Effect of Sucrose and Lactic Acid Bacteria Additives on Fermentation Quality, Chemical Composition and Protein Fractions of Two Typical Woody Forage Silages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Preparation
2.2. Silage Fermentation
2.3. Chemical Composition
2.4. Protein Fraction
2.5. Statistical Analysis
3. Results
3.1. Raw Material Characteristics Before Ensiling
3.2. Fermentation Quality of Silages
3.3. Chemical Nutrition of the Silages
3.4. Protein Fractions of the Silages
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Negrão, F.; Dantas, C.; Zanine, A.; Ferreira, D.; Ribeiro, M.; Souza, A.; Parente, M.; Parente, H.; Cunha, I.; Nascimento, T.; et al. Digestive Potential of Soybean Agro-Industry Byproducts. Animals 2020, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.D.A.; Carneiro, M.S.D.S.; Pinto, A.P.; Silva, D.S.; Coutinho, M.J.F.; Fontenele, R.M. Evaluation of the chemical composition of woody forage silages of the Brazilian semiarid. Semin. Ciências Agrárias 2015, 36, 571–578. [Google Scholar] [CrossRef][Green Version]
- Heinritz, S.N.; Martens, S.D.; Avila, P.; Hoedtke, S. The effect of inoculant and sucrose addition on the silage quality of tropical forage legumes with varying ensilability. Anim. Feed Sci. Technol. 2012, 174, 201–210. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, D.X.; Wang, X.K.; Lin, Y.L.; Zhang, Q.; Chen, X.Y.; Yang, F.Y. Fermentation dynamics and diversity of bacterial community in four typical woody forages. Ann. Microbiol. 2019, 69, 233–240. [Google Scholar] [CrossRef]
- Su, Y.; Chen, G.; Cai, Y.; Gao, B.; Zhi, X.; Chang, F. Effects of Broussonetia Papyriferaon Fermented Feed on the Growth Performance and Muscle Quality of Hu Sheep. Can. J. Anim. Sci. 2020, 100. [Google Scholar] [CrossRef]
- Si, B.; Tao, H.; Zhang, X.; Guo, J.; Diao, Q.Y. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian Australas. J. Anim. Sci. 2018, 31, 1259. [Google Scholar] [CrossRef][Green Version]
- Sun, J.; Peng, X.; Fan, W.; Tang, M.; Liu, J.; Shen, S. Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene 2014, 535, 140–149. [Google Scholar] [CrossRef]
- Zheng, S.; Zeng, W.; Han, L.; Liu, C.; Yu, M.; Xiang, Z.; Zhao, A. Comprehensive evaluation of nutritional quality of leaves from 45 mulberry germplasms and varieties. Food Sci. 2017, 38, 159–163. [Google Scholar]
- Cai, Y.M.; Benno, Y.; Ogawa, M.; Ohmomo, S.; Nakase, T. Influence of Lactobacillus spp. from an Inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microbiol. 1998, 64, 2982–2987. [Google Scholar] [CrossRef][Green Version]
- Li, M.; Zi, X.; Zhou, H.; Hou, G.; Cai, Y. Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Anim. Feed Sci. Technol. 2014, 197, 206–212. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Yang, H.; Na, R.S. The effects of stage of growth and additives with or without cellulase on fermentation and invitro degradation characteristics of Leymus chinensis silage. Grass Forage Sci. 2016, 71, 595–606. [Google Scholar] [CrossRef]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef]
- Xu, C.; Cai, Y.; Murai, M. Fermentation quality and nutritive value of total mixed ration silage with barley tea grounds. Jpn. J. Zootech. Sci. 2004, 75, 185–191. [Google Scholar]
- Porter, M.G.; Murray, R.S. The volatility of components of grass silage on oven drying and the inter-relationship between dry-matter content estimated by different analytical methods. Grass Forage Sci. 2010, 56, 405–411. [Google Scholar] [CrossRef][Green Version]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Wang, X.; Yu, Z.; Na, R. Ensiling alfalfa with whole crop corn improves the silage quality and invitro digestibility of the silage mixtures. Grassl. Sci. 2017, 63, 211–217. [Google Scholar] [CrossRef]
- Cunniff, C.; Horwitz, W.; Latimer, G. Official Method of Analysis of AOAC International. Trends Food Sci. Technol. 2000, 6, 382. [Google Scholar]
- Hattori, I.; Kumai, S.; Fukumi, R. Effect of water soluble carbohydrate (WSC) and lactic buffering capacity (LBC) on fermentative quality of silage. Bull. Exp. Farm Coll. Agric. Ehime Univ. 1996, 39–46. Available online: https://agris.fao.org/agris-search/search.do?recordID=JP1998006752 (accessed on 2 February 2021).
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Z.; Li, Z.; Li, Y. Comprehensive evaluation of yield and nutritional qualityof 14Alfalfa Varieties. Grassl. Turf. 2019, 39, 85–91. [Google Scholar]
- Hao, Y.; Huang, S.; Liu, G.; Zhang, J.; Liu, G.; Cao, Z.; Wang, Y.; Wang, W.; Li, S. Effects of Different Parts on the Chemical Composition, Silage Fermentation Profile, In Vitro and In Situ Digestibility of Paper Mulberry. Animals 2021, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- Phetthavong, M.; Yachai, M.; Maneewan, C.; Panatuk, J. Effects of dried paper mulberry leaf silage supplementation in diets on growth performance of fattening pigs. Khon Kaen Agric. J. 2019, 47. Available online: https://erp.mju.ac.th/openFile.aspx?id=MzQ5Mzk1 (accessed on 2 February 2021).
- Wilson, K.B.; Baldocchi, D.D. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric. For. Meteorol. 2000, 100, 1–18. [Google Scholar] [CrossRef]
- Bai, C.; Zhang, R.; Jiang, C.; Yan, R.; Han, J.; Zhu, Y.; Zhang, Y. Characterization of carbohydrate fractions and fermentation quality in ensiled alfalfa treated with different additives. Afr. J. Biotechnol. 2011, 10, 9958–9968. [Google Scholar]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef][Green Version]
- Roberts, C.A.; Davis, D.K.; Looper, M.L.; Kallenbach, R.L.; Rottinghaus, G.E.; Hill, N.S. Ergot Alkaloid Concentrations in High- and Low-Moisture Tall Fescue Silage. Crop Sci. 2014, 54, 1887–1892. [Google Scholar] [CrossRef]
- Blajman, J.E.; Paez, R.B.; Vinderola, C.G.; Lingua, M.S.; Signorini, M.L. A meta-analysis on the effectiveness of homofermentative and heterofermentative lactic acid bacteria for corn silage. J. Appl. Microbiol. 2018, 125, 1655–1669. [Google Scholar] [CrossRef]
- Li, P.; Ji, S.; Hou, C.; Tang, H.; Wang, Q.; Shen, Y. Effects of chemical additives on the fermentation quality and N distribution of alfalfa silage in south of China. Anim. Sci. J. 2016, 87, 1472–1479. [Google Scholar] [CrossRef]
- Ryu, C.; Park, M.; Jeon, E.; Kim, Y.S.; Lee, H.; Cho, S.; Choi, N.J. Effects of Different Forages and Kenaf Silage on in Vitro Rumen Fermentation and Growth Performance of Hanwoo Steer. J. Anim. Sci. 2017, 95, 304. [Google Scholar] [CrossRef][Green Version]
- Dunière, L.; Sindou, J.; Chaucheyras-Durand, F.; Chevallier, I.; Thévenot-Sergentet, D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Tech. 2013, 182, 1–15. [Google Scholar] [CrossRef]
- Hartinger, T.; Kube, K.; Gresner, N.; Südekum, K.H. Varying ensiling conditions affect the fermentation quality and abundance of bacterial key players in lucerne silages. J. Agric. Sci. 2020, 158, 1–7. [Google Scholar] [CrossRef]
- Zheng, M.; Niu, D.; Zuo, S.; Mao, P.; Meng, L.; Xu, C. The effect of cultivar, wilting and storage period on fermentation and the clostridial community of alfalfa silage. Ital. J. Anim. Sci. 2018, 17, 336–346. [Google Scholar] [CrossRef]
- Amorim, D.S.; Loiola Edvan, R.; Do Nascimento, R.R.; Bezerra, L.R.; de Araújo, M.J.; Da Silva, A.L.; Mielezrski, F.; Nascimento, K.D.S. Fermentation profile and nutritional value of sesame silage compared to usual silages. Ital. J. Anim. Sci. 2020, 19, 230–239. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Zhang, Y.; Lin, Y.; Yang, F. Evaluation of lactic acid bacteria isolated from alfalfa for silage fermentation. Grassl. Sci. 2018, 64, 190–198. [Google Scholar] [CrossRef]
- Li, X.; Tian, J.; Zhang, Q.; Jiang, Y.; Hou, J.; Wu, Z.; Yu, Z. Effects of applying Lactobacillus plantarum and Chinese gallnut tannin on the dynamics of protein degradation and proteases activity in alfalfa silage. Grass Forage Sci. 2018, 73, 648–659. [Google Scholar] [CrossRef]
- Moselhy, M.A.; Borba, J.P.; Borba, A.E.S. Improving the nutritive value, in vitro digestibility and aerobic stability of Hedychium gardnerianum silage through application of additives at ensiling time. Anim. Feed Sci. Technol. 2015, 206, 8–18. [Google Scholar] [CrossRef]
- Papadopoulos, Y.A.; Mckersie, B.D. A comparison of protein degradation during wilting and ensiling of six forage species. Can. J. Plant Sci. 1983, 63, 903–912. [Google Scholar] [CrossRef]
- Heron, S.J.E.; Edwards, R.A.; Mcdonald, P. Changes in the nitrogenous components of gamma-irradiated and inoculated ensiled ryegrass. J. Sci. Food Agric. 1986, 37, 979–985. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.Q.; Zhou, H.; Feng, T. Effects of addition of previously fermented juice prepared from alfalfa on fermentation quality and protein degradation of alfalfa silage. Anim. Feed Sci. Technol. 2009, 151, 280–290. [Google Scholar] [CrossRef]
- Hervert-Hernández, D.; Pintado, C.; Rotger, R.; Goñi, I. Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. Int. J. Food Microbiol. 2009, 136, 119–122. [Google Scholar] [CrossRef] [PubMed]
Items | PM | MU | SEM | p-Value |
---|---|---|---|---|
BC (g LA−1 kg DM) | 83.54 | 83.55 | 0.00 | NS |
DM (%FW) | 28.74 b | 38.67 a | 4.97 | ** |
CP (%DM) | 25.97 a | 19.38 b | 3.29 | ** |
NDF (%DM) | 34.24 a | 18.43 b | 7.90 | ** |
ADF (%DM) | 23.63 a | 12.77 b | 5.43 | ** |
ADL (%DM) | 10.28 a | 2.62 b | 3.83 | ** |
HC (%DM) | 10.60 a | 5.65 b | 2.47 | ** |
CE (%DM) | 11.64 a | 8.53 b | 1.55 | ** |
WSC (%DM) | 3.12 b | 10.72 a | 3.80 | ** |
S0 | S2 | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Items | Species | CK | LP | LC | CK | LP | LC | Mean | SEM | S | Ad | S × Ad |
pH value | PM | 6.89 a | 6.46 c | 6.71 b | 5.71 d | 5.47 e | 5.50 e | 6.13 A | 0.25 | ** | ** | NS |
MU | 5.06 a | 4.33c | 4.15 d | 4.73b | 4.14 d | 3.99 e | 4.40 B | 0.17 | ** | ** | ** | |
LA (%DM) | PM | ND | ND | ND | 0.76 b | 3.14 a | 4.58 a | 1.41 B | 0.80 | ** | NS | NS |
MU | 2.52 b | 2.17 b | 3.51 ab | 3.69 ab | 6.11 a | 2.10 b | 3.35 A | 0.62 | NS | NS | * | |
AA (%DM) | PM | 3.02 | 2.84 | 2.10 | 4.00 | 2.01 | 2.17 | 2.69 A | 0.31 | NS | NS | NS |
MU | 0.46 ab | ND | ND | 0.24 b | 0.83 a | ND | 0.26 B | 0.14 | NS | * | ** | |
PA (%DM) | PM | 2.27 ab | 1.76 ab | 1.66 ab | 3.52 a | 0.53 b | 1.00 ab | 1.79 A | 0.43 | NS | NS | NS |
MU | 0.5 | ND | ND | 0.48 | ND | ND | 0.16 B | 0.10 | NS | NS | NS | |
BA (%DM) | PM | ND | ND | ND | ND | ND | ND | ND | ND | NS | NS | NS |
MU | ND | ND | ND | ND | ND | ND | ND | ND | NS | NS | NS | |
NH3-N (%TN) | PM | 16.05 ab | 17.88 a | 17.02 a | 12.42 bc | 11.57 c | 11.82 c | 14.44 A | 1.16 | ** | NS | NS |
MU | 6.68 a | 2.86 b | 1.82 c | 5.91 a | 1.65 c | 1.02 c | 3.32 B | 0.98 | ** | ** | NS |
Items | Species | S0 | S2 | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | LP | LC | CK | LP | LC | Mean | SEM | S | Ad | S × Ad | ||
DM (%FW) | PM | 27.0 ab | 25.7 b | 26.9 ab | 27.4 ab | 28.9 a | 28.6 a | 27.4 B | 0.48 | * | NS | NS |
MU | 32.8 b | 33.4 b | 33.5 b | 33.7 b | 34.7 b | 41.3 a | 34.9 A | 1.31 | NS | NS | NS | |
CP (%DM) | PM | 23.5 | 23.4 | 23.7 | 22.4 | 23.2 | 22.7 | 23.1 A | 0.20 | * | NS | NS |
MU | 19.1 a | 18.9 a | 19.1 a | 19.1 a | 17.6 c | 18.3 b | 18.7 B | 0.26 | ** | ** | * | |
NDF (%DM) | PM | 29.6 a | 22.0 b | 25.4 ab | 20.6 b | 27.0 ab | 23.3 ab | 24.7 A | 1.36 | NS | NS | * |
MU | 21.1 a | 18.8 bc | 18.9 bc | 20.1 ab | 16.9 d | 17.4 cd | 18.9 B | 0.64 | ** | ** | NS | |
ADF (%DM) | PM | 18.7 a | 17.4 ab | 18.4 ab | 16.4 b | 17.3 ab | 17.5 ab | 17.6 A | 0.33 | * | NS | NS |
MU | 15.0 a | 14.2 ab | 13.5 bc | 14.1 ab | 12.8 cd | 12.3 d | 13.6 B | 0.41 | ** | ** | NS | |
ADL (%DM) | PM | 4.0 | 2.9 | 4.0 | 3.2 | 3.2 | 4.1 | 3.6 | 0.21 | NS | NS | NS |
MU | 4.5 a | 3.3 ab | 4.0 ab | 4.5 a | 2.8 b | 3.1 ab | 3.7 | 0.30 | NS | * | NS | |
HC (%DM) | PM | 10.8 a | 4.6 c | 7.1 abc | 4.2 c | 9.7 ab | 5.8 bc | 7.0 A | 1.12 | NS | NS | ** |
MU | 6.2 a | 4.6 bc | 5.4 abc | 6.0 ab | 4.2 c | 5.2 abc | 5.3 B | 0.32 | NS | ** | NS | |
CE (%DM) | PM | 14.0 a | 12.9 ab | 13.3 a | 11.8 b | 12.8 ab | 11.7 b | 12.8 A | 0.36 | ** | NS | NS |
MU | 9.2 ab | 9.5 a | 8.5 ab | 8.6 ab | 8.3 b | 8.2 b | 8.7 B | 0.21 | * | NS | NS | |
WSC (%DM) | PM | 0.6 ab | 0.7 a | 0.6 bc | 0.6 bc | 0.6 bc | 0.5 c | 0.6 | 0.02 | NS | NS | NS |
MU | 1.0 b | 1.3 b | 1.1 b | 1.0 b | 2.5 a | 1.5 b | 1.4 | 0.23 | ** | ** | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, H.; Xie, Y.; Zhang, Y.; Lin, Y.; Zheng, Y.; Yang, X.; Wang, N.; Ni, K.; Yang, F. Effect of Sucrose and Lactic Acid Bacteria Additives on Fermentation Quality, Chemical Composition and Protein Fractions of Two Typical Woody Forage Silages. Agriculture 2021, 11, 256. https://doi.org/10.3390/agriculture11030256
Wang X, Liu H, Xie Y, Zhang Y, Lin Y, Zheng Y, Yang X, Wang N, Ni K, Yang F. Effect of Sucrose and Lactic Acid Bacteria Additives on Fermentation Quality, Chemical Composition and Protein Fractions of Two Typical Woody Forage Silages. Agriculture. 2021; 11(3):256. https://doi.org/10.3390/agriculture11030256
Chicago/Turabian StyleWang, Xuekai, Han Liu, Yixiao Xie, Yingchao Zhang, Yanli Lin, Yulong Zheng, Xueping Yang, Ningwei Wang, Kuikui Ni, and Fuyu Yang. 2021. "Effect of Sucrose and Lactic Acid Bacteria Additives on Fermentation Quality, Chemical Composition and Protein Fractions of Two Typical Woody Forage Silages" Agriculture 11, no. 3: 256. https://doi.org/10.3390/agriculture11030256