Organic Fertilization and Tree Orchards
Abstract
:1. Introduction
2. Benefits and Drawbacks of Inorganic Fertilization
3. Benefits and Drawbacks of Organic Fertilization
4. Inorganic or Organic Fertilization for Tree Crops?
5. The Importance of Organic Fertilization for Fruit Tree Crops
5.1. Organic Fertilization and Productivity of Tree Crops
5.2. Organic Fertilization and Fruit Quality
6. The Future of Organic Fertilization for Tree Crops, in Relation to Innovative and Alternative Organic Soil Amendments Used as Biofertilizers and Sustainable Field Management Practices
6.1. Olive Mill Wastewater (OMW) and Other By-Products of Agricultural/Industrial/Food Production That Can Be Used as Biofertilizers for Tree Crops
6.2. Animal Manures
6.3. Municipal Waste Composts and Sewage Sludge (SS)
6.4. Crushed Pruning Wastes and Other Composts
6.5. Cover Crops (Leguminous, N-Fixing Plant Species)
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Miao, Y.; Stewart, B.A.; Zhang, F. Long-term experiments for sustainable nutrient management in China. A review. Agron. Sustain. Dev. 2011, 31, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Jakubus, M.; Bakinowsk, E. Visualization of long-term quantitative changes of microelements in soils amended with sewage sludge compost evaluated with two extraction solutions. Commun. Soil Sci. Plant Anal. 2018, 49, 1355–1369. [Google Scholar] [CrossRef]
- Carranca, C.; Brunetto, G.; Tagliavini, M. Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants 2018, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Y.; Xu, M.; Gao, S.; Yang, X.; Huang, S.; Liu, H.; Wang, B. Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Field Crops Res. 2014, 157, 47–56. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Psarras, G.; Moutsopoulou, M.; Stefanoudaki, E. Application of olive mill wastewater to a Cretan olive orchard: Effects on soil properties, plant performance and the environment. Agric. Ecosyst. Environ. 2010, 138, 293–298. [Google Scholar] [CrossRef]
- Fernandez-Hernandez, A.; Roig, A.; Serramia, N.; Garcia-Ortiz Civantos, C.; Sanchez-Monedero, M.A. Application of compost of two-phase olive mill waste on olive grove: Effects on soil, olive fruit and olive oil quality. Waste Manag. 2014, 34, 1139–1147. [Google Scholar] [CrossRef]
- Garcia-Orenes, F.; Roldan, A.; Morugan-Coronado, A.; Linares, C.; Cerda, A.; Caravaca, F. Organic fertilization in traditional Mediterranean grapevine orchards mediates changes in soil microbial community structure and enhances soil fertility. Land Degrad. Dev. 2016, 27, 1622–1628. [Google Scholar] [CrossRef]
- Jindo, K.; Chocano, C.; Melgares de Aguilar, J.; Gonzalez, D.; Hernandez, T.; Garcia, C. Impact of compost application during 5 years on crop production, soil microbial activity, carbon fraction and humification process. Commun. Soil Sci. Plant Anal. 2016, 47, 1907–1919. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Koutsos, T. Olive mill wastewater as a source of organic matter, water and nutrients for restoration of degraded soils and for crops managed with sustainable systems. Agric. Water Manag. 2017, 190, 55–64. [Google Scholar] [CrossRef]
- Das, S.; Hussain, N.; Gogoi, B.; Buragohain, A.K.; Bhattacharya, S.S. Vermicompost and farmyard manure improves food quality, antioxidant and antibacterial potential of Cajanus cajan (L. Mill sp.) leaves. J. Sci. Food Agric. 2017, 97, 956–966. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Papadakis, I.E.; Papaioannou, A.; Chatzissavvidis, C.; Giannakoula, A. Comparative study effects between manure application and a controlled release fertilizer on the growth, nutrient uptake, photosystem II activity and photosynthetic rate of Olea europaea L. (cv. ‘Koroneiki’). Sci. Hortic. 2020, 264, 109176. [Google Scholar] [CrossRef]
- Baldi, E.; Toselli, M.; Eissenstat, D.M.; Marangoni, B. Organic fertilization leads to increased peach root production and lifespan. Tree Physiol. 2010, 30, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Baldi, E.; Cavani, L.; Mazzon, M.; Marzadori, C.; Quartieri, M.; Toselli, M. Fourteen years of compost application in a commercial nectarine orchard: Effect on microelements and potential harmful elements in soil and plants. Sci. Total Environ. 2021, 752, 141894. [Google Scholar] [CrossRef]
- Ferraz de Vincente, A.; Momentel, L.T.; Poggiani, F. Soil fertility, growth and mineral nutrition in Eucalyptus grandis plantation fertilized with different kinds of sewage sludge. New Forests 2016, 47, 861–876. [Google Scholar] [CrossRef]
- Chocano, C.; Garcia, C.; Gonzalez, D.; De Aguilar, J.M.; Hernandez, T. Organic plum cultivation in the Mediterranean region: The medium term effect of five different organic soil management practices on crop production and microbiological soil quality. Agric. Ecosyst. Environ. 2016, 221, 60–70. [Google Scholar] [CrossRef]
- Nasini, L.; Gigliotti, G.; Balduccini, M.A.; Federici, E.; Cenci, G.; Proietti, P. Effect of solid olive-mill waste amendment on soil fertility and olive (Olea europea L.) tree activity. Agric. Ecosyst. Environ. 2013, 164, 292–297. [Google Scholar] [CrossRef]
- Spanoghe, J.; Grunert, O.; Wambacq, E.; Sakakira, M.; Papini, G.; Vlaeminck, S.E. Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer. Microb. Biotech. 2020, 13, 1377–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellano-Hinojosa, A.; Strauss, S.L. Impact of cover crops on the soil microbiome of tree crops. Microorganisms 2020, 8, 328. [Google Scholar] [CrossRef] [Green Version]
- Cooke, G.W. Fertilizing for Maximum Yield, 3rd ed.; Granada Publishing Ltd.: St. Albans, UK, 1982; p. 465. [Google Scholar]
- Neue, H.U. Methane emission from rice fields. Bioscience 1993, 43, 466–474. [Google Scholar] [CrossRef]
- Han, J.; Shi, J.; Zeng, L.; Xu, J.; Wu, L. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils. Environ. Sci. Pollut. Res. Int. 2014, 2976–2986. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Oberson, A.; Culvenor, R.A.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.; et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of temperate farming systems. Plant Soil 2011, 349, 89–120. [Google Scholar] [CrossRef]
- Da Costa, P.B.; Beneduzi, A.; De Souza, R.; Schoenfeld, R.; Kayser-Vargas, L.; Passaglia, P. The effects of different fertilization conditions on bacterial plant growth promoting traits: Guidelines for directed bacterial prospection and testing. Plant Soil 2013, 368, 267–280. [Google Scholar] [CrossRef]
- Dharma-Wardana, M.W.C. Fertilizer usage and cadmium in soils, crops and food. Environ. Geochem. Health 2018, 40, 2739–2759. [Google Scholar] [CrossRef] [Green Version]
- Gruhn, P.; Goletti, E.; Yudelman, M. Integrated Nutrient Management, Soil Fertility and Sustainable Agriculture: Current Issues and Future Challenges; Paper 32; International Food Policy Research Institute: Washington, DC, USA, 2000. [Google Scholar]
- Abedi, T.; Alemzadeh, A.; Kazemeini, S.A. Effect of organic and inorganic fertilizers on grain yield and protein banding pattern of wheat. Aus. J. Crop Sci. 2010, 4, 384–389. [Google Scholar]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Bekunda, M.A.; Sanginga, N.; Woomer, P.L. Restoring Soil Fertility in Sub-Sahara Africa. In Advances in Agronomy 108; Elsevier: Amsterdam, The Netherlands, 2010; Chapter 4; pp. 183–236. [Google Scholar]
- Di Serio, M.G.; Lanza, B.; Mucciarella, M.L.; Russi, F.; Iannucci, E.; Marfisi, P.; Madeo, A. Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil. Int. Biodeterior. Biodegrad. 2008, 62, 403–407. [Google Scholar] [CrossRef]
- Mekki, A.; Dhouib, A.; Sayadi, S. Evolution of several soil properties following amendment with olive mill wastewater. Prog. Nat. Sci. 2009, 19, 1515–1521. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Tsiolis, A.; Papaioannou, A.; Tsirakoglou, V.; Molassiotis, A. Can sustainable management models for olive groves adequately satisfy their nutritional needs? Sci. Hortic. 2016, 207, 48–56. [Google Scholar] [CrossRef]
- Ayoub, S.; Al-Absi, K.; Al-Shdiefat, S.; Al-Majali, D.; Hijazean, D. Effect of olivemill wastewater land-spreading on soil properties, olive tree performance and oil quality. Sci. Hortic. 2014, 175, 160–166. [Google Scholar] [CrossRef]
- Casacchia, T.; Sofo, A.; Zelasco, S.; Perri, E.; Toscano, P. In situ olive mill residual co-composting for soil organic fertility restoration and by-product sustainable reuse. Ital. J. Agron. 2012, 7, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, M.; Yang, Y.; Zhao, S.; Zhang, Y.; Wang, X. Effect of composted manure plus chemical fertilizer application on aridity response and productivity of apple trees on the loess plateau, China. Arid Land Res. Manag. 2017, 31, 388–403. [Google Scholar] [CrossRef]
- Roussos, P.A.; Gasparatos, D.; Kechrologou, K.; Katsenos, P.; Bouchagier, P. Impact of organic fertilization on soil properties, plant physiology and yield in two newly planted olive (Olea europaea L.) cultivars under Mediterranean conditions. Sci. Hortic. 2017, 220, 11–19. [Google Scholar] [CrossRef]
- Baruah, A.; Baruah, K.K.; Bhattacharyya, P. Comparative effectiveness of organic substitution in fertilizer schedule: Impacts on nitrous oxide emission, photosynthesis and crop productivity in a tropical summer rice paddy. Water Air Soil Pollut. 2016, 227, 410. [Google Scholar] [CrossRef]
- Leonel, S.; Tecchio, M.A. Cattle manure fertilization increases fig yield. Sci. Agric. 2009, 66, 806–811. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, J.; Zhu, A.; Zhang, C. Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Til. Res. 2016, 156, 166–172. [Google Scholar] [CrossRef]
- Marks, E.A.N.; Mattana, S.; Alcaniz, J.M.; Perez-Herrero, E.; Domene, X. Gasifier biochar effects on nutrient availability, organic matter mineralization, and soil fauna activity in a multi-year Mediterranean trial. Agric. Ecosyst. Environ. 2016, 215, 30–39. [Google Scholar] [CrossRef]
- Kavvadias, V.; Doula, M.K.; Komnitsas, K.; Liakopoulou, N. Disposal of olive mill wastes in evaporation ponds: Effects on soil properties. J. Hazard. Mater. 2010, 182, 144–155. [Google Scholar] [CrossRef]
- Kapellakis, I.; Tzanakakis, V.A.; Angelakis, A.N. Land application-based olive mill wastewater management. Water 2015, 7, 362–376. [Google Scholar] [CrossRef] [Green Version]
- Marron, N. Agronomic and environmental effects of land application of residues in short-rotation tree plantations: A literature review. Biomass Bioenergy 2015, 81, 378–400. [Google Scholar] [CrossRef]
- Perez-Romero, L.F.; Daza, A.; Herencia, J.F.; Arroyo, F.T. Carbohydrate and nitrogen reserves in two cultivars of Japanese plum grown under organic and conventional management. Hort. Sci. 2017, 44, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Al-Ghumaiz, N.S.; Motawei, M.I.; Abd-Elmoniem, E.M.; Al-Otayk, S.M. Selenium and zinc concentrations in spring wheat (Triticum aestivum) genotypes under organic and inorganic fertilization. J. Plant Nutr. 2020, 43, 1980–1987. [Google Scholar] [CrossRef]
- Kiczorowski, P.; Kopacki, M.; Kiczorowska, B. The response of Šampion trees growing on different rootstocks to applied organic mulches and mycorrhizal substrate in the orchard. Sci. Hortic. 2018, 241, 267–274. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Li, D.; Xu, C.; Wu, M.; Liu, M.; Li, P.; Li, G.; Zhang, T.; Li, Z. Variation of soil dissolved organic carbon under long-term different fertilizations and its correlation with maize yields. J. Soils Sediments 2020, 20, 2761–2770. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Hu, N.J.; Zhang, Z.W.; Xu, J.L.; Tao, B.R.; Meng, Y.L. Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice–wheat cropping system. Catena 2015, 135, 283–289. [Google Scholar] [CrossRef]
- He, Y.T.; Zhang, W.J.; Xu, M.G.; Tong, X.G.; Sun, F.X.; Wang, J.Z.; Huang, S.M.; Zhu, P.; He, X.H. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Sci. Total Environ. 2015, 532, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.M.; Wang, Q.; Wang, Y.; Bao, L.; Zhou, J.M. Crop yields and soil organic carbon fractions as influenced by straw incorporation in a rice–wheat cropping system in southeastern China. Nutr. Cycl. Agroecosyst. 2018, 112, 61–73. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, Q.; Feng, Z.; Liu, Z.; Li, H.; Sun, Y.; Liu, C.; Lai, H. Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity. Appl. Soil Ecol. 2020, 147, 103426. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moenne-Loccoz, Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 2009, 321, 341–361. [Google Scholar] [CrossRef] [Green Version]
- Masunga, R.H.; Uzokwe, V.N.; Mlay, P.D.; Odeh, I.; Singh, A.; Buchan, D.; De Neve, S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil Ecol. 2016, 101, 185–193. [Google Scholar] [CrossRef]
- Milosevic, T.; Milosevic, N. The effect of zeolite, organic and inorganic fertilizers on soil chemical properties, growth and biomass yield of apple trees. Plant Soil Environ. 2009, 55, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Rafael, R.B.A.; Fernandez-Marcos, M.L.; Cocco, S.; Ruello, M.L.; Fornasier, F.; Corti, G. Benefits of biochars and NPK fertilizers for soil quality and growth of cowpea (Vigna unguiculata L. Walp) in an acid Arenosol. Pedosphere 2019, 29, 311–333. [Google Scholar] [CrossRef]
- Güereña, D.T.; Kimetu, J.; Riha, S.; Neufeldt, H.; Lehmann, J. Maize productivity dynamics in response to mineral nutrient additions and legacy organic soil inputs of contrasting quality. Field Crops Res. 2016, 188, 113–120. [Google Scholar] [CrossRef]
- Abid, M.; Batool, T.; Siddique, G.; Ali, S.; Binyamin, R.; Shahid, M.J.; Rizwan, M.; Alsahli, A.A.; Alyemeni, M.N. Integrated Nutrient Management Enhances Soil Quality and Crop Productivity in Maize-Based Cropping System. Sustainability 2020, 12, 10214. [Google Scholar] [CrossRef]
- Soudani, L.; Maatoug, M.; Heilmeier, H.; Kharytonov, M.; Wiche, O.; Moschner, C.; Onyshchenkoc, E.; Bouchenafa, N. Fertilization value of municipal sewage sludge for Eucalyptus camaldulensis plants. Biotech. Rep. 2017, 13, 8–12. [Google Scholar]
- Chatzistathis, T.; Therios, I. How Soil Nutrient Availability Influences Plant Biomass and How Biomass Stimulation Alleviates Heavy Metal Toxicity in Soils: The Cases of Nutrient Use Efficient Genotypes and Phytoremediators, Respectively. In Biomass Now—Cultivation and Utilization; Matovic, M.D., Ed.; IntechOpen: Rijeka, Croatia, 2013; Chapter 18; pp. 427–448. [Google Scholar] [CrossRef] [Green Version]
- Morugan-Coronado, A.; Linares, C.; Gomez-Lopez, M.D.; Faz, A.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Zhang, J.; Pang, H.; Ma, M.; Bu, Y.; Shao, W.; Huang, W.; Ji, Q.; Yao, Y. An apple fruit fermentation (AFF) treatment improves the composition of the rhizosphere microbial community and growth of strawberry (Fragaria x ananassa Duch ‘Benihoppe’) seedlings. PLoS ONE 2016, 18, e0164776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotech. 2009, 84, 131–137. [Google Scholar] [CrossRef]
- Chatzitheodorou, I.T.; Sotiropoulos, T.E.; Mouhtaridou, G.I.; Almaliotis, D. Effect of N, P, K fertilizers and manure on growth and productivity of the peach cultivars Springtime and Redhaven. Hort. Sci. 2004, 31, 88–92. [Google Scholar]
- Chatzitheodorou, I.T.; Sotiropoulos, T.E.; Mouhtaridou, G.I. Effect of N, P, K fertilization and manure on fruit yield and fruit quality of the peach cultivars ‘Spring Time’ and ‘Red Haven’. Agric. Res. 2004, 2, 135–143. [Google Scholar]
- Milosevic, T.; Milosevic, N.; Mladenovic, J. Tree vigor, yield, fruit quality, and antioxidant capacity of apple (Malus × domestica Borkh.) influenced by different fertilization regimes: Preliminary results. Turk. J. Agric. For. 2019, 43, 48–57. [Google Scholar] [CrossRef]
- El Gammal, O.H.M.; Salama, A.S.M. Effect of Sheep Manure Application Rate and Method on Growth, Fruiting and Fruit Quality of Balady Guava Trees Grown Under Mid-Sinai Conditions. J. Agric. Vet. Sci. 2016, 9, 59–72. [Google Scholar]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Khdair, A.; Abu-Rumman, G.; Khdair, S. Pollution estimation from olive mills wasteater in Jordan. Heliyon 2019, 5, e02386. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Pineiro, A.; Albarrαn, A.; Rato Nunes, J.M.; Pena, D.; Cabrera, D. Long term impacts of de-oiled two-phase olive mill waste on soil chemical properties, enzyme activities and productivity in an olive grove. Soil Till. Res. 2011, 114, 175–182. [Google Scholar] [CrossRef]
- Garcia-Ruiz, R.; Ochoa, M.V.; Hinojosa, M.B.; Gomez-Munoz, B. Improved soil quality after 16 years of olive mill pomace application in olive oil groves. Agron. Sustain. Dev. 2013, 32, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Hernandez, A.; Mateos, R.; Garcνa-Mesa, J.A.; Beltran Maza, G.; Fernandez-Escobar, R. Determination of mineral elements in fresh olive fruits by flame atomic spectrometry. Span. J. Agric. Res. 2010, 8, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- Kavvadias, V.; Doula, M.; Theocharopoulos, S. Long-term effects on soil of the disposal of olive mill wastewaters (OMWs). Environ. Forensics 2014, 15, 37–51. [Google Scholar] [CrossRef]
- Piotrowska, A.; Rao, M.A.; Scotti, R.; Gianfreda, L. Changes in soil chemical and biochemical properties following amendment with crude and dephenolized olive mill waste water (OMW). Geoderma 2011, 161, 8–17. [Google Scholar] [CrossRef]
- Saadi, I.; Laor, Y.; Raviv, M.; Medina, S. Land spreading of olive mill wastewater: Effects on soil microbial activity and potential phytotoxicity. Chemosphere 2007, 66, 75–83. [Google Scholar] [CrossRef]
- Moraetis, D.; Stamati, F.E.; Nikolaidis, N.P.; Kalogerakis, N. Olive mill wastewater irrigation of maize: Impacts on soil and groundwater. Agric. Water Manag. 2011, 98, 1125–1132. [Google Scholar] [CrossRef]
- Vella, F.M.; Galli, E.; Calandrelli, R.; Cautela, D.; Laratta, B. Effect of olive mill wastewater spreading on soil properties. Bull. Environ. Contam. Toxicol. 2016, 97, 138–144. [Google Scholar] [CrossRef]
- Mseddi, S.; Chaari, L.; Belaid, C.; Chakchouk, I.; Kallel, M. Valorization of treated olive mill wastewater in fertigation practice. Environ. Sci. Pollut. Res. 2016, 23, 15792–15800. [Google Scholar] [CrossRef]
- Ozgun, O.K.; Ozkok, I.P.; Kutay, C.; Orhon, D. Characteristics and biodegradability of olive mill wastewaters. Environ. Tech. 2016, 37, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Rusan, M.J.; Malkawi, H.I. Dilution of olive mill wastewater (OMW) eliminates its phytotoxicity and enhances plant growth and soil fertility. Desal. Water Treat. 2016, 227, 135. [Google Scholar] [CrossRef]
- Toscano, P.; Casacchia, T.; Diacono, M.; Montemurro, F. Composted olive mill by-products: Compost characterization and application on olive orchards. J. Agric. Sci. Technol. 2013, 15, 627–638. [Google Scholar]
- Alburquerque, J.A.; Gonzalvez, J.; Garcia, D.; Cegarra, J. Effects of a compost made from the solid by-product (‘‘alperujo’’) of the two-phase centrifugation system for olive oil extraction and cotton gin waste on growth and nutrient content of ryegrass (Lolium perenne L.). Bioresour. Technol. 2007, 98, 940–945. [Google Scholar] [CrossRef]
- Walker, D.J.; Bernal, M.P. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresour. Technol. 2008, 99, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Rose, T.J.; Keen, B.; Morris, S.G.; Quin, P.; Rust, J.; Kearney, L.; Kimber, S.; Van Zwieten, L. Application of woody biochar and woody mulch to mitigate nitrous oxide emissions from a poultry litter-amended soil in the subtropics. Agric. Ecosyst. Eniron. 2016, 228, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bergstrand, K.-J.; Lofkvist, K.; Asp, H. Dynamics of nitrogen availability in pot grown crops with organic fertilization. Biol. Agric. Hortic. 2018, 35, 143–150. [Google Scholar] [CrossRef]
- Therios, I. Mineral Nutrition of Plants; Dedousis Publications: Thessaloniki, Greece, 1996. [Google Scholar]
- Gad, N.; Sekara, A.; Abdelhamid, M.T. The potential role of cobalt and/or organic fertilizers in improving the growth, yield and nutritional composition of Moringa oleifera. Agronomy 2019, 9, 862. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, S.; Ozdemir, S.; Yetilmezsoy, K. Poultry abattoir sludge as bio-nutrient source for walnut plantation in low-fertility soil. Environ. Prog. Sustain. Energy 2019, 38, e13066. [Google Scholar] [CrossRef]
- Martinez, J.; Dabert, P.; Barrington, S.; Burton, C. Livestock waste treatment systems for environmental quality, food safety and sustainability. Biores. Technol. 2009, 100, 5527–5536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, B.; Chandra, T.S. Do earthworms affect dynamics of functional response and genetic structure of microbial community in a lab-scale composting system? Bioresour. Technol. 2009, 100, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Homaeea, M.; Afzalinia, S.; Ruhipour, H.; Basirat, S. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agric. Ecosyst. Environ. 2012, 148, 22–28. [Google Scholar] [CrossRef]
- Papini, R.; Valboa, G.; Favilli, F.; L’abate, G. Influence of land use on organic carbon pool and chemical properties of Vertic Cambisols in central and southern Italy. Agric. Ecosyst. Environ. 2011, 140, 68–79. [Google Scholar] [CrossRef]
- Goldberg, N.; Nachshon, U.; Argaman, E.; Ben-Hur, M. Short term effects of livestock manures on soil structure stability, runo and soil erosion in semi-arid soils under simulated rainfall. Geoscience 2020, 10, 213. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Walia, M.K.; Gupta, R.K.; Singh, R.; Dhaliwal, M.K. Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: A review. J. Plant Nutr. 2019, 42, 2873–2900. [Google Scholar] [CrossRef]
- Faissal, A.; Ouazzani, N.; Parrado, J.R.; Dary, M.; Manyani, H.; Morgado, B.R.; Barragánd, M.D.; Mandi, L. Impact of fertilization by natural manure on the microbial quality of soil: Molecular approach. Saudi J. Biol. Sci. 2017, 24, 1437–1443. [Google Scholar] [CrossRef]
- Eriksen, J. Gross sulphur mineralization-immobilization turnover in soil amended with plant residues. Soil Biol. Biochem. 2005, 37, 2216–2224. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- De Sutter, T.M.; Ham, J.M. Lagoon-biogas emissions and carbon balance estimates of a swine production facility. J. Environ. Qual. 2005, 34, 198–206. [Google Scholar]
- Schoebitz, M.; Vidal, G. Microbial consortium and pig slurry to improve chemical properties of degraded soil and nutrient plant uptake. J. Soil Sci. Plant Nutr. 2016, 16, 226–236. [Google Scholar] [CrossRef]
- Alleoni, L.F.; Fernandes, A.R.; Correia, B.L. Sequencial extraction of phosphourus in an Oxisol amended with biosolids in a long-term field experiment in Brazil. Agric. Ecosyst. Environ. 2012, 161, 145–151. [Google Scholar] [CrossRef]
- Rodrigues Prates, A.; Renée Coscione, A.; Carvalho Minhoto Teixeira Filho, M.; Gasparoti Miranda, B.; Arf, O.; Hamilton Abreu-Junior, C.; Carvalho Oliveira, F.; Moreira, A.; Shintate Galindo, F.; Márcia Pereira Sartori, M.; et al. Composted sewage sludge enhances soybean production and agronomic performance in naturally infertile soils (Cerrado region, Brazil). Agronomy 2020, 10, 1677. [Google Scholar] [CrossRef]
- Bramryd, T. Long-term effects of sewage sludge application on the heavy metal concentrations in acid pine (Pinus sylvestris L.) forests in a climatic gradient in Sweden. For. Ecol. Manag. 2013, 289, 434–444. [Google Scholar] [CrossRef]
- Ferreiro-Dominguez, N.; Rigueiro-Rodrigues, A.; Bianchetto, E.; Mosquera-Losada, M.R. Effect of lime and sewage sludge fertilization on tree and understory interaction in a silvopastoral system. Agric. Ecosyst. Environ. 2014, 188, 72–79. [Google Scholar] [CrossRef]
- Melo, W.L.; Delarica, D.; Guedes, A.; Lavezzo, L.; Donha, R.; De Araujo, A.; De Melo, G.; Macedo, F. Ten years of application of sewage sludge on tropical soil. A balance sheet on agricultural crops and environmental quality. Sci. Total Environ. 2018, 643, 1493–1501. [Google Scholar] [CrossRef] [Green Version]
- Denaix, L.; Thomas-Chery, A.L.; Balet, J.; Benbrahum, M.; Carnus, J.M. Effects of municipal sewage sludge application on soil and Purple Moor-grass (Molinia caerulea) contamination by metals in a maritime Pine forest. Water Air Soil Pollut. 2011, 219, 239–249. [Google Scholar] [CrossRef]
- Rigueiro-Rodrigues, A.; Mosquera-Losada, M.R.; Ferreiro-Domingues, N. Pasture and soil zinc evolution in forest and agriculture soils of Northwest Spain three years after fertilization with sewage sludge. Agric. Ecosyst. Environ. 2012, 150, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Benabderrahim, M.A.; Elfalleh, W.; Belayadi, H.; Haddad, M. Effect of date palm waste compost on forage alfalfa growth, yield, seed yield and minerals uptake. Int. J. Recycl. Org. Waste Agric. 2018, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Montanaro, G.; Celano, G.; Dichio, B.; Xiloyannis, C. Effects of soil-protecting agricultural practices on soil organic carbon and productivity in fruit tree orchards. Land Degrad. Dev. 2010, 21, 132–138. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Briccoli Bati, C.; Xiloyannis, C. Soil management affects carbon dynamics and yield in a Mediterranean peach orchard. Agric. Ecosyst. Environ. 2012, 161, 46–54. [Google Scholar] [CrossRef]
- Kavvadias, V.; Papadopoulou, M.; Vavoulidou, E.; Theocharopoulos, S.; Repas, S.; Koubouris, G.; Psarras, G.; Kokkinos, G. Effect of addition of organic materials and irrigation practices on soil quality in olive groves. J. Water Climate Change 2018, 9, 775–785. [Google Scholar] [CrossRef]
- Dersch, G.; Bohm, K. Effects of agronomic practices on the soil carbon storage potential in arable farming in Austria. Nutr. Cycl. Agroecosyst. 2001, 60, 49–55. [Google Scholar] [CrossRef]
- Rui, Y.; Murphy, D.V.; Wang, X.; Hoylea, F.C. Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration. Sci. Rep. 2016, 6, 35496. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and soil carbon sequestration—What do we really know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Jiang, G.; Xu, M.; He, X.; Zhang, W.; Huang, S.; Yang, X.; Liu, H.; Peng, C.; Shirato, Y.; Iizumi, T.; et al. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Global Biogeochem. Cycl. 2014, 28, 319–333. [Google Scholar] [CrossRef]
- Li, Z.; Schneider, R.L.; Morreale, S.J.; Xie, Y.; Li, C.; Li, J. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma 2018, 310, 143–152. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Streeter, J.G. Inhibition of legume nodule formation and N2 fixation by nitrate. Crit. Rev. Plant Sci. 1988, 7, 1–23. [Google Scholar] [CrossRef]
- De Vries, W.; Reinds, G.J.; Gundersen, P.; Sterba, H. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biol. 2006, 12, 1151–1173. [Google Scholar] [CrossRef]
- Ercoli, L.; Masoni, A.; Pampana, S.; Mariotti, M.; Arduini, I. As durum wheat productivity is affected by nitrogen fertilization management in Central Italy. Eur. J. Agron. 2013, 44, 38–45. [Google Scholar] [CrossRef]
- Twomlow, S.; Rohrbach, D.; Dimes, J.; Rusike, J.; Mupangwa, W.; Ncube, B.; Hove, L.; Moyo, M.; Mashingaidze, N.; Mahposa, P. Micro-dosing as a pathway to Africa’s Green Revolution: Evidence from broad-scale on-farm trials. Nutr. Cycl. Agroecosyst. 2010, 88, 3–15. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef]
- Tejada, M.; Gonzalez, J.L.; Garcia-Martinez, A.M.; Parrado, J. Effects of different green manures on soil biological properties and maize yield. Bioresour. Technol. 2008, 99, 1758–1767. [Google Scholar] [CrossRef]
- Peix, A.; Ramírez-Bahena, M.H.; Velázquez, E.; Bedmar, E.J. Bacterial Associations with Legumes. Crit. Rev. Plant Sci. 2015, 34, 17–42. [Google Scholar] [CrossRef]
- Michalopoulos, G.; Kasapi, K.A.; Koubouris, G.; Psarras, G.; Arampatzis, G.; Hatzigiannakis, E.; Kavvadias, V.; Xiloyannis, C.; Montanaro, G.; Malliaraki, S.; et al. Adaptation of Mediterranean olive groves to climate change through sustainable cultivation practices. Climate 2020, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.B. Nitrogen rhizodeposition of legumes: A review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Mahieu, S.; Fustec, J.; Faure, M.L.; Corre-Hellou, G.; Crozat, Y. Comparison of two 15N labelling methods for assessing nitrogen rhizodeposition of pea. Plant Soil 2007, 295, 193–205. [Google Scholar] [CrossRef]
- Wichern, F.; Mayer, J.; Joergensen, R.G.; Mόller, T. Release of C and N from roots of peas and oats and their availability to soil microorganisms. Soil Biol. Biochem. 2007, 39, 2829–2839. [Google Scholar]
- Ledgard, S.F.; Steele, K.W. Biological nitrogen fixation in mixed legume/grass pastures. Plant Soil 1992, 141, 137–153. [Google Scholar] [CrossRef]
- Génard, T.; Etienne, P.; Laîné, P.; Yvin, J.C.; Diquélou, S. Nitrogen transfer from Lupinus albus L., Trifolium incarnatum L. and Vicia sativa L. contribute differently to rapeseed (Brassica napus L.) N nutrition. Heliyon 2016, 2, e00150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Høgh-Jensen, H.; Schjoerring, J.K. Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys. Soil Biol. Biochem. 2001, 33, 439–448. [Google Scholar] [CrossRef]
- Clark, M.S.; Horwath, W.R.; Shennan, C.; Scow, K.M. Changes in soil chemical properties resulting from organic and low-input farming practices. Agric. J. 1998, 90, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Pirhofer-Walzl, K.; Rasmussen, J.; Høgh-Jensen, H.; Eriksen, J.; Søegaard, K.; Rasmussen, J. Nitrogen transfer from forage legumes to nine neighboring plants in a multispecies grassland. Plant Soil 2012, 350, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Ordonez-Fernandez, R.; Repullo-Ruibérriz de Torres, M.A.; Márquez-García, J.; Moreno-García, M.; Carbonell-Bojollo, R.M. Legumes used as cover crops to reduce fertilization problems improving soil nitrate in an organic orchard. Eur. J. Agron. 2018, 95, 1–13. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Drury, C.F.; Baldock, J.A. Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Can. J. Soil Sci. 2001, 81, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.B.; Zhang, Y.Q.; Wu, B.; Qin, S.G.; Jia, X.; Feng, W. Changes in soil carbon, nitrogen and phosphorus along a chronosequence of Caragana microphylla plantation, north western China. Pol. J. Environ. Stud. 2013, 23, 385–391. [Google Scholar]
- Stinner, P.W.; Deuker, A.; Schmalfuß, T.; Brock, C.; Rensberg, N.; Denysenko, V.; Trainer, P.; Möller, K.; Zang, J.W.; Janke, L.; et al. Perennial and Intercrop Legumes as Energy Crops for Biogas Production. In Legumes for Soil Health and Sustainable Management; Meena, R.S., Das, A., Yadav, G.S., Lal, R., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 139–171. [Google Scholar]
- Meena, R.S.; Kumar, V.; Yadav, G.S.; Mitran, T. Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: A review. Plant Growth Regul. 2018, 82, 207–223. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Bandyopadhyay, K.K.; Wanjari, R.H.; Manna, M.C.; Misra, A.K.; Mohanty, M.; Rao, A.S. Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems—An Indian perspective: A review. J. Sustain. Agric. 2007, 30, 59–86. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Kumar, S.; Meena, R.S.; Lal, R.; Yadav, G.S.; Mitran, T.; Meena, B.L.; Dotaniya, M.L.; Ayman, E.S. Role of Legumes in Soil Carbon Sequestration. In Legumes for Soil Health and Sustainable Management; Meena, R., Das, A., Yadav, G., Lal, R., Eds.; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
Chemical Parameter of OMW | Nutrient Concentration of OMW | Nutrient Concentration of OMW | |||
---|---|---|---|---|---|
pH | 4.91–5.42 | Polyphenols (mg L−1) | 960–2269 | Fe (mg L−1) | 24–38.2 |
EC (dS m−1) | 7.64 | Total N (g L−1) | 0.54–1.04 | Zn (mg L−1) | 1.89–5.8 |
Total solids (g L−1) | 69.83 | Total P (g L−1) | 0.24 | Cu (mg L−1) | 1.33 ± 0.07 |
Water | 95% | K (g L−1) | 2.78–5.9 | Na (g L−1) | 0.06–0.97 |
COD (g L−1) | 58.6–92.4 | Ca (g L−1) | 0.29–0.72 | Cl (g L−1) | 0.50 |
BOD5 (g L−1) | 27–36.3 | Mg (g L−1) | 0.23–0.37 | Pb (mg L−1) | <0.09–0.27 |
Type of Manure | N | P | K |
---|---|---|---|
% d.w. | |||
Poultry manure | 1.56 | 0.40 | 0.35 |
Sheep manure | 1.40 | 0.21 | 1.00 |
Horse manure | 0.68 | 0.10 | 0.60 |
Pig manure | 0.50 | 0.14 | 0.38 |
Vegetal Material Used for Compost | N | P | K |
---|---|---|---|
% | |||
Apple leaves | 1.00 | 0.15 | 1.20 |
Leaves of Medicago sativa L. | 2.45 | 0.50 | 2.10 |
Phaseolus vulgaris L. (whole plants) | 0.50 | 0.10 | 0.50 |
Cabbage (leaves + stems) | 0.37 | 0.10 | 0.45 |
Grass | 0.50 | 0.10 | 0.25 |
Peach leaves | 0.90 | 0.15 | 1.80 |
Pear leaves | 0.70 | 0.12 | 1.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzistathis, T.; Kavvadias, V.; Sotiropoulos, T.; Papadakis, I.E. Organic Fertilization and Tree Orchards. Agriculture 2021, 11, 692. https://doi.org/10.3390/agriculture11080692
Chatzistathis T, Kavvadias V, Sotiropoulos T, Papadakis IE. Organic Fertilization and Tree Orchards. Agriculture. 2021; 11(8):692. https://doi.org/10.3390/agriculture11080692
Chicago/Turabian StyleChatzistathis, Theocharis, Victor Kavvadias, Thomas Sotiropoulos, and Ioannis E. Papadakis. 2021. "Organic Fertilization and Tree Orchards" Agriculture 11, no. 8: 692. https://doi.org/10.3390/agriculture11080692