Enzymatic Activity of Soil after Applying Mineral Fertilizers and Waste Lignite to Maize Grown for Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analyses
2.3. Biochemical Index of soil Fertility (BI)
2.4. Weather Conditions
2.5. Statistical Analysis
3. Results
3.1. Soil pH
3.2. Mineral Forms of Nitrogen
3.3. Organic Carbon
3.4. Urease Activity
3.5. Acid Phosphatase Activity
3.6. Alkaline Phosphatase Activity
3.7. Dehydrogenases Activity
3.8. Biochemical Index of Soil Fertility (BI)
3.9. Linear Correlation between OC, Soil Enzyme Actvities and BI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kemmitt, S.J.; Lanyon, C.; Waite, I.W.; Wen, Q.G.; Addiscott, T.M.; Bird, N.R.A.; O’Donnell, A.; Brookes, P.C. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—New perspective. Soil Biol. Biochem. 2008, 40, 61–73. [Google Scholar] [CrossRef]
- Masunga, R.H.; Uzokwe, V.N.; Mlay, P.D.; Odeh, I.; Singh, A.; Buchan, D.; De Neve, S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil Ecol. 2016, 101, 185–193. [Google Scholar] [CrossRef]
- Singh, S.; Melanie, A.; Mayes, M.A.; Shekoofa, A.; Stephanie, N.; Kivlin, S.N.; Sangeeta Bansal, S.; Sindhu Jagadamma, S. Soil organic carbon cycling in response to simulated soil moisture variation under field conditions. Sci. Rep. 2021, 11, 10841. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Liu, S.; Han, K.; Guan, S.; Zhou, D. Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China. Agric Ecosyst. Environ. 2017, 245, 83–91. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Tang, Y.H.; Jiang, J.; Yang, Y.H. Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau. Sci. China Ser. D Earth Sci. 2007, 50, 113–120. [Google Scholar] [CrossRef]
- Zuber, S.M.; Villamil, M.B. Meta-Analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 2016, 97, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, H.; Hechmi, S.; Khelil, M.N.; Zoghlami, I.R.; Benzarti, S.; Mokni-Tlili, S.; Hassen, A.; Jedidi, N. Repetitive land application of urban sewage sludge: Effect of amendment rates and soil texture on fertility and degradation parameters. Catena 2019, 172, 11–20. [Google Scholar] [CrossRef]
- Breda, C.C.; Soares, M.B.; Tavanti, R.F.R.; Viana, D.G.; Freddi, O.D.S.; Piedade, A.R.; Mahl, D.; Traballi, R.C.; Guerrini, I.A. Successive sewage sludge Fertilization: Recycling for sustainable agriculture. Waste Manag. 2020, 109, 38–50. [Google Scholar] [CrossRef]
- Symanowicz, B.; Kalembasa, S. Effects of brown coal, sludge, their mixtures and mineral fertilization on copper and zinc contents in soil and Italian ryegrass (Lolium multiflorum Lam.). Fres. Environ. Bull. 2012, 21, 802–807. [Google Scholar]
- Symanowicz, B.; Becher, M.; Jaremko, D.; Toczko, M.; Toczko, R.; Krasuski, S. The delayed effect of low-energy lignite organic matter on the treatment optimization of Zea mays L. grown for silage. Agriculture 2022, 12, 1639. [Google Scholar] [CrossRef]
- Dinka, M.O.; Dawit, M. Spatial variability and dynamics of soil pH, soil organic carbon and matter content: The case of the Wonji Shoa sugarcane plantation. J. Water Land Dev. 2019, 42, 59–66. [Google Scholar] [CrossRef]
- Brodowska, M.S.; Wyszkowski, M.; Bujanowicz-Haraś, B. Mineral fertilization and maize cultivation as factors which determine the content of trace elements in soil. Agronomy 2022, 12, 286. [Google Scholar] [CrossRef]
- Neufeld, K.R.; Grayston, S.J.; Bittman, S.; Krzie, M.; Hunt, D.E.; Smukler, S.M. Long-Term alternative dairy manure management approaches enhance microbial biomass and activity in perennial forage grass. Biol. Fertil. Soils 2017, 53, 613–626. [Google Scholar] [CrossRef]
- Yang, L.; Li, T.; Li, F.; Lemcoff, J.H.; Cohen, S. Fertilization regulates soil enzymatic activity and fertility dynamics in cucumber field. Sci. Horticult. 2008, 116, 21–26. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, P.; Li, J.; Chen, Y.; Ying, X.; Liu, S. The effect of two organic manures on soil properties and crop yields on a temperate calcareous soil under a wheat-maize cropping system. Europ. J. Agron. 2009, 31, 36–42. [Google Scholar] [CrossRef]
- Garcia, C.; Hernández, M.T.; Costa, F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun. Soil Sci. Plant Anal. 1997, 28, 123–134. [Google Scholar] [CrossRef]
- Tan, X.; Xie, B.; Wang, J.; He, W.; Wang, X.; Wei, G. County-Scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: Implications for soil quality assessment. Sci. Word J. 2014, 2014, 535768. [Google Scholar] [CrossRef]
- Steinweg, J.M.; Dukes, J.S.; Wallenstein, M.D. Modeling the effects of temperature and moisture on soil enzyme activity. Linking laboratory assays to continuous field data. Soil Biol. Biochem. 2012, 55, 85–92. [Google Scholar] [CrossRef]
- Bielińska, E.J.; Futa, B.; Chmielewski, S.; Patkowski, K.; Gruszecki, T.M. Quantification of biodiversity related to the active protection of grassland habitats in the eastern Lublin region of Poland based on the activity of soil enzymes. Pol. J. Soil Sci. 2017, 50, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Gilmullina, A.; Rumpel, C.; Blagodatskaya, E.; Chabbi, A. Management of grasslands by mowing versus grazing—Impacts on soli organic matter quality and microbial functioning. Appl. Soil Ecol. 2020, 156, 103701. [Google Scholar] [CrossRef]
- Cui, J.; Holden, N.M. The relationship between soil microbial activity and microbial biomass, soil structure and grassland management. Soil Tillage Res. 2015, 146, 32–38. [Google Scholar] [CrossRef]
- Olivera, N.L.; Prieto, L.; Carrera, A.L.; Cisneros, H.S.; Bertiller, M.B. Do soil enzymes respond to long-term grazing in an arid ecosystem? Plant Soil 2014, 378, 35–48. [Google Scholar] [CrossRef]
- WRB. World reference base for soil resources. In World Soil Resources Reports, 106; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Uptake 2015; FAO: Rome, Italy, 2015. [Google Scholar]
- Kalembasa, S. Quick method of determination of organic carbon in soil. Pol. J. Soil Sci. 1991, 24, 17–22. [Google Scholar]
- PN-R-04028; Chemical and Agricultural Analysis of Soil. The Method of Sampling and Determination of the Content of Nitrate and Ammonium Ions in Mineral Soils. Polish Standards Committee: Warsaw, Poland, 1997.
- Alef, K.; Nannipieri, P. (Eds.) Methods in Applied Soil Microbiology and Biochemistry; Academic Press: Cambridge, MA, USA; Harcourt Brace & Company: London, UK, 1998; pp. 1–576. [Google Scholar]
- Page, A.L. Methods of soil analysis. Part 2. Chemical and microbiological properties. In Soil Science Society of America, Madison, WI, 1159; Soil enzymes; Burns, R.G., Ed.; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Casida, L.E., Jr.; Klein, D.D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Kucharski, J.; Boros, E.; Wyszkowska, J. Biochemical activity of nickel—Contaminated soil. Polish J. Environ. Stud. 2009, 18, 1039–1044. [Google Scholar]
- Das, S.K.; Varma, A. Role of enzymes in maintaining soil health. In Soil Enzymology; Shukla, G., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 25–42. [Google Scholar]
- De Barros, J.A.; de Medeiros, E.; da Costa, D.P.; Duda, G.P.; de Sousa Lima, J.R.; dos Santos, U.J.; Antonino, A.C.; Hammecker, C. Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils. Arch. Agron. Soil Sci. 2019, 66, 458–471. [Google Scholar] [CrossRef]
- Gupta, A.K.; Verma, R.K. Understanding the effect of irrigation with chromium loaded tannery effluent on Ocimum basilicum L. vis-a-vid metal uptake. Bull. Environ. Contam. Toxicol. 2022, 109, 747–756. [Google Scholar] [CrossRef]
- Kalembasa, S.; Symanowicz, B. The changes of molybdenum and cobalt contents in biomass of goat’s rue (Galega orientalis Lam.). Fres. Environ. Bull. 2009, 18, 1150–1153. [Google Scholar]
- Maphuhla, N.G.; Lewu, F.B.; Oyedeji, O.O. The effects of physicochemical parameters on analysed soil enzyme activity from Alice landfill site. Int. J. Environ. Res. Public Health 2021, 8, 221. [Google Scholar] [CrossRef]
- Symanowicz, B.; Kalembasa, S. Effect of iron, molybdenum and cobalt on the amount of nitrogen, biologically reduced by Rhizobium Galegae. Ecol. Chem. Eng. 2012, 19, 1311–1320. [Google Scholar] [CrossRef]
- Fotyma, E.; Wilkos, G.; Pietruch, G. Mineral nitrogen soil test. Possibility of practical use. Ed. IUNG Puławy 1998, 69, 1–48. [Google Scholar]
- Jadczyszyn, T.; Kowalczyk, J.; Lipiński, W. Fertilization recommendations for field crops and permanent grasslands. Ed. IUNG-PIB Puławy 2010, 95, 9–10. [Google Scholar]
- Pietrzak, S. The amount of inorganic nitrogen in organic soils under grasslands in Poland in 2008-2012 years. Water-Environ.-Rural Areas 2015, 14, 113–124. [Google Scholar]
- Wartos, A.; Lipińska, H.; Lipiński, W.; Tkaczyk, P.; Krzyszczak, J.; Baranowski, P. Mineral nitrogen content in the 60–90 cm layer of grassland soils relative to other fodder crops, way of managing agricultural lands and farming intensity. Acta Agroph. 2018, 25, 343–357. [Google Scholar] [CrossRef]
- Medina, J.; Monreal, C.; Barea, J.M.; Arriagada, C.; Borie, F.; Cornejo, P. Crop residue stabilization and application to agricultural and degraded soils. A review. Waste Manag. 2015, 42, 41–54. [Google Scholar] [CrossRef]
- Możdżer, E. Effect of fertilization with sludge-ash granulates on the activity of selected soil enzymes. J. Ecol. Eng. 2022, 23, 137–144. [Google Scholar] [CrossRef]
- Skowrońska, M.; Bielińska, E.J.; Szymański, K.; Fura, B.; Antonkiewicz, J.; Kołodziej, B. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena 2020, 189, 104484. [Google Scholar] [CrossRef]
- Margalef, N.G.; Sardans, J.; Fernández-Martinez, M.; Molowny-Horas, R.; Janssens, I.A.; Ciais, P.; Goll, D.S.; Richter, A.; Obersteiner, M.; Asensio, D.; et al. Global patterns of phosphate activity in natural soils. Sci. Rep. 2017, 7, 1337. [Google Scholar] [CrossRef] [Green Version]
- Moghimian, N.; Hosseini, S.M.; Kooch, Y.; Darki, B.Z. Impacts of changes in land use/cover on soil microbial and enzyme activities. Catena 2017, 157, 407–414. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of phosphatase enzymes in soil. In Phosphorus in Action; Bünemann, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 215–243. [Google Scholar]
- Acosta-Martinez, V.; Tabatabai, M.A. Enzyme activities in a limed agricultural soil. Biol. Fertil. Soils 2000, 31, 85–91. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Soler-Rovira, P.; Polo, A.; Diaz-Raviña, M.; Arias-Estévez, M.; Plaza, C. Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Biol. Biochem. 2010, 42, 2119–2127. [Google Scholar] [CrossRef]
- Böhme, L.; Langer, U.; Böhme, F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric. Ecosyst. Environ. 2005, 109, 141–152. [Google Scholar] [CrossRef]
- Acosta-Martinez, V.; Tabatabai, M.A. Phosphorus cycle enzymes. In Methods of Soil Enzymology; Dick, R.P., Ed.; Soil Science Society of America Inc.: Madison, WI, USA, 2011; pp. 161–182. [Google Scholar]
- Zieleniewicz, W.; Swędrzyńska, D.; Swędrzyński, A.; Grzebisz, W.; Goliński, P. The influence of calcium sulfate and different doses of potassium on the soil enzyme activity and the yield of the sward with a mixture of alfalfa and grasses. Agriculture 2022, 12, 475. [Google Scholar] [CrossRef]
- Zieleniewicz, W.; Swędrzyński, A.; Dobrzyński, J.; Swędrzyńska, D.; Kulkova, I.; Wierzchowski, P.S.; Wróbel, B. Effect of forage plant mixture and biostymulants application on the yield, changes of botanical composition, and microbiological soil activity. Agriculture 2021, 11, 1786. [Google Scholar] [CrossRef]
- Symanowicz, B.; Skorupka, W.; Becher, M.; Jaremko, D.; Krasuski, S. The effect of alfalfa mineral fertilization and times of soil sampling on enzymatic activity. Agronomy 2021, 11, 1335. [Google Scholar] [CrossRef]
- Widmer, F.; Rasche, F.; Hartmann, M.; Fliessbach, A. Community structures and substrate utilization of bacteria in soils from organic and conventional farming systems of the DOK long-term field experiment. Appl. Soil Ecol. 2006, 33, 294–307. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, J.; Wang, H.; Chen, X.N.; Lu, Z.; Yu, J.; Chen, X.G. Short-term effects of copper, cadmium and cypermethrin on dehydrogenase activity and microbial functional diversity in soils after long-term mineral or organic fertilization. Agricult. Ecosyst. Environ. 2009, 129, 450–454. [Google Scholar] [CrossRef]
Treatment | Research Years | ||
---|---|---|---|
2014 | 2015 | 2016 | |
Control 1 | 4.95—very acidic | 5.37—very acidic | 5.23—very acidic |
NPKMgS | 5.30—very acidic | 5.52—very acidic | 5.48—very acidic |
NPKMgS + 20 N | 5.67—slightly acidic | 6.38—slightly acidic | 6.11—slightly acidic |
NPKMgS + 40 N | 5.67—slightly acidic | 6.42—slightly acidic | 6.26—slightly acidic |
NPKMgS + 60N | 6.38—slightly acidic | 6.50—slightly acidic | 6.01—slightly acidic |
Treatment | Depth cm | N-NO3− mg kg−1 | N-NH4+ mg kg−1 | N-NO3− and N-NH4+ | Sum mg kg−1 | Conversion Factor 2 | Nmin kg ha−1 | Abudance |
---|---|---|---|---|---|---|---|---|
Control 1 | 0–30 | 3.02 | 1.83 | 4.85 | 7.80 | 4.30 | 33.54 | very low |
30–60 | 0.84 | 2.11 | 2.95 | |||||
NPKMgS | 0–30 30–60 | 3.81 0.53 | 2.62 2.69 | 6.43 3.22 | 9.65 | 4.30 | 41.49 | low |
NPKMgS + 20 N | 0–30 30–60 | 7.38 1.22 | 3.42 5.31 | 10.80 6.53 | 17.33 | 4.30 | 74.52 | medium |
NPKMgS + 40 N | 0–30 30–60 | 9.85 11.24 | 2.93 2.53 | 12.78 13.77 | 26.55 | 4.30 | 114.16 | very high |
NPKMgS + 60 N | 0–30 | 8.49 | 3.11 | 12.60 | 25.48 | 4.30 | 109.56 | very high |
30–60 | 11.31 | 2.57 | 13.88 |
Treatment | Cultivars | Research Years | ||||
---|---|---|---|---|---|---|
Early | Medium Early | Medium Late | 2014 | 2015 | 2016 | |
Control 1 | 0.83 Ba | 0.89 Aa | 0.81 Ba | 0.84 Ba | 0.72 Ba | 0.69 Ca |
NPKMgS | 0.83 Ba | 0.81 Ba | 0.87 Aa | 0.84 Ba | 0.84 Aa | 0.80 Ba |
NPKMgS + 20 N | 1.03 Aa | 1.03 Aa | 0.96 Aa | 1.01 Aa | 0.94 Aa | 0.95 Ba |
NPKMgS + 40 N | 1.20 Aa | 1.11 Aa | 1.07 Aa | 1.12 Aa | 0.98 Aa | 1.16 Aa |
NPKMgS + 60 N | 0.96 Aa | 0.96 Aa | 0.88 Aa | 0.93 Aa | 0.80 Ba | 0.87 Ba |
Treatment | Cultivars | Research Years | ||||
---|---|---|---|---|---|---|
Early | Medium Early | Medium Late | 2014 | 2015 | 2016 | |
Control 1 | 32.38 Da | 31.52 Eb | 30.07 Dc | 30.94 Ea | 31.42 Ea | 31.95 Ea |
NPKMgS | 37.45 Ca | 36.95 Da | 37.23 Ca | 37.91 Db | 36.57 Dc | 38.92 Da |
NPKMgS + 20 N | 49.17 Bb | 49.05 Cb | 50.05 Ba | 48.16 Cb | 49.1 Ca | 49.93 Ca |
NPKMgS + 40 N | 51.25 Ba | 52.01 Ba | 52.41 Ba | 52.11 Ba | 51.53 Ba | 52.42 Ba |
NPKMgS + 60 N | 54.73 Ab | 54.57 Ab | 55.64 Aa | 55.45 Aa | 54.63 Aa | 55.21 Aa |
Treatment | Cultivars | Research Years | ||||
---|---|---|---|---|---|---|
Early | Medium Early | Medium Late | 2014 | 2015 | 2016 | |
Control 1 | 4.09 Aa | 3.84 Aa | 3.74 Aa | 3.96 Aa | 3.81 Aa | 3.84 Aa |
NPKMgS | 3.85 Aa | 3.61 Aa | 3.51 Aa | 3.67 Aa | 3.53 Ba | 3.63 Aa |
NPKMgS + 20 N | 3.47 Ba | 3.53 Aa | 3.38 Ba | 3.31 Ba | 3.47 Ba | 3.45 Ba |
NPKMgS + 40 N | 3.52 Ba | 3.28 Ba | 3.45 Ba | 3.37 Ba | 3.45 Ba | 3.41 Ba |
NPKMgS + 60 N | 3.26 Ba | 3.13 Ba | 3.26 Ba | 3.22 Ba | 3.38 Ba | 3.32 Ba |
Treatment | Cultivars | Research Years | ||||
---|---|---|---|---|---|---|
Early | Medium Early | Medium Late | 2014 | 2015 | 2016 | |
Control 1 | 0.64 Ca | 0.59 Ca | 0.63 Da | 0.61 Ca | 0.63 Ca | 0.62 Ca |
NPKMgS | 0.71 Ba | 0.69 Ba | 0.67 Ca | 0.69 Ba | 0.71 Ba | 0.70 Ba |
NPKMgS + 20 N | 0.65 Ca | 0.72 Ba | 0.69 Ca | 0.71 Bb | 0.75 Aa | 0.72 Bb |
NPKMgS + 40 N | 0.78 Aa | 0.76 Aa | 0.73 Bb | 0.76 Aa | 0.78 Aa | 0.77 Aa |
NPKMgS + 60 N | 0.73 Bc | 0.75 Ab | 0.79 Aa | 0.76 Aa | 0.77 Aa | 0.75 Aa |
Treatment | Cultivars | Research Years | ||||
---|---|---|---|---|---|---|
Early | Medium Early | Medium Late | 2014 | 2015 | 2016 | |
Control 1 | 31.6 Da | 32.1 Ca | 32.8 Ca | 32.4 Ca | 33.7 Ca | 33.4 Ca |
NPKMgS | 32.4 Db | 34.5 Ca | 35.1 Ca | 34.3 Ca | 34.1 Ca | 34.2 Ca |
NPKMgS + 20 N | 38.5 Ca | 39.3 Ba | 40.3 Ba | 39.1 Ba | 38.9 Ba | 39.0 Ba |
NPKMgS + 40 N | 45.2 Aa | 44.8 Aa | 45.4 Aa | 45.7 Aa | 43.6 Aa | 44.1 Aa |
NPKMgS + 60 N | 41.1 Bb | 43.4 Aa | 44.2 Aa | 43.9 Aa | 43.0 Aa | 43.4 Aa |
Treatment | Cultivars | Research Years | ||||
---|---|---|---|---|---|---|
Early | Medium Early | Medium Late | 2014 | 2015 | 2016 | |
Control 1 | 32.84 Db | 35.32 Ca | 32.54 Db | 33.65 Da | 29.72 Eb | 28.33 Db |
NPKMgS | 33.78 Db | 34.42 Cb | 37.41 Ca | 35.14 Da | 35.28 Da | 33.94 Ca |
NPKMgS + 20 N | 39.53 Cc | 49.91 Ba | 47.40 Bb | 40.11 Cb | 45.15 Ba | 45.75 Ba |
NPKMgS + 40 N | 65.55 Aa | 59.98 Ab | 58.66 Ab | 62.20 Aa | 52.45 Ab | 62.08 Aa |
NPKMgS + 60 N | 48.54 Bb | 50.63 Ba | 47.36 Bb | 53.42 Ba | 42.67 Cc | 46.10 Bb |
Variable | OC | URE | ACP | ALP | DHA | BI |
---|---|---|---|---|---|---|
OC | 1.00 | |||||
URE | 0.73 * | 1.00 | ||||
ACP | −0.62 * | −0.98 ** | 1.00 | |||
ALP | 0.72 * | 0.95 ** | −0.95 ** | 1.00 | ||
DHA | 0.83 * | 0.95 ** | −0.89 ** | 0.93 ** | 1.00 | |
BI | 0.93 ** | 0.85 * | −0.76 * | 0.87 * | 0.96 ** | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Symanowicz, B.; Toczko, R.; Toczko, M. Enzymatic Activity of Soil after Applying Mineral Fertilizers and Waste Lignite to Maize Grown for Silage. Agriculture 2022, 12, 2146. https://doi.org/10.3390/agriculture12122146
Symanowicz B, Toczko R, Toczko M. Enzymatic Activity of Soil after Applying Mineral Fertilizers and Waste Lignite to Maize Grown for Silage. Agriculture. 2022; 12(12):2146. https://doi.org/10.3390/agriculture12122146
Chicago/Turabian StyleSymanowicz, Barbara, Rafał Toczko, and Martyna Toczko. 2022. "Enzymatic Activity of Soil after Applying Mineral Fertilizers and Waste Lignite to Maize Grown for Silage" Agriculture 12, no. 12: 2146. https://doi.org/10.3390/agriculture12122146
APA StyleSymanowicz, B., Toczko, R., & Toczko, M. (2022). Enzymatic Activity of Soil after Applying Mineral Fertilizers and Waste Lignite to Maize Grown for Silage. Agriculture, 12(12), 2146. https://doi.org/10.3390/agriculture12122146