Assessment of Meteorological and Agricultural Drought Occurrence in Central Poland in 1961–2020 as an Element of the Climatic Risk to Crop Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
- td—mean daily air temperature (°C)
- t06 UTC—air temperature at 06 UTC (°C)
- t18 UTC—air temperature at 18 UTC (°C)
- tmax—maximum air temperature (°C)
- td—minimum air temperature (°C)
2.2. Drought Identification
2.3. Statistical Analysis
3. Results
3.1. Frequency and Intensity of Meteorological Droughts
3.2. Frequency and Intensity of Agricultural Droughts
3.3. The Relationship between the Meteorological and Agricultural Drought Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hagenlocher, M.; Meza, I.; Anderson, C.C.; Min, A.; Renaud, F.G.; Walz, Y.; Siebert, S.; Sebesvari, Z. Drought vulnerability and risk assessments: State of the art, persistent gaps, and research agenda. Environ. Res. Lett. 2019, 14, 083002. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 204–216. [Google Scholar] [CrossRef]
- Wu, H.; Wilhite, D.A. An operational agricultural drought risk assessment model for Nebraska, USA. Nat. Hazards 2004, 33, 1–21. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction. GAR Special Report on Drought 2021: Summary for Policymakers; United Nations Office for Disaster Risk Reduction: Geneva, Schwitzerland, 2021; p. 173. Available online: https://www.undrr.org/publication/gar-special-report-drought-2021 (accessed on 3 July 2021).
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. Meteorological Droughts in Europe: Events and Impacts—Past Trends and Future Projections; EUR 27748 EN; Publications Office of the European Union: Luxembourg, 2016; p. 129. [Google Scholar] [CrossRef]
- Van Lanen, H.A.J.; Vogt, J.V.; Andreu, J.; Carrão, H.; De Stefano, L.; Dutra, E.; Feyen, L.; Forzieri, G.; Hayes, M.; Iglesias, A.; et al. Climatological risk: Droughts. In Science for Disaster Risk Management 2017: Knowing Better and Losing Less; Poljanšek, K., Marín Ferrer, M., De Groeve, T., Clark, I., Eds.; EUR 28034 EN; Publications Office of the European Union: Luxembourg, 2017; p. 554. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Chang. 2017, 48, 113–130. [Google Scholar] [CrossRef]
- Hänsel, S.; Ustrnul, Z.; Łupikasza, E.; Skalak, P. Assessing seasonal drought variations and trends over Central Europe. Adv. Water Resour. 2019, 127, 53–75. [Google Scholar] [CrossRef]
- Łabędzki, L. Estimation of local drought frequency in Central Poland using the standardized precipitation index SPI. Irrig. Drain. 2007, 56, 67–77. [Google Scholar] [CrossRef]
- Marsz, A.A.; Styszyńska, A.; Krawczyk, W.E. Long-term fluctuations of annual discharges of the main rivers in Poland and their association with the Northern Atlantic Thermohaline Circulation. Przegl. Geograf. 2016, 88, 295–316. (In Polish) [Google Scholar] [CrossRef]
- Wrzesiński, D.; Marsz, A.A.; Styszyńska, A.; Sobkowiak, L. Effect of the North Atlantic thermohaline circulation on changes in climatic conditions and river flow in Poland. Water 2019, 11, 1622. [Google Scholar] [CrossRef] [Green Version]
- Bąk, B.; Maszewski, R. Types of atmospheric circulation in the region Bydgoszcz–Toruń during long-time meteorological drought in the years 1989–1998. Infr. Ecol. Rural Areas 2012, 12, 17–29. (In Polish) [Google Scholar]
- Qin, N.X.; Wang, J.N.; Hong, Y.; Lu, Q.Q.; Huang, J.L.; Liu, M.H.; Gao, L. The drought variability based on continuous days without available precipitation in Guizhou Province, southwest China. Water 2021, 13, 660. [Google Scholar] [CrossRef]
- Łabędzki, L. Agricultural Droughts: An Outline of Problems and Methods of Monitoring and Classification; IMUZ: Falenty, Poland, 2006; p. 107. (In Polish) [Google Scholar]
- Dudek, S.; Kuśmierek-Tomaszewska, R.; Żarski, J. Drought spells classification based on easily accessible soil water balance. Infr. Ecol. Rural Areas 2009, 3, 109–117. (In Polish) [Google Scholar]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Żarski, W. Effects of agricultural droughts in the province of Kujawsko-Pomorskie and possibilities of minimizing their impact. Infr. Ecol. Rural Areas 2017, II/2, 813–824. [Google Scholar] [CrossRef]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R. Drip irrigation as a factor mitigating drought impact in corn cultivation in central Poland. In Proceedings of the 8th International Scientific Conference Rural Development, Bioeconomy challenges, Aleksandras Stulginskis University, Kauno, Lithuania, 23–24 November 2017; Raupelienė, A., Ed.; Aleksandras Stulginskis University: Kauno, Lithuania, 2018; pp. 182–186. [Google Scholar] [CrossRef] [Green Version]
- Tokarczyk, T.; Szalińska, W. The operational drought hazard assessment scheme-performance and preliminary results. Arch. Environ. Prot. 2013, 39, 61–77. [Google Scholar] [CrossRef] [Green Version]
- Łabędzki, Ł.; Bąk, B. Meteorological and agricultural drought indices used in drought monitoring in Poland: A review. Meteorol. Hydrol. Water Manag. 2014, 2, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Rolbiecki, R.; Rolbiecki, S. Forecasting effects of plants irrigation based on selected meteorological and agricultural drought indices. Annu. Set Environ. Prot. 2013, 15, 2185–2203. (In Polish) [Google Scholar]
- Łabędzki, L.; Bąk, B. Impact of meteorological drought on crop water deficit and crop yield reduction in Polish agriculture. J. Water Land Dev. 2017, 34, 181–190. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kozyra, J. Reducing impacts of climatic threats to agriculture and rural area. Pol. J. Agron. 2011, 7, 68–81. (In Polish) [Google Scholar]
- Zhang, L.; Song, W.; Song, W. Assessment of Agricultural Drought Risk in the Lancang-Mekong Region, South East Asia. Int. J. Environ. Res. Public Health 2020, 17, 6153. [Google Scholar] [CrossRef]
- Meza, I.; Siebert, S.; Döll, P.; Kusche, J.; Herbert, C.; Eyshi Rezaei, E.; Nouri, H.; Gerdener, H.; Popat, E.; Frischen, J.; et al. Global-scale drought risk assessment for agricultural systems. Nat. Hazards Earth Syst. Sci. 2020, 20, 695–712. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Sur, C.; Kim, J.; Choi, S.; Lee, J.; Kim, T. Projected drought risk assessment from water balance perspectives in a changing climate. Int. J. Climatol. 2021, 41, 2765–2777. [Google Scholar] [CrossRef]
- Cunningham, C. Characterization of dry spells in Southeastern Brazil during the monsoon season. Int. J. Climatol. 2020, 40, 4609–4621. [Google Scholar] [CrossRef]
- Kim, J.S.; Park, S.Y.; Hong, H.P.; Chen, J.; Choi, S.J.; Kim, T.W.; Lee, J.H. Drought risk assessment for future climate projections in the Nakdong River Basin, Korea. Int. J. Climatol. 2020, 40, 4528–4540. [Google Scholar] [CrossRef]
- Przybylak, R.; Oliński, P.; Koprowski, M.; Filipiak, J.; Pospieszyńska, A.; Chorążyczewski, W.; Puchałka, R.; Dąbrowski, H.P. Drought in the area of Polnd in recent centuries in the light of multi-proxy data. Clim. Past 2020, 16, 627–661. [Google Scholar] [CrossRef] [Green Version]
- Ganguli, P.; Ganguly, A.R. Space-time trends in U.S. meteorological droughts. J. Hydrol. Reg. Stud. 2016, 8, 235–259. [Google Scholar] [CrossRef] [Green Version]
- David, V.; Davidová, T. Identification and frequency analysis of drought events in the Blanice River catchment (Czech Republic). In Drought: Research and Science-Policy Interfacing; Andreu, J., Solera, A., Paredes-Arquiola, J., Haro-Monteagudo, D., van Lanen, H., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 177–182. [Google Scholar]
- Haslinger, K.; Blöschl, G. Space-time patterns of meteorological drought events in the European Greater Alpine Region over the past 210 years. Water Resour. Res. 2017, 53, 9807–9823. [Google Scholar] [CrossRef] [Green Version]
- Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar] [CrossRef] [PubMed]
- Szyga-Pluta, K. Variability of drought occurrence during growing season in Poland in years 1966–2015. Przegl. Geofiz. 2018, 1, 51–66. (In Polish) [Google Scholar]
- Kuśmierek-Tomaszewska, R.; Dudek, S.; Żarski, J.; Januszewska-Klapa, K. Temporal variability of drought in field crops in the region of Kujawsko-Pomorskie, Poland. Res. Rural Develop. 2018, 2, 62–68. [Google Scholar] [CrossRef]
- Kuśmierek-Tomaszewska, R.; Dudek, S.; Żarski, J. Detection of change in drought frequency in Bydgoszcz region, central Poland. In Proceedings of the 8th International Scientific Conference Rural Development, Bioeconomy Challenges, Kauno, Lithuania, 23–24 November 2017; Raupelienė, A., Ed.; Aleksandras Stulginskis University: Kauno, Lithuania, 2018; pp. 652–656. [Google Scholar] [CrossRef] [Green Version]
- Kuśmierek-Tomaszewska, R.; Żarski, J.; Dudek, S. Assessment of Irrigation Needs in Sugar Beet (Beta vulgaris L.) in Temperate Climate of Kujawsko-Pomorskie Region (Poland). Agronomy 2019, 9, 814. [Google Scholar] [CrossRef] [Green Version]
- Czarnecka, M.; Nidzgorska-Lencewicz, M. Multiannual variability of seasonal precipitation in Poland. Water Environ. Rural Areas 2012, 12, 45–60. (In Polish) [Google Scholar]
- Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Bojar, W.; Knopik, L.; Żarski, W. Agro-climatological assessment of the growing season rainfall in the Bydgoszcz region. Infr. Ecol. Rural Areas 2014, II/3, 643–656. (In Polish) [Google Scholar]
- Tomczyk, A.M.; Szyga-Pluta, K. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966–2015. Theor. Appl. Climatol. 2019, 135, 1517–1530. [Google Scholar] [CrossRef] [Green Version]
- Somorowska, U. Changes in Drought Conditions in Poland over the Past 60 Years Evaluated by the Standardized Precipitation-Evapotranspiratiom Index. Acta Geophys. 2016, 64, 2530–2549. [Google Scholar] [CrossRef] [Green Version]
- Somorowska, U. Increase in the hydrological drought risk in different geographical regions of Poland in the 20th century. Pr. Studia Geogr. 2009, 43, 97–114. (In Polish) [Google Scholar]
- Jania, J.A.; Zwoliński, Z. Extreme meteorological, hydrological and geomorphological events in Poland. Landf. Anal. 2011, 15, 51–64. (In Polish) [Google Scholar]
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agronom. 2014, 31, 74–87. (In Polish) [Google Scholar]
- Wibig, J. Moisture conditions in Poland view of the SPEI index. Water Environ. Rural Areas 2012, 12, 329–340. (In Polish) [Google Scholar]
- Ziernicka-Wojtaszek, A. Climatic water balance in Poland in the light of the present day climate change. Water Environ. Rural Areas 2015, 15, 93–100. (In Polish) [Google Scholar]
- Ziernicka-Wojtaszek, A.; Kopcińska, J. Variation in Atmospheric Precipitation in Poland in the Years 2001–2018. Atmosphere 2020, 11, 794. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 25 May 2021).
- Kuchar, L.; Iwański, S. Rainfall evaluation for crop production until 2050–2060 and selected climate change scenarios for north central Poland. Infr. Ecol. Rural Areas 2013, 2/I, 187–200. (In Polish) [Google Scholar]
- Kuchar, L.; Iwański, S.; Diakowska, E.; Gąsiorek, E. Simulation of hydrothermal conditions for crop production purpose until 2050–2060 and selected climate change scenarios for North Central Poland. Infr. Ecol. Rural Areas 2015, II/1, 319–334. (In Polish) [Google Scholar] [CrossRef]
- Cisco, G.; Gatto, A. Climate Justice in an Intergenerational Sustainability Framework: A Stochastic OLG Model. Economies 2021, 9, 47. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Łabędzki, L.; Bąk, B. Standardized climatic water balance as drought index. Acta Agrophys. 2004, 3, 117–124. (In Polish) [Google Scholar]
- Łabędzki, L.; Bąk, B. Monitoring and forecasting the course and impact of water deficit in rural areas. Infr. Ecol. Rural Areas 2013, II/1, 65–76. (In Polish) [Google Scholar]
- Tokarczyk-Dorociak, K.; Sylla, M. Integrating ecosystem service assessment as a tool to support decision-making in the framework of environmental impact assessment. Ekonom. Środ. 2017, 63, 8–17. [Google Scholar]
- Dzieżyc, H.; Chmura, K.; Dmowski, Z. Determination of the effect of precipitation on the yield of very early and early potatoes in southern Poland. Water Environ. Rural Areas 2012, 12, 133–141. [Google Scholar]
- Filipek-Mazur, B.; Lepiarczyk, A.; Tabak, M. Nitrogen and sulphur fertilization on yielding and zinc content in seeds of winter rape ‘baldur’ cultivar. Ecol. Chem. Eng. A 2013, 20, 1351–1358. [Google Scholar] [CrossRef]
- Radzka, E.; Jankowski, K.; Jankowska, J. Effects of rainfall shortage and climatic water balance on agriculture. Appl. Ecol. Environ. Res. 2019, 17, 7667–7678. [Google Scholar] [CrossRef]
- Radzka, E.; Lenartowicz, T. Rainfall deficit and excess rainfall during vegetation of early potatoes varieties in central-eastern Poland (1971–2005). Nauka Przyr. Technol. 2015, 9, 25. [Google Scholar] [CrossRef]
- Garnier, B.J. Podstawy Klimatologii (Basics of Climatology); IMGW: Warszawa, Poland, 1996; pp. 97–114. (In Polish) [Google Scholar]
- Erfurt, M.; Glaser, R.; Blauhut, V. Changing impacts and societal responses to drought in southwestern Germany since 1800. Reg. Environ. Chang. 2019, 19, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.; Barbosa, P. European drought climatologies and trends based on a multiindicator approach. Glob. Planet. Chang. 2015, 127, 50–57. [Google Scholar] [CrossRef]
- Glaser, R.; Kahle, M. Reconstructions of droughts in Germany since 1500—Combining hermeneutic information and instrumental records in historical and modern perspectives. Clim. Past 2020, 16, 1207–1222. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V. Changes in drought features at the European level over the last 120 years. Nat. Hazards Earth Syst. Sci. 2021, 21, 1685–1701. [Google Scholar] [CrossRef]
- Utkuzova, D.N.; Han, V.M.; Vil’fand, R.M. Statistical analysis of extreme drought and wet events in Russia. Atmos. Ocean. Opt. 2015, 28, 336–346. [Google Scholar] [CrossRef]
- Karamuz, E.; Bogdanowicz, E.; Senbeta, T.B.; Napiórkowski, J.J.; Romanowicz, R.J. Is It a Drought or Only a Fluctuation in Precipitation Patterns?—Drought Reconnaissance in Poland. Water 2021, 13, 807. [Google Scholar] [CrossRef]
- Brunner, M.I.; Swain, D.L.; Gilleland, E.; Wood, A.W. Increasing importance of temperature as a contributor to the spatial extent of streamflow drought. Environ. Res. Lett. 2021, 16, 024038. [Google Scholar] [CrossRef]
- Pereira, V.R.; Blain, G.C.; Heuminski de Avila, A.M.; de Matos Pires, R.C.; Pinto, H.S. Impacts of climate change on drought: Changes to drier conditions at the beginning of the crop growing season in southern Brazil. Bragantia 2018, 77, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R Soc. Lond. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef]
- Teegavarapu, R.S. Changes and Trends in Precipitation Extremes and Characteristics: Links to Climate Variability and Change. In Trends and Changes in Hydroclimatic Variables; Teegavarapu, R., Ed.; Elsevier: Berlin/Heidelberg, Germany, 2019; pp. 91–148. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Mirchi, A.; Madani, K.; Di Baldassarre, G.; Nazemi, A.; Alborzi, A.; Anjileli, H.; Azarderakhsh, M.; Chiang, F.; Hassanzadeh, E.; et al. Anthropogenic drought: Definition, challenges, and opportunities. Rev. Geophys. 2021, 59, e2019RG000683. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Gleeson, T.; Clark, J.; Van Dijk, A.I.J.M.; Stahl, K.; Hannaford, J.; Di Baldassarre, G.; Teuling, A.J.; Tallaksen, L.M.; Uijlenhoet, R.; et al. Drought in the anthropocene. Nat. Geosci. 2016, 9, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Wszelaczyńska, E.; Pobereżny, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Żarski, J.; Pawelzik, E. The effects of fertilizers, irrigation and storage on the properties of potato tubers and their constituent starches. Starch/Stärke 2015, 67, 478–492. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Kuśmierek-Tomaszewska, R.; Dudek, S.; Żarski, J.; Rzekanowski, C. Requirements and effects of drip irrigation of mid-early potato on a very light soil in moderate climate. Fresenius Environ. Bull. 2015, 24, 3895–3902. [Google Scholar]
- Dudek, S.; Kuśmierek-Tomaszewska, R.; Żarski, J. Forecasting production effects of irrigated faba bean (Vicia faba var. minor) depending on drought levels. Latvia Res. Rural Dev. 2018, 2, 77–82. [Google Scholar] [CrossRef]
- Żarski, J.; Kuśmierek-Tomaszewska, R.; Dudek, S. Needs and Effects of Use Sprinkler Irrigation Systems in Crops Production in Central Poland on the Example of Spring Malting Barley (Hordeum vulgare L.). In Infrastructure and Environment; Krakowiak-Bal, A., Vaverkova, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 46–52. [Google Scholar] [CrossRef]
- Żarski, J.; Kuśmierek-Tomaszewska, R.; Dudek, S. Impact of Irrigation and Fertigation on the Yield and Quality of Sugar Beet (Beta vulgaris L.) in a Moderate Climate. Agronomy 2020, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Kuśmierek-Tomaszewska, R.; Żarski, J. The Effects of Plant Irrigation in Poland. In Management of Water Resources in Poland; Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A.M., Eds.; Springer: Cham, Switzerland, 2021; pp. 379–393. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B.; Kanecka-Geszke, E.; Kasperska-Wołowicz, W.; Smarzyńska, K. Relationship between meteorological and agricultural drought in different agroclimatic regions in Poland. Water Environ. Rural. Areas Rozpr. Monogr. 2008, 25, 1–136. (In Polish) [Google Scholar]
- Kumar, R.; Musuuza, J.L.; Van Loon, A.F.; Teuling, A.J.; Barthel, R.; Ten Broek, J.; Mai, J.; Samaniego, L.; Attinger, S. Multiscale evaluation of the standardized precipitation index as a groundwater drought indicator. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 7405–7436. [Google Scholar] [CrossRef]
- Agovino, M.; Cerciello, M.; Gatto, A. Policy efficiency in the field of food sustainability. The adjusted food agriculture and nutrition index. J. Environ. Manag. 2018, 218, 220–233. [Google Scholar] [CrossRef]
Class of Drought | SPI | Graphic Designation |
---|---|---|
Slightly dry | −0.50–−0.99 | 1 |
Moderate dry | −1.00–−1.49 | 2 |
Very dry | −1.50–−1.99 | 3 |
Extremely dry | ≤−2.00 | 4 |
Class of mD | mD in 1961–2020 | |||||||
---|---|---|---|---|---|---|---|---|
May | June | July | August | May–June | June–July | July–August | May–August | |
1 | 6 | 11 | 5 | 2 | 7 | 7 | 5 | 7 |
2 | 6 | 10 | 5 | 9 | 6 | 6 | 8 | 7 |
3 | 4 | 0 | 2 | 2 | 3 | 4 | 2 | 4 |
4 | 1 | 0 | 3 | 1 | 2 | 0 | 2 | 0 |
Total | 17 | 21 | 15 | 14 | 18 | 17 | 17 | 18 |
% mD 1–4 | 28.3 | 35.0 | 25.0 | 23.3 | 30.0 | 28.3 | 28.3 | 30.0 |
% mD 3–4 | 8.3 | 0.0 | 8.3 | 5.0 | 8.3 | 6.7 | 6.7 | 6.7 |
Month/Period | Max | Min | Y–Intercept (a) | Correlation Coefficient (r) |
---|---|---|---|---|
May | 1.77 | −2.32 | 0.0069 | 0.1208 |
June | 3.35 | −1.48 | 0.0011 | 0.0200 |
July | 1.62 | −2.54 | 0.0122 | 0.2138 |
August | 2.97 | −2.38 | 0.0126 | 0.2207 |
May–June | 2.67 | −2.29 | 0.0063 | 0.1109 |
June–July | 3.03 | −1.98 | 0.0082 | 0.1425 |
July–August | 2.15 | −2.36 | 0.0172 | 0.3003 * |
May–August | 2.44 | −1.93 | 0.0156 | 0.2733 * |
Month/Period | Max | Min | Y–Intercept (a) | Correlation Coefficient (r) |
---|---|---|---|---|
May | 13.0 | 17.3 | 9.6 | 0.0226 |
June | 16.5 | 21.9 | 14.0 | 0.0145 |
July | 18.2 | 22.7 | 15.1 | 0.0358 |
August | 17.7 | 20.9 | 15.1 | 0.0304 |
May–June | 14.7 | 17.6 | 12.0 | 0.0186 |
June–July | 17.4 | 20.2 | 14.7 | 0.0253 |
July–August | 18.0 | 21.0 | 15.5 | 0.0331 |
May–August | 16.4 | 18.9 | 13.7 | 0.0259 |
Month/Period | Max | Min | Y–Intercept (a) | Correlation Coefficient (r) |
---|---|---|---|---|
May | −22.4 | 36.0 | −75.3 | 0.1304 |
June | −19.5 | 192.0 | −86.8 | 0.0070 |
July | −19.6 | 71.8 | −107.0 | 0.3056 |
August | −28.5 | 129.5 | −87.5 | 0.3208 |
May–June | −41.9 | 152.3 | −145.5 | 0.1374 |
June–July | −39.2 | 263.8 | −157.4 | 0.3126 |
July–August | −48.1 | 102.4 | −170.3 | 0.6263 |
May–August | −90.0 | 187.4 | −262.6 | 0.7637 |
Month/Period | Y–Intercept (a) | Slope (b) | Correlation Coefficient (r) |
---|---|---|---|
May | 29.517 | −22.370 | 0.9540 |
June | 42.847 | −19.539 | 0.9598 |
July | 40.514 | −19.616 | 0.9686 |
August | 37.267 | −28.488 | 0.9607 |
May–June | 50.264 | −41.908 | 0.9609 |
June–July | 70.137 | −39.155 | 0.9687 |
July–August | 56.497 | −48.105 | 0.9750 |
May–August | 87.598 | −90.013 | 0.9747 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuśmierek-Tomaszewska, R.; Żarski, J. Assessment of Meteorological and Agricultural Drought Occurrence in Central Poland in 1961–2020 as an Element of the Climatic Risk to Crop Production. Agriculture 2021, 11, 855. https://doi.org/10.3390/agriculture11090855
Kuśmierek-Tomaszewska R, Żarski J. Assessment of Meteorological and Agricultural Drought Occurrence in Central Poland in 1961–2020 as an Element of the Climatic Risk to Crop Production. Agriculture. 2021; 11(9):855. https://doi.org/10.3390/agriculture11090855
Chicago/Turabian StyleKuśmierek-Tomaszewska, Renata, and Jacek Żarski. 2021. "Assessment of Meteorological and Agricultural Drought Occurrence in Central Poland in 1961–2020 as an Element of the Climatic Risk to Crop Production" Agriculture 11, no. 9: 855. https://doi.org/10.3390/agriculture11090855
APA StyleKuśmierek-Tomaszewska, R., & Żarski, J. (2021). Assessment of Meteorological and Agricultural Drought Occurrence in Central Poland in 1961–2020 as an Element of the Climatic Risk to Crop Production. Agriculture, 11(9), 855. https://doi.org/10.3390/agriculture11090855