44.55 a | 15.92 | 35.74 | 63.00 | 1.81 | - |
YY | 209 | 32.67 b | 9.84 | 30.12 | 53.62 | 1.53 | - | |
YW | 256 | 44.32 a | 11.41 | 25.74 | 63.49 | 0.43 | 14.80 | |
WY | 214 | 42.34 a | 12.72 | 30.04 | 57.44 | 1.39 | 9.38 | |
BWG2, g/d | WW | 181 | 0.13 | 3.24 | 2492.31 | 11.66 | −10.45 | - |
YY | 209 | −0.20 | 3.29 | −1645.00 | 9.81 | −16.76 | - | |
YW | 256 | −0.36 | 3.12 | −866.67 | 11.98 | −14.50 | ns | |
WY | 214 | −0.69 | 3.62 | −524.64 | 11.63 | −17.99 | ns | |
AFE, d | WW | 216 | 156.49 c | 7.31 | 4.67 | 178 | 139 | - |
YY | 290 | 177.84 a | 9.87 | 5.55 | 227 | 161 | - | |
YW | 307 | 166.07 b | 8.33 | 5.03 | 203 | 141 | −0.66 | |
WY | 242 | 165.36 b | 10.23 | 6.20 | 193 | 139 | −1.08 |
Traits 2 | ESI1 | ESS1 | EST1 | ESW1 | ESR1 | HU1 | EYW1 | EYR1 | ESI2 | ESS2 | EST2 | ESW2 | ESR2 | HU2 | EYW2 | EYR2 | AFE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WW | |||||||||||||||||
RFI1 | −0.05 | 0.11 | 0.13 | 0.05 | 0.15 | −0.13 | −0.04 | 0.07 | 0.03 | −0.15 | −0.004 | −0.09 | 0.11 | −0.06 | −0.10 | 0.12 | −0.09 |
(0.5) | (0.1) | (0.06) | (0.5) | (0.03) | (0.07) | (0.6) | (0.3) | (0.7) | (0.03) | (1) | (0.2) | (0.1) | (0.4) | (0.2) | (0.09) | (0.30) | |
FCR1 | 0.02 | −0.09 | −0.3 | −0.33 | −0.15 | 0.01 | −0.10 | 0.17 | 0.0016 | −0.17 | 0.11 | −0.21 | 0.19 | −0.13 | −0.21 | 0.18 | 0.04 |
(0.8) | (0.2) | (1 × 10−5) | (1 × 10−6) | (0.03) | (0.9) | (0.2) | (0.01) | (1) | (0.01) | (0.1) | (0.002) | (0.005) | (0.06) | (0.003) | (0.008) | (0.65) | |
RFI2 | 0.01 | 0.01 | −0.08 | −0.06 | −0.03 | −0.11 | 0.10 | 0.17 | −0.06 | 0.04 | −0.01 | −0.15 | −0.06 | −0.11 | 0.1 | 0.27 | −0.13 |
(0.9) | (0.9) | (0.2) | (0.4) | (0.7) | (0.1) | (0.2) | (0.01) | (0.4) | (0.5) | (0.9) | (0.03) | (0.4) | (0.1) | (0.1) | (6 × 10−5) | (0.13) | |
FCR2 | −0.17 | −0.06 | −0.19 | −0.16 | −0.19 | 0.18 | 0.04 | 0.06 | 0.05 | −0.07 | −0.12 | −0.23 | −0.16 | −0.1 | −0.06 | 0.13 | −0.001 |
(0.01) | (0.4) | (0.007) | (0.02) | (0.005) | (0.01) | (0.6) | (0.4) | (0.5) | (0.3) | (0.08) | (6 × 10−4) | (0.02) | (0.1) | (0.4) | (0.06) | (0.99) | |
YY | |||||||||||||||||
RFI1 | −0.12 | −0.07 | 0.09 | 0.06 | −0.02 | 0.04 | 0.09 | 0.004 | −0.19 | 0.01 | 0.01 | 0.15 | 0.10 | 0.12 | 0.02 | 0.02 | 0.05 |
(0.06) | (0.3) | (0.2) | (0.3) | (0.8) | (0.5) | (0.1) | (0.9) | (0.001) | (0.9) | (0.9) | (0.01) | (0.1) | (0.04) | (0.7) | (0.7) | (0.47) | |
FCR1 | 0.03 | −0.002 | −0.01 | −0.02 | 0.01 | −0.06 | 0.06 | 0.12 | −0.03 | −0.1 | −0.19 | −0.16 | −0.1 | −0.001 | 0.01 | 0.26 | 0.12 |
(0.6) | (1) | (0.8) | (0.8) | (0.9) | (0.3) | (0.3) | (0.04) | (0.6) | (0.09) | (0.002) | (0.007) | (0.1) | (1) | (0.9) | (2 × 10 −5) | (0.10) | |
RFI2 | −0.03 | 0.02 | −0.01 | −0.05 | −0.04 | −0.07 | 0.15 | 0.2 | −0.01 | −0.05 | −0.01 | −0.04 | −0.04 | −0.03 | 0.11 | 0.11 | −0.21 |
(0.6) | (0.7) | (0.9) | (0.4) | (0.5) | (0.3) | (0.01) | (0.001) | (0.9) | (0.5) | (0.8) | (0.6) | (0.5) | (0.6) | (0.07) | (0.08) | (0.006) | |
FCR2 | 0.05 | −0.04 | −0.12 | −0.15 | −0.06 | −0.01 | −0.11 | 0.002 | −0.02 | 0.001 | −0.05 | −0.14 | −0.04 | 0.06 | −0.15 | −0.02 | −0.01 |
(0.4) | (0.5) | (0.05) | (0.02) | (0.3) | (0.9) | (0.08) | (1) | (0.7) | (1) | (0.4) | (0.02) | (0.5) | (0.3) | (0.02) | (0.7) | (0.92) |
Traits 2 | ESI1 | ESS1 | EST1 | ESW1 | ESR1 | HU1 | EYW1 | EYR1 | ESI2 | ESS2 | EST2 | ESW2 | ESR2 | HU2 | EYW2 | EYR2 | AFE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WY | |||||||||||||||||
RFI1 | 0.14 | −0.13 | −0.13 | −0.12 | −0.11 | −0.11 | 0.06 | 0.09 | 0.17 | −0.09 | −0.18 | −0.14 | −0.18 | −0.023 | −0.012 | 0.007 | −0.002 |
(−0.13) | (0.04) | (0.04) | (0.07) | (0.08) | (0.08) | (0.4) | (0.2) | (0.007) | (0.1) | (0.005) | (0.03) | (0.005) | (0.7) | (0.9) | (0.9) | (0.99) | |
FCR1 | 0.13 | −0.06 | −0.04 | −0.09 | −0.04 | −0.08 | 0.06 | 0.14 | 0.2 | −0.17 | −0.29 | −0.21 | −0.22 | −0.07 | 0.001 | −0.015 | 0.09 |
(0.04) | (0.3) | (0.5) | (0.2) | (0.5) | (0.2) | (0.4) | (0.03) | (0.001) | (0.006) | (4 × 10−6) | (8 × 10−4) | (6 × 10−4) | (0.3) | (1) | (0.8) | (0.37) | |
RFI2 | 0.05 | −0.15 | −0.13 | −0.14 | −0.18 | −0.04 | 0.09 | 0.07 | −0.03 | −0.04 | −0.03 | 0.007 | −0.09 | 0.014 | 0.044 | −0.05 | −0.14 |
(0.4) | (0.02) | (0.04) | (0.02) | (0.004) | (0.5) | (0.2) | (0.3) | (0.7) | (0.5) | (0.6) | (0.9) | (0.1) | (0.8) | (0.5) | (0.4) | (0.18) | |
FCR2 | 0.15 | −0.12 | −0.04 | −0.08 | −0.07 | 0.006 | −0.014 | 0.026 | 0.037 | −0.071 | −0.19 | −0.19 | −0.16 | 0.15 | −0.04 | 0.12 | 0.01 |
(0.01) | (0.07) | (0.5) | (0.2) | (0.2) | (0.3) | (0.8) | (0.7) | (0.6) | (0.3) | (0.002) | (0.002) | (0.01) | (0.01) | (0.5) | (0.06) | (0.92) | |
YW | |||||||||||||||||
RFI1 | −0.02 | 0.08 | 0.03 | −0.01 | 0.018 | −0.07 | −0.007 | 0.05 | −0.11 | −0.015 | −0.03 | 0.05 | 0.07 | −0.01 | 0.011 | 0.05 | −0.20 |
(0.8) | (0.2) | (0.6) | (0.9) | (0.8) | (0.3) | (0.9) | (0.4) | (0.07) | (0.8) | (0.6) | (0.4) | (0.3) | (0.8) | (0.8) | (0.4) | (0.11) | |
FCR1 | 0.02 | 0.03 | −0.011 | −0.009 | 0.04 | −0.006 | −0.05 | 0.0006 | 0.042 | 0.055 | 0.07 | 0.11 | 0.15 | 0.11 | −0.051 | −0.021 | −0.15 |
(0.7) | (0.6) | (0.9) | (0.9) | (0.5) | (0.9) | (0.4) | (1) | (0.5) | (0.3) | (0.2) | (0.06) | (0.008) | (0.06) | (0.4) | (0.7) | (0.23) | |
RFI2 | −0.042 | 0.073 | −0.065 | −0.063 | −0.13 | −0.097 | −0.028 | −0.004 | −0.041 | −0.08 | −0.08 | −0.066 | −0.12 | 0.02 | 0.07 | 0.06 | −0.08 |
(0.5) | (0.2) | (0.3) | (0.3) | (0.03) | (0.09) | (0.6) | (0.9) | (0.5) | (0.2) | (0.2) | (0.3) | (0.03) | (0.7) | (0.2) | (0.3) | (0.46) | |
FCR2 | 0.08 | 0.06 | −0.04 | −0.04 | 0.006 | −0.1 | −0.02 | 0.05 | 0.05 | −0.07 | −0.02 | 0.05 | 0.07 | 0.12 | −0.03 | −0.03 | −0.002 |
(0.2) | (0.3) | (0.5) | (0.5) | (0.9) | (0.1) | (0.7) | (0.4) | (0.4) | (0.3) | (0.7) | (0.3) | (0.2) | (0.03) | (0.6) | (0.6) | (0.98) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Yuan, J.; Wang, Y.; Ni, A.; Sun, Y.; Li, Y.; Ma, H.; Wang, P.; Shi, L.; Ge, P.; et al. Assessment of Feed Efficiency and Its Relationship with Egg Quality in Two Purebred Chicken Lines and Their Reciprocal Crosses. Agriculture 2022, 12, 2171. https://doi.org/10.3390/agriculture12122171
Zhao J, Yuan J, Wang Y, Ni A, Sun Y, Li Y, Ma H, Wang P, Shi L, Ge P, et al. Assessment of Feed Efficiency and Its Relationship with Egg Quality in Two Purebred Chicken Lines and Their Reciprocal Crosses. Agriculture. 2022; 12(12):2171. https://doi.org/10.3390/agriculture12122171
Chicago/Turabian StyleZhao, Jinmeng, Jingwei Yuan, Yuanmei Wang, Aixin Ni, Yanyan Sun, Yunlei Li, Hui Ma, Panlin Wang, Lei Shi, Pingzhuang Ge, and et al. 2022. "Assessment of Feed Efficiency and Its Relationship with Egg Quality in Two Purebred Chicken Lines and Their Reciprocal Crosses" Agriculture 12, no. 12: 2171. https://doi.org/10.3390/agriculture12122171
APA StyleZhao, J., Yuan, J., Wang, Y., Ni, A., Sun, Y., Li, Y., Ma, H., Wang, P., Shi, L., Ge, P., Bian, S., Zong, Y., & Chen, J. (2022). Assessment of Feed Efficiency and Its Relationship with Egg Quality in Two Purebred Chicken Lines and Their Reciprocal Crosses. Agriculture, 12(12), 2171. https://doi.org/10.3390/agriculture12122171