Efficacy of Trunk Injected Imidacloprid and Oxytetracycline in Managing Huanglongbing and Asian Citrus Psyllid in Infected Sweet Orange (Citrus sinensis) Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Tree Injections
2.3. Imidacloprid Effects on Psyllid Mortality
2.4. Bacterial Titers
2.5. Fruit Drop and Yield
2.6. Tree Physiological Response
2.7. Oxytetracycline and Imidacloprid Detection
2.8. Statistical Analysis
3. Results
3.1. Psyllid Mortality
3.2. Bacterial Titers
3.3. Fruit Drop and Yield
3.4. Tree Physiological Response
3.5. Oxytetracycline and Imidacloprid Residue Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bove, J. Huanglongbing: A Destructive, Newly-Emerging, Century-Old Disease of Citrus. J. Plant Pathol. 2006, 85, 7–37. [Google Scholar] [CrossRef]
- Gottwald, T.R.; da Graça, J.V.; Bassanezi, R.B. Citrus Huanglongbing: The Pathogen and Its Impact. Plant Health Prog. 2007, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Halbert, S.E.; Manjunath, K.L. Asian Citrus Psyllids (Sternorrhyncha: Psyllidae) and Greening Disease of Citrus: A Literature Review and Assessment of Risk in Florida. Fla. Entomol. 2004, 87, 330–353. [Google Scholar] [CrossRef]
- Hall, D.G.; Richardson, M.L.; Ammar, E.D.; Halbert, S.E. Asian Citrus Psyllid, Diaphorina citri, Vector of Citrus Huanglongbing Disease. Entomol. Exp. Appl. 2013, 146, 207–223. [Google Scholar] [CrossRef]
- Hall, D.G.; Albrigo, L.G. Estimating the Relative Abundance of Flush Shoots in Citrus with Implications on Monitoring Insects Associated with Flush. HortScience 2007, 42, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Pang, Z.; Huang, X.; Xu, J.; Pandey, S.S.; Li, J.; Achor, D.S.; Vasconcelos, F.N.C.; Hendrich, C.; Huang, Y.; et al. Citrus Huanglongbing Is a Pathogen-Triggered Immune Disease That Can Be Mitigated with Antioxidants and Gibberellin. Nat. Commun. 2022, 13, 529. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, U.; Bowman, K.D. Gene Expression in Citrus sinensis (L.) Osbeck Following Infection with the Bacterial Pathogen Candidatus Liberibacter asiaticus Causing Huanglongbing in Florida. Plant Sci. 2008, 175, 291–306. [Google Scholar] [CrossRef]
- Kim, J.S.; Sagaram, U.S.; Burns, J.K.; Li, J.L.; Wang, N. Response of Sweet Orange (Citrus sinensis) to ‘Candidatus Liberibacter asiaticus’ Infection: Microscopy and Microarray Analyses. Phytopathology 2009, 99, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.; Gottwald, T.; Setamou, M. Status of Huanglongbing (HLB) Outbreaks in Florida, California and Texas. Trop. Plant Pathol. 2020, 45, 265–278. [Google Scholar] [CrossRef]
- Florida Citrus Statistics 2020–2021. Available online: https://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/Citrus_Statistics/2020-21/fcs2021b.pdf (accessed on 6 September 2022).
- McCollum, G.; Baldwin, E. Huanglongbing: Devastating Disease of Citrus. In Horticultural Reviews; John Wiley & Sons: Hoboken, NJ, USA, 2016; Volume 44, pp. 315–361. [Google Scholar]
- Killiny, N.; Hijaz, F.; Gonzalez-blanco, P.; Jones, S.E.; Pierre, M.O.; Vincent, C.I. Effect of Adjuvants on Oxytetracycline Uptake upon Foliar Application in Citrus. Antibiotics 2020, 9, 677. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pang, Z.; Duan, S.; Lee, D.; Kolbasov, V.G.; Wang, N. The in Planta Effective Concentration of Oxytetracycline against ‘Candidatus Liberibacter asiaticus’ for Suppression of Citrus Huanglongbing. Phytopathology 2019, 109, 2046–2054. [Google Scholar] [CrossRef]
- Zhang, M.; Karuppaiya, P.; Zheng, D.; Sun, X.; Bai, J.; Ferrarezi, R.S.; Powell, C.A.; Duan, Y. Field Evaluation of Chemotherapy on HLB-Affected Citrus Trees With Emphasis on Fruit Yield and Quality. Front. Plant Sci. 2021, 12, 611287. [Google Scholar] [CrossRef]
- Vincent, C.I.; Hijaz, F.; Pierre, M.; Killiny, N. Systemic Uptake of Oxytetracycline and Streptomycin in Huanglongbing-Affected Citrus Groves after Foliar Application and Trunk Injection. Antibiotics 2022, 11, 1092. [Google Scholar] [CrossRef]
- Zhang, M.; Powell, C.A.; Guo, Y.; Benyon, L.; Duan, Y. Characterization of the Microbial Community Structure in Candidatus Liberibacter asiaticus-Infected Citrus Plants Treated with Antibiotics in the Field. BMC Microbiol. 2013, 13, 112. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yang, C.; Powell, C.A.; Avery, P.B.; Wang, J.; Huang, Y.; Duan, Y. Field Evaluation of Integrated Management for Mitigating Citrus Huanglongbing in Florida. Front. Plant Sci. 2019, 9, 1890. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.; Ascunce, M.S.; Narouei-Khandan, H.A.; Sun, X.; Jones, D.; Kolawole, O.O.; Goss, E.M.; van Bruggen, A.H.C. Effects and Side Effects of Penicillin Injection in Huanglongbing Affected Grapefruit Trees. Crop Prot. 2016, 90, 106–116. [Google Scholar] [CrossRef]
- Al-Rimawi, F.; Hijaz, F.; Nehela, Y.; Batuman, O.; Killiny, N. Uptake, Translocation, and Stability of Oxytetracycline and Streptomycin in Citrus Plants. Antibiotics 2019, 8, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McVay, J.; Sun, X.; Jones, D.; Urbina, H.; Aldeek, F.; Cook, J.M.; Jeyaprakash, A.; Hodges, G.; Smith, T. Limited Persistence of Residues and Metabolites in Fruit and Juice Following Penicillin Trunk Infusion in Citrus Affected by Huanglongbing. Crop Prot. 2019, 125, 104753. [Google Scholar] [CrossRef]
- Li, J.; Kolbasov, V.G.; Lee, D.; Pang, Z.; Huang, Y.; Collins, N.; Wang, N. Residue Dynamics of Streptomycin in Citrus Delivered by Foliar Spray and Trunk Injection and Effect on “Candidatus Liberibacter asiaticus” Titer. Phytopathology 2021, 111, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Powell, C.A.; Zhou, L.; He, Z.; Stover, E.; Duan, Y. Chemical Compounds Effective against the Citrus Huanglongbing Bacterium “Candidatus Liberibacter asiaticus” in Planta. Phytopathology 2011, 101, 1097–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Wang, N. Evaluation of the Spatiotemporal Dynamics of Oxytetracycline and Its Control Effect against Citrus Huanglongbing via Trunk Injection. Phytopathology 2016, 106, 1495–1503. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Jiang, J.; Wang, N. Control of Citrus Huanglongbing via Trunk Injection of Plant Defense Activators and Antibiotics. Phytopathology 2018, 108, 186–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, D.L.; Ager, K.L. Biological Control of Citrus Huanglongbing with Eb92-1, a Benign Strain of Xylella fastidiosa. Plant Dis. 2021, 105, 2914–2918. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.L.; da Silva, D.R.; Pagliai, F.A.; Pan, L.; Padgett-Pagliai, K.A.; Blaustein, R.A.; Merli, M.L.; Zhang, D.; Pereira, C.; Teplitski, M.; et al. Assessment of Unconventional Antimicrobial Compounds for the Control of ‘Candidatus Liberibacter asiaticus’, the Causative Agent of Citrus Greening Disease. Sci. Rep. 2020, 10, 5395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Ashworth, V.E.T.M.; Geitner, N.K.; Wiesner, M.R.; Ginnan, N.; Rolshausen, P.; Roper, C.; Jassby, D. Delivery, Fate, and Mobility of Silver Nanoparticles in Citrus Trees. ACS Nano 2020, 14, 2966–2981. [Google Scholar] [CrossRef] [PubMed]
- Stephano-Hornedo, J.L.; Torres-Gutiérrez, O.; Toledano-Magaña, Y.; Gradilla-Martínez, I.; Pestryakov, A.; Sánchez-González, A.; García-Ramos, J.C.; Bogdanchikova, N. ArgovitTM Silver Nanoparticles to Fight Huanglongbing Disease in Mexican Limes (Citrus aurantifolia Swingle). RSC Adv. 2020, 10, 6146–6155. [Google Scholar] [CrossRef] [Green Version]
- Archer, L.; Albrecht, U.; Crane, J. Trunk Injection to Deliver Crop Protection Materials: An Overview of Basic Principles and Practical Considerations: HS1426, 11/2021. UF/IFAS EDIS 2021. pp. 1–7. Available online: https://edis.ifas.ufl.edu/publication/HS1426 (accessed on 6 September 2022). [CrossRef]
- Archer, L.; Crane, J.H.; Albrecht, U. Trunk Injection as a Tool to Deliver Plant Protection Materials—An Overview of Basic Principles and Practical Considerations. Horticulturae 2022, 8, 552. [Google Scholar] [CrossRef]
- Berger, C.; Laurent, F. Trunk Injection of Plant Protection Products to Protect Trees from Pests and Diseases. Crop Prot. 2019, 124, 104831. [Google Scholar] [CrossRef]
- Zamora, M.A.S.; Escobar, R.F. Injector-Size and the Time of Application Affects Uptake of Tree Trunk-Injected Solutions. Sci. Hortic. 2000, 84, 163–177. [Google Scholar] [CrossRef]
- Wise, J.C.; VanWoerkom, A.H.; Acimovic, S.G.; Sundin, G.W.; Cregg, B.M.; Vandervoort, C.V. Trunk Injection: A Discriminating Delivering System for Horticulture Crop IPM. Entomol. Ornithol. Herpetol. 2014, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Tarjan, A. Pressure Injection of Chemicals for Possible Systemic Action against Burrowing Nematodes Infecting Citrus. Plant Dis. Rep. 1959, 43, 451–458. [Google Scholar]
- Van Vuuren, S.P. The Determination of Optimal Concentration and PH of Tetracycline Hydrochloride for Trunk Injection of Greening-Infected Citrus Trees. Phytophylactica 1977, 9, 77–81. [Google Scholar]
- Buitendag, C.; Bronkhorst, G. Injection of Insecticides into Tree Trunks—A Possible New Method for the Control of Citrus Pests? Citrus Subtrop. Fruit J. 1980, 556, 5–7. [Google Scholar]
- Schwarz, R.E.; Moll, J.N.; van Vuuren, S.P. Control of Citrus Greening and Its Psylla Vector by Trunk Injections of Tetracyclines and Insecticides. Int. Organ. Citrus Virol. Conf. Proc. 1957–2010 1974, 6, 26–29. [Google Scholar] [CrossRef]
- Puttamuk, T.; Zhang, S.; Duan, Y.; Jantasorn, A.; Thaveechai, N. Effect of Chemical Treatments on “Candidatus Liberibacter asiaticus” Infected Pomelo (Citrus maxima). Crop Prot. 2014, 65, 114–121. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, Y.; Powell, C.A.; Doud, M.S.; Yang, C.; Duan, Y. Effective Antibiotics against “Candidatus Liberibacter asiaticus” in HLB-Affected Citrus Plants Identified via the Graft-Based Evaluation. PLoS ONE 2014, 9, e111032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaustein, R.A.; Lorca, G.L.; Teplitski, M. Challenges for Managing Candidatus Liberibacter Spp. (Huanglongbing Disease Pathogen): Current Control Measures and Future Directions. Phytopathology 2018, 108, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Stockwell, V.O.; Duffy, B. Use of Antibiotics in Plant Agriculture. OIE Rev. Sci. Tech. 2012, 31, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Bahder, B.W.; Helmick, E.E.; Chakrabarti, S.; Osorio, S.; Soto, N.; Chouvenc, T.; Harrison, N.A. Disease Progression of a Lethal Decline Caused by the 16SrIV-D Phytoplasma in Florida Palms. Plant Pathol. 2018, 67, 1821–1828. [Google Scholar] [CrossRef]
- Gurr, G.M.; Johnson, A.C.; Ash, G.J.; Wilson, B.A.L.; Ero, M.M.; Pilotti, C.A.; Dewhurst, C.F.; You, M.S. Coconut Lethal Yellowing Diseases: A Phytoplasma Threat to Palms of Global Economic and Social Significance. Front. Plant Sci. 2016, 7, 1521. [Google Scholar] [CrossRef] [Green Version]
- Boina, D.R.; Bloomquist, J.R. Chemical Control of the Asian Citrus Psyllid and of Huanglongbing Disease in Citrus. Pest Manag. Sci. 2015, 71, 808–823. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.P.; Yamamoto, P.T.; Garcia, R.B.; Lopes, J.P.; Lopes, J.R. Thiamethoxam and Imidacloprid Drench Applications on Sweet Orange Nursery Trees Disrupt the Feeding and Settling Behaviour of Diaphorina citri (Hemiptera: Liviidae). Pest Manag. Sci. 2016, 72, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, J.A.; Kostyk, B.C.; Stansly, P.A. Insecticidal Suppression of Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae) Vector of Huanglongbing Pathogens. PLoS ONE 2014, 9, e112331. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.D.; Gill, T.A.; Pelz-Stelinski, K.S.; Stelinski, L.L. Risk Assessment of Various Insecticides Used for Management of Asian Citrus Psyllid, Diaphorina citri in Florida Citrus, against Honey Bee, Apis Mellifera. Ecotoxicology 2017, 26, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Mota-Sanchez, D.; Cregg, B.M.; McCullough, D.G.; Poland, T.M.; Hollingworth, R.M. Distribution of Trunk-Injected 14C-Imidacloprid in Ash Trees and Effects on Emerald Ash Borer (Coleoptera: Buprestidae) Adults. Crop Prot. 2009, 28, 655–661. [Google Scholar] [CrossRef]
- VanWoerkom, A.H.; Aćimović, S.G.; Sundin, G.W.; Cregg, B.M.; Mota-Sanchez, D.; Vandervoort, C.; Wise, J.C. Trunk Injection: An Alternative Technique for Pesticide Delivery in Apples. Crop Prot. 2014, 65, 173–185. [Google Scholar] [CrossRef]
- Aćimović, S.G.; Martin, D.K.H.; Turcotte, R.M.; Meredith, C.L.; Munck, I.A. Choosing an Adequate Pesticide Delivery System for Managing Pathogens with Difficult Biologies: Case Studies on Diplodia corticola, Venturia inaequalis and Erwinia amylovora. In Plant Diseases—Current Threats and Management Trends; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Byrne, F.J.; Almanzor, J.; Tellez, I.; Eskalen, A.; Grosman, D.M.; Morse, J.G. Evaluation of Trunk-Injected Emamectin Benzoate as a Potential Management Strategy for Kuroshio Shot Hole Borer in Avocado Trees. Crop Prot. 2020, 132, 105136. [Google Scholar] [CrossRef]
- Aćimović, S.G.; Vanwoerkom, A.H.; Reeb, P.D.; Vandervoort, C.; Garavaglia, T.; Cregg, B.M.; Wise, J.C. Spatial and Temporal Distribution of Trunk-Injected Imidacloprid in Apple Tree Canopies. Pest Manag. Sci. 2014, 70, 1751–1760. [Google Scholar] [CrossRef]
- Kleier, D.A. Phloem Mobility of Xenobiotics I. Mathematical Model Unifying the Weak Acid and Intermediate Permeability Theories. Plant Physiol. 1988, 86, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Riederer, M. Uptake and Transport of Xenobiotics. In Plant Toxicology; Hock, B., Elstner, E.F., Eds.; Marcel Dekker: New York, NY, USA, 2004; pp. 131–150. [Google Scholar]
- Tyree, M.T.; Peterson, C.A.; Edgington, L.V. A Simple Theory Regarding Ambimobility of Xenobiotics with Special Reference to the Nematicide, Oxamyl. Plant Physiol. 1979, 63, 367–374. [Google Scholar] [CrossRef]
- Qureshi, J.A.; Stansly, P.A. Dormant Season Foliar Sprays of Broad-Spectrum Insecticides: An Effective Component of Integrated Management for Diaphorina citri (Hemiptera: Psyllidae) in Citrus Orchards. Crop Prot. 2010, 28, 860–866. [Google Scholar] [CrossRef]
- Li, W.; Hartung, J.S.; Levy, L. Quantitative Real-Time PCR for Detection and Identification of Candidatus Liberibacter Species Associated with Citrus Huanglongbing. J. Microbiol. Methods 2006, 66, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Ayers, J.E.; Tomes, M.L. Effect of 2 Uniform Ripening Genes on Chlorophyll and Carotenoid Contents of Tomato Fruit. J. Am. Soc. Hortic. Sci. 1966, 88, 550–556. [Google Scholar]
- Bai, J.; Baldwin, E.; Plotto, A.; Manthey, J.; McCollum, G.; Irey, M.; Luzio, G. Influence of Harvest Time on Quality of ‘Valencia’ Oranges and Juice. Proc. Fla. State Hortic. Soc. 2009, 122, 308–315. [Google Scholar]
- Leyva, A.; Quintana, A.; Sánchez, M.; Rodríguez, E.N.; Cremata, J.; Sánchez, J.C. Rapid and Sensitive Anthrone-Sulfuric Acid Assay in Microplate Format to Quantify Carbohydrate in Biopharmaceutical Products: Method Development and Validation. Biologicals 2008, 36, 134–141. [Google Scholar] [CrossRef]
- Tixier, A.; Sperling, O.; Orozco, J.; Lampinen, B.; Amico Roxas, A.; Saa, S.; Earles, J.M.; Zwieniecki, M.A. Spring Bud Growth Depends on Sugar Delivery by Xylem and Water Recirculation by Phloem Münch Flow in Juglans regia. Planta 2017, 246, 495–508. [Google Scholar] [CrossRef]
- Davidson, A.M.; Le, S.T.; Cooper, K.B.; Lange, E.; Zwieniecki, M.A. No Time to Rest: Seasonal Dynamics of Non-Structural Carbohydrates in Twigs of Three Mediterranean Tree Species Suggest Year-Round Activity. Sci. Rep. 2021, 11, 5181. [Google Scholar] [CrossRef]
- Hijaz, F.; Nehela, Y.; Batuman, O.; Killiny, N. Detection of Oxytetracycline in Citrus Phloem and Xylem Saps Using Europium-Based Method. Antibiotics 2021, 10, 1036. [Google Scholar] [CrossRef]
- Bhandari, B.P.; Cheng, Z. Lobate Lac Scale, Paratachardina pseudolobata (Hemiptera: Keriidae), in Hawaii’s Urban Landscape: Hosts and Management. Int. J. Trop. Insect Sci. 2018, 38, 71–76. [Google Scholar] [CrossRef]
- Fu, B.; Qiu, H.; Li, Q.; Tang, L.; Zeng, D.; Liu, K.; Gao, Y. Flower Injection of Imidacloprid and Spirotetramat: A Novel Tool for the Management of Banana Thrips Thrips hawaiiensis. J. Pest Sci. 2020, 93, 1073–1084. [Google Scholar] [CrossRef]
- Harrell, M. Imidacloprid Concentrations in Green Ash (Fraxinus pennsylvanica) Following Treatments with Two Trunk-Injection Methods. Arboric. Urban For. 2006, 32, 126–129. [Google Scholar] [CrossRef]
- McCullough, D.G.; Poland, T.M.; Tluczek, A.R.; Anulewicz, A.; Wieferich, J.; Siegert, N.W. Emerald Ash Borer (Coleoptera: Buprestidae) Densities over a 6-Yr Period on Untreated Trees and Trees Treated with Systemic Insecticides at 1-, 2-, and 3-Yr Intervals in a Central Michigan Forest. J. Econ. Entomol. 2019, 112, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Cowles, R.S.; Montgomery, M.E.; Cheah, C.A.S.-J. Activity and Residues of Imidacloprid Applied to Soil and Tree Trunks to Control Hemlock Woolly Adelgid (Hemiptera: Adelgidae) in Forests. J. Econ. Entomol. 2009, 99, 1258–1267. [Google Scholar] [CrossRef]
- Turcotte, R.M.; Lagalante, A.; Jones, J.; Cook, F.; Elliott, T.; Billings, A.A.; Park, Y.L. Spatial and Temporal Distribution of Imidacloprid within the Crown of Eastern Hemlock. J. Insect Sci. 2017, 17, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tattar, T.; Tattar, S. Evidence for the Downward Movement of Materials Injected into Trees. Arboric. Urban For. 1999, 25, 325–332. [Google Scholar] [CrossRef]
- Boina, D.R.; Onagbola, E.O.; Salyani, M.; Stelinski, L.L. Antifeedant and Sublethal Effects of Imidacloprid on Asian Citrus Psyllid, Diaphorina citri. Pest Manag. Sci. 2009, 65, 870–877. [Google Scholar] [CrossRef]
- Grosman, D.M.; Eskalen, A.; Brownie, C. Evaluation of Emamectin Benzoate and Propiconazole for Management of a New Invasive Shot Hole Borer (Euwallacea Nr. fornicatus, Coleoptera: Curculionidae) and Symbiotic Fungi in California Sycamores. J. Econ. Entomol. 2019, 112, 1267–1273. [Google Scholar] [CrossRef] [Green Version]
- Soto, N.; Humphries, A.R.; Mou, D.F.; Helmick, E.E.; Glover, J.P.; Bahder, B.W. Effect of Oxytetracycline-Hydrochloride on Phytoplasma Titer and Symptom Progression of the 16SrIV-D Phytoplasma in Cabbage Palms from Florida. Plant Dis. 2020, 104, 2330–2337. [Google Scholar] [CrossRef]
- Christiano, R.S.C.; Reilly, C.C.; Miller, W.P.; Scherm, H. Oxytetracycline Dynamics on Peach Leaves in Relation to Temperature, Sunlight, and Simulated Rain. Plant Dis. 2010, 94, 1213–1218. [Google Scholar] [CrossRef] [Green Version]
- Etxeberria, E.; Gonzalez, P.; Singerman, A.; Ebert, T. An Improved Method to Track Changes of Candidatus Liberibacter asiaticus Titer in HLB-Affected Citrus Trees. HortScience 2019, 54, 1357–1360. [Google Scholar] [CrossRef] [Green Version]
- Romero, C. Bark Structure and Functional Ecology. Bark: Use, Management and Commerce in Africa; New York Botanical Garden Press: New York, NY, USA, 2014; p. 17. [Google Scholar]
- Peres, N.A.; Dewdney, M.M. 2021–2022 Florida Citrus Production Guide: Postbloom Fruit Drop: CG007/PP-45, Rev. 4/2021; UF/IFASEDIS 2021; University of Florida George A Smathers Libraries: Gainesville, FL, USA, 2022. [Google Scholar]
- Stover, E.; Lin, Y.; Yang, X.; Vashisth, T. Hydrogen Cyanamide on Citrus: Preliminary Data on Phytotoxicity and Influence on Flush in Potted and Field Trees. Horttechnology 2016, 26, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.G.; Albrecht, U.; Bowman, K.D. Transmission Rates of “Ca. Liberibacter asiaticus” by Asian Citrus Psyllid Are Enhanced by the Presence and Developmental Stage of Citrus Flush. J. Econ. Entomol. 2016, 109, 558–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.; Singh, G.; Dewdney, M.; Vashisth, T. Effects of Exogenous Gibberellic Acid in Huanglongbing-Affected Sweet Orange Trees under Florida Conditions—I. Flower Bud Emergence and Flower Formation. HortScience 2021, 56, 1531–1541. [Google Scholar] [CrossRef]
- Albrigo, L.G.; Stover, E.W. Effect of Plant Growth Regulators and Fungicides on Huanglongbing-Related Preharvest Fruit Drop of Citrus. Horttechnology 2015, 25, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Gottwald, T.; Bai, J.; McCollum, G.; Irey, M.; Plotto, A.; Baldwin, E. Correlation of Diplodia (Lasiodiplodia theobromae) Infection, Huanglongbing, Ethylene Production, Fruit Removal Force and Pre-Harvest Fruit Drop. Sci. Hortic. 2016, 212, 162–170. [Google Scholar] [CrossRef]
- Tang, L.; Singh, S.; Vashisth, T. Association between Fruit Development and Mature Fruit Drop in Huanglongbing-Affected Sweet Orange. HortScience 2020, 55, 851–857. [Google Scholar] [CrossRef]
- Tang, L.; Chhajed, S.; Vashisth, T. Preharvest Fruit Drop in Huanglongbing-Affected ‘Valencia’ Sweet Orange. J. Am. Soc. Hortic. Sci. 2019, 144, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, D.J.; Cercós, M.; Colmenero-Flores, J.M.; Naranjo, M.A.; Ríos, G.; Carrera, E.; Ruiz-Rivero, O.; Lliso, I.; Morillon, R.; Tadeo, F.R.; et al. Physiology of Citrus Fruiting. Braz. J. Plant Physiol. 2007, 19, 333–362. [Google Scholar] [CrossRef]
- Fan, J.; Chen, C.; Brlansky, R.H.; Gmitter, F.G.; Li, Z.G. Changes in Carbohydrate Metabolism in Citrus sinensis Infected with ‘Candidatus Liberibacter asiaticus’. Plant Pathol. 2010, 59, 1037–1043. [Google Scholar] [CrossRef]
- Ford, C.R.; Vose, J.M.; Daley, M.; Phillips, N. Use of Water by Eastern Hemlock: Implications for Systemic Insecticide Application. Arboric. Urban For. 2007, 33, 421–427. [Google Scholar] [CrossRef]
- Kadyampakeni, D.M.; Morgan, K.T.; Schumann, A.W.; Nkedi-Kizza, P.; Obreza, T.A. Water Use in Drip- and Microsprinkler-Irrigated Citrus Trees. Soil Sci. Soc. Am. J. 2014, 78, 1351–1361. [Google Scholar] [CrossRef]
- Hamido, S.A.; Morgan, K.T.; Kadyampakeni, D.M. The Effect of Huanglongbing on Young Citrus Tree Water Use. Horttechnology 2017, 27, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wu, F.; Duan, Y.; Singerman, A.; Guan, Z. Citrus Greening: Management Strategies and Their Economic Impact. HortScience 2020, 55, 604–612. [Google Scholar] [CrossRef] [Green Version]
Treatment | Adult Psyllid Infestation (%) | Oviposition Infestation (%) | ||
---|---|---|---|---|
Compound | ||||
No Injection | 24.9 ± 6.0 | a | 32.1 ± 4.6 | ab |
Water | 24.7 ± 6.0 | a | 42.1 ± 5.9 | a |
Oxytetracycline | 22.6 ± 6.5 | a | 27.0 ± 5.1 | b |
Imidacloprid | 26.1 ± 6.7 | a | 26.7 ± 3.4 | b |
p-value | 0.968 | 0.003 | ||
Date | ||||
November 2020 | 30.6 ± 6.9 | ab | 30.9 ± 3.9 | b |
February 2021 | 3.8 ± 1.3 | c | 14.6 ± 2.3 | c |
March 2021 | 11.4 ± 4.0 | bc | 21.1 ± 4.6 | bc |
April 2021 | 35.4 ± 6.2 | a | 60.4 ± 4.8 | a |
June 2021 | 41.7 ± 7.1 | a | 32.9 ± 2.7 | b |
p-value | <0.0001 | <0.0001 | ||
Date—Compound | ||||
November—No Injection | 29.7 ± 7.4 | a | 28.3 ± 3.5 | a |
November—Water | 18.3 ± 4.9 | a | 38.3 ± 5.1 | a |
November—Oxytetracycline | 19.5 ± 5.6 | a | 25.2 ± 4.2 | a |
November—Imidacloprid | 55.0 ± 8.1 | a | 31.7 ± 3.3 | a |
p-value | 0.210 | 0.702 | ||
February—No Injection | 3.3 ± 1.1 | a | 10.0 ± 1.8 | a |
February—Water | 6.7 ± 1.7 | a | 13.3 ± 2.1 | a |
February—Oxytetracycline | 3.3 ± 1.7 | a | 16.7 ± 3.1 | a |
February—Imidacloprid | 1.7 ± 0.8 | a | 18.3 ± 2.4 | a |
p-value | 0.624 | 0.625 | ||
March—No Injection | 21.7 ± 5.7 | a | 22.2 ± 2.9 | a |
March—Water | 5.0 ± 2.5 | a | 40.5 ± 5.7 | a |
March—Oxytetracycline | 0.0 ± 0.0 | a | 8.3 ± 4.2 | a |
March—Imidacloprid | 18.8 ± 4.3 | a | 13.3 ± 3.1 | a |
p-value | 0.157 | 0.058 | ||
April—No Injection | 45.0 ± 7.6 | a | 65.0 ± 2.5 | ab |
April—Water | 43.3 ± 3.8 | a | 80.0 ± 5.7 | a |
April—Oxytetracycline | 41.7 ± 7.5 | a | 58.3 ± 4.2 | ab |
April—Imidacloprid | 11.7 ± 3.7 | a | 38.3 ± 3.3 | b |
p-value | 0.184 | 0.011 | ||
June—No Injection | 25.0 ± 3.8 | a | 35.0 ± 3.1 | a |
June—Water | 50.0 ± 8.8 | a | 38.3 ± 2.7 | a |
Junu—Oxytetracycline | 48.3 ± 7.7 | a | 26.7 ± 2.1 | a |
June—Imidacloprid | 43.3 ± 7.9 | a | 31.7 ± 2.7 | a |
p-value | 0.612 | 0.477 |
Treatment | October 2020 | April 2021 | October 2021 | February 2022 | ||||
---|---|---|---|---|---|---|---|---|
HLB Disease Index | ||||||||
No Injection | 3.5 ± 0.10 | a | 4.1 ± 0.04 | a | 4.0 ± 0.02 | a | 4.2 ± 0.11 | a |
Water | 3.6 ± 0.10 | a | 4.1 ± 0.08 | a | 4.3 ± 0.09 | a | 4.3 ± 0.09 | a |
Oxytetracycline | 3.5 ± 0.08 | a | 2.4 ± 0.04 | b | 2.9 ± 0.04 | b | 3.7 ± 0.11 | a |
Imidacloprid | 3.4 ± 0.08 | a | 4.0 ± 0.09 | a | 4.0 ± 0.00 | a | 4.3 ± 0.09 | a |
p-value | 0.925 | <0.0001 | <0.0001 | 0.127 | ||||
Canopy Color | ||||||||
No Injection | 2.8 ± 0.04 | a | 2.3 ± 0.03 | b | 2.8 ± 0.05 | b | 2.0 ± 0.0 | b |
Water | 2.6 ± 0.07 | a | 2.2 ± 0.05 | b | 2.9 ± 0.05 | b | 2.1 ± 0.04 | b |
Oxytetracycline | 2.7 ± 0.04 | a | 2.7 ± 0.04 | a | 4.0 ± 0.06 | a | 3.0 ± 0.0 | a |
Imidacloprid | 2.5 ± 0.09 | a | 2.1 ± 0.05 | b | 3.0 ± 0.03 | b | 2.2 ± 0.08 | b |
p-value | 0.566 | 0.001 | <0.0001 | <0.0001 | ||||
Canopy Thickness | ||||||||
No Injection | 3.0 ± 0.07 | a | 2.3 ± 0.06 | b | 3.1 ± 0.08 | b | 2.3 ± 0.08 | a |
Water | 2.8 ± 0.09 | a | 2.3 ± 0.06 | b | 2.9 ± 0.07 | b | 2.3 ± 0.11 | a |
Oxytetracycline | 2.4 ± 0.08 | a | 3.3 ± 0.06 | a | 4.1 ± 0.10 | a | 3.0 ± 0.00 | a |
Imidacloprid | 2.6 ± 0.07 | a | 2.2 ± 0.08 | b | 3.0 ± 0.05 | b | 2.3 ± 0.11 | a |
p-value | 0.091 | 0.001 | < 0.0001 | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Archer, L.; Qureshi, J.; Albrecht, U. Efficacy of Trunk Injected Imidacloprid and Oxytetracycline in Managing Huanglongbing and Asian Citrus Psyllid in Infected Sweet Orange (Citrus sinensis) Trees. Agriculture 2022, 12, 1592. https://doi.org/10.3390/agriculture12101592
Archer L, Qureshi J, Albrecht U. Efficacy of Trunk Injected Imidacloprid and Oxytetracycline in Managing Huanglongbing and Asian Citrus Psyllid in Infected Sweet Orange (Citrus sinensis) Trees. Agriculture. 2022; 12(10):1592. https://doi.org/10.3390/agriculture12101592
Chicago/Turabian StyleArcher, Leigh, Jawwad Qureshi, and Ute Albrecht. 2022. "Efficacy of Trunk Injected Imidacloprid and Oxytetracycline in Managing Huanglongbing and Asian Citrus Psyllid in Infected Sweet Orange (Citrus sinensis) Trees" Agriculture 12, no. 10: 1592. https://doi.org/10.3390/agriculture12101592
APA StyleArcher, L., Qureshi, J., & Albrecht, U. (2022). Efficacy of Trunk Injected Imidacloprid and Oxytetracycline in Managing Huanglongbing and Asian Citrus Psyllid in Infected Sweet Orange (Citrus sinensis) Trees. Agriculture, 12(10), 1592. https://doi.org/10.3390/agriculture12101592