Vermicompost Amendment in Soil Affects Growth and Physiology of Zea mays Plants and Decreases Pb Accumulation in Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Substrates
2.2. Plant Cultivation and Treatments
2.3. Measurements and Termination
2.4. Analytical Measurements
2.5. Data Analysis
3. Results
3.1. Effect on Growth
3.2. Effect on Physiological Parameters
3.3. Effect on Accumulation of Ions and Pb
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pozza, L.E.; Field, D.J. The science of Soil Security and Food Security. Soil Secur. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Vidar, M. Soil and agriculture governance and food security. Soil Secur. 2022, 6, 100027. [Google Scholar] [CrossRef]
- Rai, K.K.; Pandey, N.; Meena, R.P.; Rai, S.P. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. Ecotoxicol. Environ. Saf. 2021, 208, 111750. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, A.; Cabral-Pinto, M.M.S.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S.; et al. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [Green Version]
- Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 2011, 213, 113–136. [Google Scholar] [PubMed] [Green Version]
- Ievinsh, G. Review on physiological effects of vermicompost on plants. In Biology of Composts; Meghvansi, M.K., Varma, A., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 63–86. [Google Scholar]
- Matos, G.D.; Arruda, M.A.Z. Vermicompost as natural adsorbent for removing metal ions from laboratory effluents. Process Biochem. 2003, 39, 81–88. [Google Scholar] [CrossRef]
- Zhu, W.; Du, W.; Shen, X.; Zhang, H.; Ding, Y. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost. Environ. Pollut. 2017, 227, 89–97. [Google Scholar] [CrossRef]
- Boostani, H.R.; Najafi-Ghiri, M.; Hardie, A.G.; Khalili, D. Comparison of Pb stabilization in a contaminated calcareous soil by application of vermicompost and sheep manure and their biochars produced at two temperatures. Appl. Geochem. 2019, 102, 121–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Hu, D.; Fan, J.; Shen, M.; Zeng, G. Is vermicompost the possible in situ sorbent? Immobilization of Pb, Cd and Cr in sediment with sludge derived vermicompost, a column study. J. Hazard. Mater. 2019, 367, 83–90. [Google Scholar] [CrossRef]
- Moslehi, A.; Feizian, M.; Higueras, P.; Eisvand, H.R. Assessment of EDDS and vermicompost for the phytoextraction of Cd and Pb by sunflower (Helianthus annuus L.). Int. J. Phytoremed. 2019, 21, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Miao, L.; Wang, Y.; Zhang, M.; Zhang, H.; Ding, Y.; Zhu, W. Using cow dung and mineral vermireactors to produce vermicompost for use as a soil amendment to slow Pb2+ migration. Appl. Soil Ecol. 2022, 170, 104299. [Google Scholar] [CrossRef]
- Zuo, W.; Xu, K.; Zhang, W.; Wang, Y.; Gu, C.; Bai, Y.; Shan, Y.; Dai, Q. Heavy metal distribution and uptake by maize in a mudflat soil amended by vermicompost derived from sewage sludge. Environ. Sci. Pollut. Res. 2019, 26, 30154–30166. [Google Scholar] [CrossRef] [PubMed]
- Mwilola, P.N.; Mukumbuta, I.; Shitumbanuma, V.; Chishala, B.H.; Uchida, Y.; Nakata, H.; Nakayama, S.; Ishizuka, M. Lead, zinc and cadmium accumulation, and associated health risks, in maize grown near the Kabawe mine in Zambia in response to organic and inorganic soil amendments. Int. J. Environ. Res. Public Health 2020, 17, 9038. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Phytoremediation potential of maize (Zea mays L.). A review. Afr. J. Gen. Agric. 2010, 6, 275–287. [Google Scholar]
- Abedi, T.; Gavanji, S.; Mojiri, A. Lead and zinc uptake and toxicity in maize and their management. Plants 2022, 11, 1922. [Google Scholar] [CrossRef]
- Cruz, Y.; Villar, S.; Gutiérrez, K.; Montoya-Ruiz, C.; Gallego, J.L.; Delgado, M.P.; Saldarriaga, J.F. Gene expression and morphological responses of Lolium perenne L. exposed to cadmium (Cd2+) and mercury (Hg2+). Sci. Rep. 2021, 11, 11257. [Google Scholar] [CrossRef] [PubMed]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense responses. Sci. World J. 2015, 2015, 756120. [Google Scholar] [CrossRef] [Green Version]
- Paunov, M.; Koleva, L.; Vassilev, A.; Vangronsveld, J.; Goltsev, V. Effects of different metals on photosynthesis: Cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int. J. Mol. Sci. 2018, 19, 787. [Google Scholar] [CrossRef] [Green Version]
- Matisons, R.; Krišāns, O.; Jansons, Ā.; Kondratovičs, T.; Elferts, D.; Ievinsh, G. Norway spruce seedlings from an Eastern Baltic provenance show tolerance to simulated drought. Forests 2021, 12, 82. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.L.; Jin, J.Y. Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize. Biol. Plant. 2009, 53, 191–194. [Google Scholar] [CrossRef]
- Horaczek, T.; Dąbrowski, P.; Kalaji, H.M.; Baczewska-Dąbrowska, A.H.; Pietkiewicz, S.; Stępień, W.; Gozdowski, D. JIP-test as a tool for early detection of the macronutrients deficiency in Miscanthus plants. Phtosynthetica 2020, 58, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Kovačević, B.; Miladinović, D.; Orlović, S.; Katanić, M.; Kebert, M.; Kovinčić, J. Lead tolerance and accumulation in white poplar cultivated in vitro. South-east Eur. For. SEEFOR 2013, 4, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Parys, E.; Wasilewska, W.; Siedlecka, M.; Zienkiewicz, M.; Drożak, A.; Romanowska, E. Metabolic responses to lead of metallicolous and nonmetallicolous populations of Armeria maritima. Arch. Environ. Contam. Toxicol. 2014, 67, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Osvalde, A. Optimization of plant mineral nutrition revisited: The roles of plant requirements, nutrient interactions, and soil properties in fertilization management. Environ. Exp. Biol. 2011, 9, 1–8. [Google Scholar]
- Banks, J.M. Continuous excitation chlorophyll fluorescence parameters: A review for practicioners. Tree Physiol. 2017, 37, 1128–1136. [Google Scholar] [CrossRef]
- Sharma, P.; Shanker, R. Lead toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Inoue, H.; Fukuoka, D.; Tatai, Y.; Kamachi, H.; Hayatsu, M.; Ono, M.; Suzuki, S. Properties of lead deposits in cell walls of radish (Raphanus sativus) roots. J. Plant Res. 2013, 126, 51–61. [Google Scholar] [CrossRef]
- Seregin, I.V.; Shpigun, L.K.; Ivanov, V.B. Distribution and toxic effects of cadmium and lead on maize roots. Russ. J. Plant Physiol. 2004, 51, 525–533. [Google Scholar] [CrossRef]
- Huang, J.W.; Cunningham, D. Lead phytoextraction: Species variation in lead uptake and translocation. New Phytol. 1996, 134, 75–84. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Cui, Y.; Dong, Y.; Christie, P. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) for contaminated soil—a preliminary study. Sci. Total Environ. 2005, 339, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoehne, L.; de Lima, C.V.S.; Martini, M.C.; Altmayer, T.; Brietzke, D.T.; Finatto, J.; Gonçalves, T.E.; Granada, C.E. Addition of vermicompost to heavy metal-contaminated soil increases the ability of black oat (Avena strigosa Schreb) plants to remove Cd, Cr, and Pb. Water Air Soil Pollut. 2016, 227, 443. [Google Scholar] [CrossRef]
- Kouhi, S.M.M.; Ardakani, M.R.S.; Beykkhormizi, A. Irrigation of Helianthus annuus with Pb-polluted water: Improvement of phytoremediation using vermicompost. J. Plant Process Funct. 2019, 8, 77–83. [Google Scholar]
- Gondek, K.; Filipek-Maazur, B. Biomass yields of shoots and roots of plants cultivated in soil amended by vermicomposts based on tannery sludge and content of heavy metals in plant tissues. Plant Soil Environ. 2003, 49, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Usman, A.R.A.; Al-Faraj, A.S.; Ahmad, M.; Sallam, A.; Al-Wabel, M.I. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 2018, 194, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Praburaman, L.; Park, J.-H.; Park, Y.-J.; He, Z.; Kamala-Kannan, S.; Oh, B.-T. Effect of panchakavya (organic formulation) on phytoremediation of lead and zinc using Zea mays. Chemosphere 2020, 246, 125810. [Google Scholar] [CrossRef]
- Guo, X.; Han, W.; Zhang, G.; Yang, W.; Wei, Z.; He, Q.; Wu, Q. Effect of inorganic and organic amendments on maize biomass, heavy metals uptake and their availability in calcareous and acid washed soil. Environ. Technol. Innov. 2020, 19, 101038. [Google Scholar] [CrossRef]
- Irfan, M.; Mudassir, M.; Khan, M.J.; Dawar, K.M.; Muhammad, D.; Mian, I.A.; Ali, W.; Fahad, S.; Saud, S.; Hayat, Z.; et al. Heavy metals immobilization and improvement of maize (Zea mays L.) growth amended with biochar and compost. Sci. Rep. 2021, 11, 18416. [Google Scholar] [CrossRef]
- Pinto, T.O.; García, A.C.; Guedes, J.N.; Sobrinho, N.M.B.A.; Tavares, O.C.H.; Berbara, R.L.L. Assessment of the use of natural materials for the remediation of cadmium soil contamination. PLoS ONE 2016, 11, e0157547. [Google Scholar]
- Trevisan, S.; Francioso, O.; Quaggiotti, S.; Nardi, S. Humic substances biological activity at the plant-soil interface. Plant Signal. Behav. 2010, 5, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Yuan, G.; Wei, J.; Bi, D.; Ok, Y.S.; Wang, H. Humic substances as a washing agent for Cd-contaminated soils. Chemosphere 2017, 181, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozhevnikova, A.D.; Seregin, I.V.; Bystrova, E.I.; Belyaeva, A.I.; Kataeva, M.N.; Ivanov, V.B. The effects of lead, nickel, and strontium nitrates on cell division and elongation in maize roots. Russ. J. Plant Physiol. 2009, 56, 242–250. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, L.Q.; Rhue, R.D. Relation of enhanced Pb solubility to Fe partitioning in soils. Environ. Pollut. 1999, 110, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Peñafiel-Sandoval, Z.B.; Iannacone, J. Effect of urea on lead absorption in corn (Zea mays L.), spinach (Spinacia oleraceae L.) and cabbage (Brassica oleraceae L.). Agron. Columb. 2020, 38, 105–217. [Google Scholar]
- Kacálková, L.; Tlustoš, P.; Száková, J. Chromium, nickel cadmium, and lead accumulation in maze, sunflower, willow, and poplar. Pol. J. Environ. Stud. 2014, 23, 753–761. [Google Scholar]
- Hadi, F.; Aziz, T. A mini review on lead (Pb) toxicity in plants. J. Biol. Life Sci. 2015, 6, 91–101. [Google Scholar] [CrossRef]
- Małkowski, E.; Kita, A.; Galas, W.; Karcz, W.; Kuperberg, J.M. Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul. 2002, 37, 69–76. [Google Scholar] [CrossRef]
- Sengar, R.S.; Pandey, M. Inhibition of chlorophyll biosynthesis by lead in greening Pisum sativum leaf segments. Biol. Plant. 1996, 38, 459–462. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, M.N.V. Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica 2015, 53, 66–71. [Google Scholar] [CrossRef]
- Ievinsh, G.; Andersone-Ozola, U.; Zeipiņa, S. Comparison of the effects of compost and vermicompost soil amendments in organic production of four herb species. Biol. Agric. Hortic. 2020, 36, 267–282. [Google Scholar] [CrossRef]
- Ose, A.; Andersone-Ozola, U.; Ievinsh, G. Substrate-dependent effect of vermicompost on yield and physiological indices of container-grown Dracocephalum moldavica plants. Agriculture 2021, 11, 1231. [Google Scholar] [CrossRef]
- Sharma, S.D.; Chorpa, R.N. Effect of lead nitrate and lead acetate on growth of the moss Semibarbula orientalis (Web.) Wijk. et Marg. grown in vitro. J. Plant Physiol. 1987, 129, 243–249. [Google Scholar] [CrossRef]
- Yang, N.; Zhou, F.-R.; WEang, J.-X. Eco-toxicological effects of two kinds of lead compounds on forest tree seed in alkaline soil. Environ. Monit. Assess. 2016, 188, 201. [Google Scholar] [CrossRef] [PubMed]
- Alexandrino, R.C.S.; Lima, F.R.D.; Martins, G.C.; Natal-du-Luz, T.; Sousa, J.P.; Guilherme, L.R.G.; Marques, J.J. Lead acetate toxicity in tropical soils. Ecotoxicology 2021, 30, 1029–1042. [Google Scholar] [CrossRef] [PubMed]
- Sofy, M.R.; Seleiman, M.F.; Alhammad, B.A.; Alharbi, B.M.; Mohamed, H.I. Minimizing adverse effects of Pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy 2020, 10, 699. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. NH4 toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef]
- Ravazollo, L.; Trevisan, S.; Forestan, C.; Varotto, S.; Sut, S.; Dall’Acqua, S.; Malagoli, M.; Quaggiotti, S. Nitrate and ammonium affect the overall maize response to nitrogen availability by triggering specific and common transcriptional signatures in roots. Int. J. Mol. Sci. 2020, 21, 686. [Google Scholar] [CrossRef] [Green Version]
- Poorter, H.; Fiorani, F.; Stitt, M.; Schurr, U.; Finck, A.; Gibon, Y.; Usadel, B.; Munns, R.; Atkin, O.K.; Tardieu, F.; et al. The art of growing plants for experimental purposes: A practical guide for the plant biologist. Funct. Plant Biol. 2012, 39, 821–838. [Google Scholar] [CrossRef]
Nutrient or Property (Unit) | Soil | Vermicompost | Optimum for Cultivated Plants |
---|---|---|---|
N (mg L−1) | 90 | 730 | 120 |
P (mg L−1) | 316 | 4251 | 60 |
K (mg L−1) | 560 | 16,500 | 150 |
Ca (mg L−1) | 1700 | 25,000 | 800 |
Mg (mg L−1) | 320 | 4500 | 50 |
S (mg L−1) | 23 | 925 | 50 |
Fe (mg L−1) | 925 | 420 | 30 |
Mn (mg L−1) | 145 | 165 | 1.5 |
Zn (mg L−1) | 11 | 80 | 1.0 |
Cu (mg L−1) | 2.75 | 6.00 | 0.50 |
Mo (mg L−1) | 0.09 | 0.04 | 0.02 |
B (mg L−1) | 1.1 | 3.0 | 0.2 |
Na (mg L−1) | 32 | 780 | n.a. |
pHKCl (pH units) | 5.87 | 7.29 | n.a. |
Electrical Conductivity (mS m−1) | 1.84 | 36.7 | n.a. |
Code | Vermicompost (%, v/v) | Pb(NO3)2 (mg L−1) | NH4NO3 (mg L−1) |
---|---|---|---|
V0 | 0 | 0 | 0 |
V0 + N | 0 | 0 | 388 |
V0 + Pb | 0 | 1598 | 0 |
V10 | 10 | 0 | 0 |
V10 + N | 10 | 0 | 388 |
V10 + Pb | 10 | 1598 | 0 |
V20 | 20 | 0 | 0 |
V20 + N | 20 | 0 | 388 |
V20 + Pb | 20 | 1598 | 0 |
V30 | 30 | 0 | 0 |
V30 + N | 30 | 0 | 388 |
V30 + Pb | 30 | 1598 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landorfa-Svalbe, Z.; Vikmane, M.; Ievinsh, G. Vermicompost Amendment in Soil Affects Growth and Physiology of Zea mays Plants and Decreases Pb Accumulation in Tissues. Agriculture 2022, 12, 2098. https://doi.org/10.3390/agriculture12122098
Landorfa-Svalbe Z, Vikmane M, Ievinsh G. Vermicompost Amendment in Soil Affects Growth and Physiology of Zea mays Plants and Decreases Pb Accumulation in Tissues. Agriculture. 2022; 12(12):2098. https://doi.org/10.3390/agriculture12122098
Chicago/Turabian StyleLandorfa-Svalbe, Zaiga, Māra Vikmane, and Gederts Ievinsh. 2022. "Vermicompost Amendment in Soil Affects Growth and Physiology of Zea mays Plants and Decreases Pb Accumulation in Tissues" Agriculture 12, no. 12: 2098. https://doi.org/10.3390/agriculture12122098
APA StyleLandorfa-Svalbe, Z., Vikmane, M., & Ievinsh, G. (2022). Vermicompost Amendment in Soil Affects Growth and Physiology of Zea mays Plants and Decreases Pb Accumulation in Tissues. Agriculture, 12(12), 2098. https://doi.org/10.3390/agriculture12122098