Assessing Baseline Carbon Stocks for Forest Transitions: A Case Study of Agroforestry Restoration from Hawaiʻi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Carbon Stock Measurement and Analysis
2.2.1. Vegetation Carbon
2.2.2. Soil Carbon
2.2.3. Carbon Stock–Equivalent Soil Mass Method
2.2.4. Geospatial Analysis and Kriging
3. Results
3.1. Ecosystem Carbon
3.2. Soil Carbon
3.2.1. Percent Carbon
3.2.2. Total Soil Carbon Stock
3.2.3. Spatial Dependence of Total C Stock
4. Discussion
4.1. Lesson 1: Accurate Carbon Stock Assessment Requires Inclusion of Both Above- and Below-Ground Carbon Pools
4.2. Lesson 2: The Equivalent Soil Mass Method (ESM) Provides a Practical Mass-Based Method to Characterize Soil C Stocks at Depth
4.3. Lesson 3: Geospatial Analysis Can Effectively Characterize Spatial Heterogeneity and Inform Future Sampling Effort
4.4. Lesson 4: Soil Carbon Is More Than Just the Ecosystem Service of Climate Mitigation; It Can Serve as a Holistic Indicator of Success in Biocultural Restoration of Agroforestry Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, S.; Lugo, A.E. Tropical Secondary Forests. J. Trop. Ecol. 1990, 6, 1–32. [Google Scholar] [CrossRef]
- Cortés-Calderón, S.; Mora, F.; Arreola-Villa, F.; Balvanera, P. Ecosystem Services Supply and Interactions along Secondary Tropical Dry Forests Succession. For. Ecol. Manag. 2021, 482, 118858. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Harvey, C.A.; Komar, O.; Griffith, D.M.; Ferguson, B.G.; Martínez-Ramos, M.; Morales, H.; Nigh, R.; Soto-Pinto, L.; Breugel, M.V.; et al. Beyond Reserves: A Research Agenda for Conserving Biodiversity in Human-Modified Tropical Landscapes. Biotropica 2009, 41, 142–153. [Google Scholar] [CrossRef][Green Version]
- Matos, F.A.R.; Magnago, L.F.S.; Miranda, C.A.C.; de Menezes, L.F.T.; Gastauer, M.; Safar, N.V.H.; Schaefer, C.E.G.R.; da Silva, M.P.; Simonelli, M.; Edwards, F.A.; et al. Secondary Forest Fragments Offer Important Carbon and Biodiversity Cobenefits. Glob. Chang. Biol. 2020, 26, 509–522. [Google Scholar] [CrossRef]
- Naime, J.; Mora, F.; Sánchez-Martínez, M.; Arreola, F.; Balvanera, P. Economic Valuation of Ecosystem Services from Secondary Tropical Forests: Trade-Offs and Implications for Policy Making. For. Ecol. Manag. 2020, 473, 118294. [Google Scholar] [CrossRef]
- Zeng, Y.; Gou, M.; Ouyang, S.; Chen, L.; Fang, X.; Zhao, L.; Li, J.; Peng, C.; Xiang, W. The Impact of Secondary Forest Restoration on Multiple Ecosystem Services and Their Trade-Offs. Ecol. Indic. 2019, 104, 248–258. [Google Scholar] [CrossRef]
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.; Lambin, E. Forest Transitions: Towards a Global Understanding of Land Use Change. Glob. Environ. Chang. 2005, 15, 23–31. [Google Scholar] [CrossRef]
- Wilson, S.; Schelhas, J.; Grau, R.; Nanni, A.; Sloan, S. Forest Ecosystem-Service Transitions: The Ecological Dimensions of the Forest Transition. Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef][Green Version]
- Hughes, R.F.; Asner, G.P.; Mascaro, J.; Uowolo, A.; Baldwin, J. Carbon Storage Landscapes of Lowland Hawaii: The Role of Native and Invasive Species through Space and Time. Ecol. Appl. 2014, 24, 716–731. [Google Scholar] [CrossRef]
- Guariguata, M.R.; Ostertag, R. Neotropical Secondary Forest Succession: Changes in Structural and Functional Characteristics. For. Ecol. Manag. 2001, 148, 22. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Higgs, E.; Harris, J.A. Novel Ecosystems: Implications for Conservation and Restoration. Trends Ecol. Evol. 2009, 24, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.J.; Higgs, E.S.; Harris, J.A. Novel Ecosystems: Concept or Inconvenient Reality? A Response to Murcia et Al. Trends Ecol. Evol. 2014, 29, 645–646. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, R.J.; Valentine, L.; Standish, R.; Jackson, S. Movers and Stayers: Novel Assemblages in Changing Environments. Trends Ecol. Evol. 2017, 33, 116–128. [Google Scholar] [CrossRef][Green Version]
- Collier, M.J. Novel Ecosystems and the Emergence of Cultural Ecosystem Services. Ecosyst. Serv. 2014, 9, 166–169. [Google Scholar] [CrossRef][Green Version]
- Evers, C.R.; Wardropper, C.B.; Branoff, B.; Granek, E.F.; Hirsch, S.L.; Link, T.E.; Olivero-Lora, S.; Wilson, C. The Ecosystem Services and Biodiversity of Novel Ecosystems: A Literature Review. Glob. Ecol. Conserv. 2018, 13, 13. [Google Scholar] [CrossRef]
- Burnett, K.M.; Ticktin, T.; Bremer, L.L.; Quazi, S.A.; Geslani, C.; Wada, C.A.; Kurashima, N.; Mandle, L.; Pascua, P.; Depraetere, T.; et al. Restoring to the Future: Environmental, Cultural, and Management Trade-Offs in Historical versus Hybrid Restoration of a Highly Modified Ecosystem. Conserv. Lett. 2019, 12, e12606. [Google Scholar] [CrossRef][Green Version]
- Hastings, Z.; Ticktin, T.; Botelho, M.; Reppun, N.; Kukea-Shultz, K.; Wong, M.; Melone, A.; Bremer, L. Integrating Co-Production and Functional Trait Approaches for Inclusive and Scalable Restoration Solutions. Conserv. Sci. Pract. 2020, 2, e250. [Google Scholar] [CrossRef]
- Ostertag, R.; Warman, L.; Cordell, S.; Vitousek, P.M. Using Plant Functional Traits to Restore Hawaiian Rainforest. J. Appl. Ecol. 2015, 52, 805–809. [Google Scholar] [CrossRef]
- Selmants, P.C.; Litton, C.M.; Giardina, C.P.; Asner, G.P. Ecosystem Carbon Storage Does Not Vary with Mean Annual Temperature in Hawaiian Tropical Montane Wet Forests. Glob. Chang. Biol. 2014, 20, 2927–2937. [Google Scholar] [CrossRef] [PubMed]
- Selmants, P.C.; Giardina, C.P.; Sousan, S.; Knapp, D.; Kimball, H.L.; Hawbaker, T.J.; Moreno, A.; Seirer, J.; Running, S.W.; Miura, T.; et al. Baseline Carbon Storage and Carbon Fluxes in Terrestrial Ecosystems of Hawai‘i; Professional Paper: Hong Kong, China, 2017. [Google Scholar]
- Winter, K.B.; Lucas, M. Spatial Modeling of Social-Ecological Management Zones of the Ali‘i Era on the Island of Kaua‘i with Implications for Large-Scale Biocultural Conservation and Forest Restoration Efforts in Hawai‘i. Pac. Sci. 2017, 71, 457–477. [Google Scholar] [CrossRef]
- Kurashima, N.; Fortini, L.; Ticktin, T. The Potential of Indigenous Agricultural Food Production under Climate Change in Hawaiʻi. Nat. Sustain. 2019, 2, 191–199. [Google Scholar] [CrossRef]
- Chimera, C.G.; Drake, D.R. Patterns of Seed Dispersal and Dispersal Failure in a Hawaiian Dry Forest Having Only Introduced Birds. Biotropica 2010, 42, 493–502. [Google Scholar] [CrossRef]
- Loope, L.L.; Hughes, R.F.; Meyer, J.-Y. Plant Invasions in Protected Areas of Tropical Pacific Islands, with Special Reference to Hawaii. In Plant Invasions in Protected Areas; Foxcroft, L.C., Pyšek, P., Richardson, D.M., Genovesi, P., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 313–348. ISBN 978-94-007-7749-1. [Google Scholar]
- Vorsino, A.E.; Fortini, L.B.; Amidon, F.A.; Miller, S.E.; Jacobi, J.D.; Price, J.P.; Iii, S. ’Ohukani’ohi’a G.; Koob, G.A. Modeling Hawaiian Ecosystem Degradation Due to Invasive Plants under Current and Future Climates. PLoS ONE 2014, 9, e95427. [Google Scholar] [CrossRef][Green Version]
- Trauernicht, C.; Ticktin, T.; Fraiola, H.; Hastings, Z.; Tsuneyoshi, A. Active Restoration Enhances Recovery of a Hawaiian Mesic Forest after Fire. For. Ecol. Manag. 2018, 411, 1–11. [Google Scholar] [CrossRef]
- Winter, K.; Ticktin, T.; Quazi, S. Biocultural Restoration in Hawaiʻi Also Achieves Core Conservation Goals. Ecol. Soc. 2020, 25, 26. [Google Scholar] [CrossRef]
- Department of Land and Natural Resources. The Rain Follows The Forest—A Plan to Replenish Hawaii’s Source of Water; Department of Land and Natural Resources: St. Honolulu, HI, USA, 2011. [Google Scholar]
- Perkins, K.S.; Nimmo, J.R.; Medeiros, A.C.; Szutu, D.J. Assessing Effects of Native Forest Restoration on Soil Moisture Dynamics and Potential Aquifer Recharge, Auwahi, Maui. Ecohydrology 2014, 7, 1437–1451. [Google Scholar] [CrossRef]
- Friday, J.B.; Cordell, S.; Giardina, C.P.; Inman-Narahari, F.; Koch, N.; Leary, J.J.K.; Litton, C.M.; Trauernicht, C. Future Directions for Forest Restoration in Hawai‘i. New For. 2015, 46, 733–746. [Google Scholar] [CrossRef]
- Griscom, B.W.; Busch, J.; Cook-Patton, S.C.; Ellis, P.W.; Funk, J.; Leavitt, S.M.; Lomax, G.; Turner, W.R.; Chapman, M.; Engelmann, J.; et al. National Mitigation Potential from Natural Climate Solutions in the Tropics. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190126. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Castro, A.P. Indigenous Kikuyu Agroforestry: A Case Study of Kirinyaga, Kenya. Hum. Ecol. 1991, 19, 1–18. [Google Scholar] [CrossRef]
- Thaman, R. Agrodeforestation and the Loss of Agrobiodiversity in the Pacific Islands: A Call for Conservation. Pac. Conserv. Biol. 2014, 20, 180–192. [Google Scholar] [CrossRef]
- Chepstow-Lusty, A.; Jonsson, P. Inca Agroforestry: Lessons from the Past. AMBIO J. Hum. Environ. 2000, 29, 322–328. [Google Scholar] [CrossRef]
- Ticktin, T.; Quazi, S.; Dacks, R.; Tora, M.; McGuigan, A.; Hastings, Z.; Naikatini, A. Linkages between Measures of Biodiversity and Community Resilience in Pacific Island Agroforests. Conserv. Biol. 2018, 32, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Winter, K.; Lincoln, N.; Berkes, F.; Alegado, R.; Kurashima, N.; Frank, K.; Pascua, P.; Rii, Y.; Reppun, F.; Knapp, I.; et al. Ecomimicry in Indigenous Resource Management: Optimizing Ecosystem Services to Achieve Resource Abundance, with Examples from Hawaiʻi. Ecol. Soc. 2020, 25, 26. [Google Scholar] [CrossRef]
- Smith, J.; El-Swaify, S.A. (Eds.) Toward Sustainable Agriculture: A Guide for Hawai’i’s Farmers; College of Tropical Agriculture and Human Resources, University of Hawai’i at Manoa: Honolulu, HI, USA, 2006; ISBN 978-1-929325-18-4. [Google Scholar]
- Kurashima, N.; Jeremiah, J.; Ticktin, T. I Ka Wā Ma Mua: The Value of a Historical Ecology Approach to Ecological Restoration in Hawai’i. Pac. Sci. 2017, 71, 437–456. [Google Scholar] [CrossRef]
- Elevitch, C.; Mazaroli, D.; Ragone, D. Agroforestry Standards for Regenerative Agriculture. Sustainability 2018, 10, 3337. [Google Scholar] [CrossRef][Green Version]
- Lincoln, N.K.; Rossen, J.; Vitousek, P.; Kahoonei, J.; Shapiro, D.; Kalawe, K.; Pai, M.; Marshall, K.; Meheula, K. Restoration of ‘Āina Malo‘o on Hawai‘i Island: Expanding Biocultural Relationships. Sustainability 2018, 10, 3985. [Google Scholar] [CrossRef][Green Version]
- Hawaiʻi Green Growth Hawaiʻi Green Growth Malama Mandate. Available online: https://www.hawaiigreengrowth.org/wp-content/uploads/2019/04/hawaii-green-growth-malama-mandate-signed-113018.pdf (accessed on 28 November 2020).
- De Stefano, A.; Jacobson, M.G. Soil Carbon Sequestration in Agroforestry Systems: A Meta-Analysis. Agrofor. Syst. 2018, 92, 285–299. [Google Scholar] [CrossRef]
- Chatterjee, N.; Nair, P.; Ramachandran, K.; Chakraborty, S.; Nair, V.D. Changes in Soil Carbon Stocks across the Forest-Agroforest-Agriculture/Pasture Continuum in Various Agroecological Regions: A Meta-Analysis. Agric. Ecosyst. Environ. 2018, 266, 55–67. [Google Scholar] [CrossRef]
- Feliciano, D.; Ledo, A.; Hillier, J.; Nayak, D. Which Agroforestry Options Give the Greatest Soil and above Ground Carbon Benefits in Different World Regions? Agric. Ecosyst. Environ. 2018, 254, 117–129. [Google Scholar] [CrossRef]
- Jose, S.; Bardhan, S. Agroforestry for Biomass Production and Carbon Sequestration: An Overview. Agrofor. Syst. 2012, 86, 105–111. [Google Scholar] [CrossRef]
- Hertel, D.; Harteveld, M.A.; Leuschner, C. Conversion of a Tropical Forest into Agroforest Alters the Fine Root-Related Carbon Flux to the Soil. Soil Biol. Biochem. 2009, 41, 481–490. [Google Scholar] [CrossRef]
- Gama-Rodrigues, E.F.; Ramachandran Nair, P.K.; Nair, V.D.; Gama-Rodrigues, A.C.; Baligar, V.C.; Machado, R.C.R. Carbon Storage in Soil Size Fractions Under Two Cacao Agroforestry Systems in Bahia, Brazil. Environ. Manag. 2010, 45, 274–283. [Google Scholar] [CrossRef]
- Monroe, P.H.M.; Gama-Rodrigues, E.F.; Gama-Rodrigues, A.C.; Marques, J.R.B. Soil Carbon Stocks and Origin under Different Cacao Agroforestry Systems in Southern Bahia, Brazil. Agric. Ecosyst. Environ. 2016, 221, 99–108. [Google Scholar] [CrossRef]
- Winter, K.; Rii, Y.; Reppun, F.; Hintzen, K.; Alegado, R.; Bowen, B.; Bremer, L.; Coffman, M.; Deenik, J.; Donahue, M.; et al. Collaborative Research to Inform Adaptive Comanagement: A Framework for the Heʻeia National Estuarine Research Reserve. Ecol. Soc. 2020, 25, 15. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Scherer-Lorenzen, M.; Scholten, T.; Schulze, E.-D. Spatial and Vertical Variation of Soil Carbon at Two Grassland Sites—Implications for Measuring Soil Carbon Stocks. Geoderma 2007, 141, 272–282. [Google Scholar] [CrossRef]
- Baveye, P.C.; Laba, M. Moving Away from the Geostatistical Lamppost: Why, Where, and How Does the Spatial Heterogeneity of Soils Matter? Ecol. Model. 2015, 298, 24–38. [Google Scholar] [CrossRef]
- Davis, M.; Alves, B.; Karlen, D.; Kline, K.; Galdos, M.; Abulebdeh, D. Review of Soil Organic Carbon Measurement Protocols: A US and Brazil Comparison and Recommendation. Sustainability 2017, 10, 53. [Google Scholar] [CrossRef][Green Version]
- Kremen, C.; Miles, A. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecol. Soc. 2012, 17, 40. [Google Scholar] [CrossRef]
- Olson, K.R.; Al-Kaisi, M.M. The Importance of Soil Sampling Depth for Accurate Account of Soil Organic Carbon Sequestration, Storage, Retention and Loss. CATENA 2015, 125, 33–37. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Mohan Kumar, B.; Nair, V.D. Agroforestry as a Strategy for Carbon Sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar] [CrossRef][Green Version]
- Wendt, J.W.; Hauser, S. An Equivalent Soil Mass Procedure for Monitoring Soil Organic Carbon in Multiple Soil Layers. Eur. J. Soil Sci. 2013, 64, 58–65. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Shi, L.; Wang, X.; Liu, Y.; Mao, R.; Rao, X.; Lin, Y.; Shao, Y.; Li, X.; et al. An Alternative Approach to Reduce Algorithm-Derived Biases in Monitoring Soil Organic Carbon Changes. Ecol. Evol. 2019, 9, 7586–7596. [Google Scholar] [CrossRef] [PubMed][Green Version]
- von Haden, A.C.; Yang, W.H.; DeLucia, E.H. Soils’ Dirty Little Secret: Depth-Based Comparisons Can Be Inadequate for Quantifying Changes in Soil Organic Carbon and Other Mineral Soil Properties. Glob. Chang. Biol. 2020, 26, 3759–3770. [Google Scholar] [CrossRef] [PubMed]
- Crow, S.E.; Reeves, M.; Turn, S.; Taniguchi, S.; Schubert, O.S.; Koch, N. Carbon Balance Implications of Land Use Change from Pasture to Managed Eucalyptus Forest in Hawaii. Carbon Manag. 2016, 7, 171–181. [Google Scholar] [CrossRef]
- Winter, K.B.; Beamer, K.; Vaughan, M.B.; Friedlander, A.M.; Kido, M.H.; Whitehead, A.N.; Akutagawa, M.K.H.; Kurashima, N.; Lucas, M.P.; Nyberg, B. The Moku System: Managing Biocultural Resources for Abundance within Social-Ecological Regions in Hawaiʻi. Sustainability 2018, 10, 3554. [Google Scholar] [CrossRef][Green Version]
- Bremer, L.L.; Falinski, K.; Ching, C.; Wada, C.A.; Burnett, K.M.; Kukea-Shultz, K.; Reppun, N.; Chun, G.; Oleson, K.L.L.; Ticktin, T. Biocultural Restoration of Traditional Agriculture: Cultural, Environmental, and Economic Outcomes of Lo‘i Kalo Restoration in He‘eia, O‘ahu. Sustainability 2018, 10, 4502. [Google Scholar] [CrossRef][Green Version]
- Kimmerer, R. Restoration and Reciprocity: The Contributions of Traditional Ecological Knowledge. In Human Dimensions of Ecological Restoration: Integrating Science, Nature, and Culture; Island Press: Washington, DC, USA, 2011; pp. 257–276. [Google Scholar] [CrossRef]
- Winter, K.; Lincoln, N.; Berkes, F. The Social-Ecological Keystone Concept: A Quantifiable Metaphor for Understanding the Structure, Function, and Resilience of a Biocultural System. Sustainability 2018, 10, 3294. [Google Scholar] [CrossRef][Green Version]
- Giambelluca, T.W.; Chen, Q.; Frazier, A.G.; Price, J.P.; Yi-Leng, C.; Pad-Shin, C.; Eischeid, J.K.; Delparte, D.M. Online Rainfall Atlas of Hawai’i. Bull. Am. Meteorol. Soc. 2013, 94, 313. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Mokany, K.; Raison, R.J.; Prokushkin, A.S. Critical Analysis of Root: Shoot Ratios in Terrestrial Biomes. Glob. Chang. Biol. 2006, 12, 84–96. [Google Scholar] [CrossRef]
- Iwashita, D.K.; Litton, C.M.; Giardina, C.P. Coarse Woody Debris Carbon Storage across a Mean Annual Temperature Gradient in Tropical Montane Wet Forest. For. Ecol. Manag. 2013, 291, 336–343. [Google Scholar] [CrossRef]
- Davidson, E.A.; Ackerman, I.L. Changes in Soil Carbon Inventories Following Cultivation of Previously Untilled Soils. Biogeochemistry 1993, 20, 161–193. [Google Scholar] [CrossRef]
- Gifford, R.M.; Roderick, M.L. Soil Carbon Stocks and Bulk Density: Spatial or Cumulative Mass Coordinates as a Basis of Expression? Glob. Chang. Biol. 2003, 9, 1507–1514. [Google Scholar] [CrossRef]
- Wells, J.; Crow, S.; Meki, M.; Sierra, C.; Carlson, K.; Youkhana, A.; Richardson, D.; Deem, L. Maximizing Soil Carbon Sequestration: Assessing Procedural Barriers to Carbon Management in Cultivated Tropical Perennial Grass Systems; InTech: London, UK, 2017; ISBN 978-953-51-3005-5. [Google Scholar]
- Trangmar, B.B.; Yost, R.S.; Uehara, G. Application of Geostatistics to Spatial Studies of Soil Properties. Adv. Agron. 1985, 36, 45–94. [Google Scholar]
- Yost, R.; Loague, K.; Green, R. Reducing Variance in Soil Organic Carbon Estimates: Soil Classification and Geostatistical Approaches. Geoderma 1993, 57, 247–262. [Google Scholar] [CrossRef]
- Holmes, K.W.; Kyriakidis, P.C.; Chadwick, O.A.; Soares, J.V.; Roberts, D.A. Multi-Scale Variability in Tropical Soil Nutrients Following Land-Cover Change. Biogeochemistry 2005, 74, 173–203. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons, Ltd: Chichester, UK, 2008; pp. 1–315. ISBN 978-0-470-02858-2. [Google Scholar]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of Tropical Land-Use Change on Soil Organic Carbon Stocks—A Meta-Analysis. Glob. Chang. Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef][Green Version]
- Goovaerts, P. Geostatistics in Soil Science: State-of-the-Art and Perspectives. Geoderma 1999, 89, 1–45. [Google Scholar] [CrossRef]
- Doumbia, M.; Jarju, A.; Sène, M.; Traoré, K.; Yost, R.; Kablan, R.; Brannan, K.; Berthe, A.; Yamoah, C.; Querido, A.; et al. Sequestration of Organic Carbon in West African Soils by Aménagement En Courbes de Niveau. Agron. Sustain. Dev. 2008, 29, 267–275. [Google Scholar] [CrossRef]
- Ferreiro, J.P.; Almeida, V.P.D.; Alves, M.C.; Abreu, C.A.D.; Vieira, S.R.; Vázquez, E.V. Spatial Variability of Soil Organic Matter and Cation Exchange Capacity in an Oxisol under Different Land Uses. Commun. Soil Sci. Plant Anal. 2016, 47, 75–89. [Google Scholar] [CrossRef][Green Version]
- Nielsen, D.R.; Warrick, A.W.; Myers, D.E. Geostatistical Methods Applied to Soil Science. In Methods of Soil Analysis; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 1986; pp. 53–82. ISBN 978-0-89118-864-3. [Google Scholar]
- Oliver, M.A.; Webster, R. A Tutorial Guide to Geostatistics: Computing and Modelling Variograms and Kriging. CATENA 2014, 113, 56–69. [Google Scholar] [CrossRef]
- Krige, D.G. A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand. J. South. Afr. Inst. Min. Metall. 1951, 52, 119–139. [Google Scholar]
- Kumar, S.; Lal, R.; Liu, D. A Geographically Weighted Regression Kriging Approach for Mapping Soil Organic Carbon Stock. Geoderma 2012, 189, 627–634. [Google Scholar] [CrossRef]
- Mishra, U.; Torn, M.S.; Masanet, E.; Ogle, S.M. Improving Regional Soil Carbon Inventories: Combining the IPCC Carbon Inventory Method with Regression Kriging. Geoderma 2012, 189, 288–295. [Google Scholar] [CrossRef]
- Chabala, L.M.; Mulolwa, A.; Lungu, O. Application of Ordinary Kriging in Mapping Soil Organic Carbon in Zambia. Pedosphere 2017, 27, 338–343. [Google Scholar] [CrossRef]
- Diggle, P.; Ribeiro, P.J. Model-Based Geostatistics; Springer Series in Statistics; Springer-Verlag: New York, NY, USA, 2007; ISBN 978-0-387-32907-9. [Google Scholar]
- Zhang, H.; Zhuang, S.; Qian, H.; Wang, F.; Ji, H. Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties. PLoS ONE 2015, 10, e0119175. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.S.; de Mendonça, B.A.F.; Pereira, M.G.; de Araújo, E.J.G.; Castellani, D.C. Spatial Dependency and Correlation of Properties of Soil Cultivated with Oil Palm, Elaeis Guineensis, in Agroforestry Systems in the Eastern Brazilian Amazon. Acta Amaz. 2018, 48, 280–289. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Hughes, R.F.; Asner, G.; Litton, C.M.; Selmants, P.C.; Hawbaker, T.J.; Jacobi, J.D.; Giardina, C.P.; Sleeter, B.M. Influence of Invasive Species on Carbon Storage in Hawai‘i’s Ecosystems; Professional Paper: Hong Kong, China, 2017. [Google Scholar]
- Chazdon, R.L.; Guariguata, M.R. Natural Regeneration as a Tool for Large-Scale Forest Restoration in the Tropics: Prospects and Challenges. Biotropica 2016, 48, 716–730. [Google Scholar] [CrossRef]
- Pérez-Cárdenas, N.; Mora, F.; Arreola-Villa, F.; Arroyo-Rodríguez, V.; Balvanera, P.; Flores-Casas, R.; Navarrete-Pacheco, A.; Ortega-Huerta, M.A. Effects of Landscape Composition and Site Land-Use Intensity on Secondary Succession in a Tropical Dry Forest. For. Ecol. Manag. 2021, 482, 118818. [Google Scholar] [CrossRef]
- Montagnini, F.; Nair, P.K.R. Carbon Sequestration: An Underexploited Environmental Benefit of Agroforestry Systems. Agrofor. Syst. 2004, 61–62, 281–295. [Google Scholar] [CrossRef]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry Systems: Meta-Analysis of Soil Carbon Stocks, Sequestration Processes, and Future Potentials. Land Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Trauernicht, C.; Howard, S.M.; Litton, C.M.; Giardina, C.P.; Jacobi, J.D.; Fortini, L.B.; Hughes, R.F.; Selmants, P.C.; Zhu, Z. Wildland Fires and Greenhouse Gas Emissions in Hawai‘i. In Baseline and Projected Future Carbon Storage and Carbon Fluxes in Ecosystems of Hawai’i. U.S. Geological Survey Professional Paper 1834; Chapter 5; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2017; Volume 1834, pp. 57–73. [Google Scholar]
- Takahashi, T.; Shoji, S. Distribution and Classification of Volcanic Ash Soil. Glob. Env. Res 2001, 6, 83–98. [Google Scholar]
- Deenik, J.; McClellan, A.T. Soils of Hawai‘i. Soil Crop Manag. Coop. Ext. Serv. Coll. Trop. Agric. Hum. Resour. Univ. Hawaiʻi Manoa 2007, 20, 1–12. [Google Scholar]
- Foote, D.; Nakamura, E.; Sakuichi, S. Soil Conservation Service Soil Survey of Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii; U.S. Government Printing Office; The University of Hawai‘i Agricultural Experiment Station: Washington, DC, USA, 1972; p. 230. [Google Scholar]
- Kramer, M.G.; Chadwick, O.A. Controls on Carbon Storage and Weathering in Volcanic Soils across a High-Elevation Climate Gradient on Mauna Kea, Hawaii. Ecology 2016, 97, 2384–2395. [Google Scholar] [CrossRef]
- Balesdent, J.; Basile-Doelsch, I.; Chadoeuf, J.; Cornu, S.; Derrien, D.; Fekiacova, Z.; Hatté, C. Atmosphere–Soil Carbon Transfer as a Function of Soil Depth. Nature 2018, 559, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Takimoto, A.; Nair, P.K.R.; Nair, V.D. Carbon Stock and Sequestration Potential of Traditional and Improved Agroforestry Systems in the West African Sahel. Agric. Ecosyst. Environ. 2008, 125, 159–166. [Google Scholar] [CrossRef]
- Gross, C.D.; Harrison, R.B. The Case for Digging Deeper: Soil Organic Carbon Storage, Dynamics, and Controls in Our Changing World. Soil Syst. 2019, 3, 28. [Google Scholar] [CrossRef][Green Version]
- Crow, S.E.; Wells, J.M.; Sierra, C.A.; Youkhana, A.H.; Ogoshi, R.M.; Richardson, D.; Glazer, C.T.; Meki, M.N.; Kiniry, J.R. Carbon Flow through Energycane Agroecosystems Established Post-Intensive Agriculture. GCB Bioenergy 2020, 12, 806–817. [Google Scholar] [CrossRef]
- Harper, R.J.; Tibbett, M. The Hidden Organic Carbon in Deep Mineral Soils. Plant Soil 2013, 368, 641–648. [Google Scholar] [CrossRef]
- James, J.N.; Dietzen, C.; Furches, J.C.; Harrison, R.B. Lessons on Buried Horizons and Pedogenesis from Deep Forest Soils. Soil Horiz. 2015, 56, 1–8. [Google Scholar] [CrossRef][Green Version]
- Kerry, R.; Oliver, M.A. Variograms of Ancillary Data to Aid Sampling for Soil Surveys. Precis. Agric. 2003, 4, 261–278. [Google Scholar] [CrossRef]
- Kerry, R.; Oliver, M.A. Average Variograms to Guide Soil Sampling. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 307–325. [Google Scholar] [CrossRef]
- Yost, R.S.; Uehara, G.; Fox, R.L. Geostatistical Analysis of Soil Chemical Properties of Large Land Areas. II. Kriging 1. Soil Sci. Soc. Am. J. 1982, 46, 1033–1037. [Google Scholar] [CrossRef]
- Loescher, H.; Ayres, E.; Duffy, P.; Luo, H.; Brunke, M. Spatial Variation in Soil Properties among North American Ecosystems and Guidelines for Sampling Designs. PLoS ONE 2014, 9, e83216. [Google Scholar] [CrossRef][Green Version]
- Negassa, W.; Baum, C.; Schlichting, A.; Müller, J.; Leinweber, P. Small-Scale Spatial Variability of Soil Chemical and Biochemical Properties in a Rewetted Degraded Peatland. Front. Environ. Sci. 2019, 7, 7. [Google Scholar] [CrossRef][Green Version]
- Pinho, R.C.; Miller, R.P.; Alfaia, S.S. Agroforestry and the Improvement of Soil Fertility: A View from Amazonia. Appl. Environ. Soil Sci. 2012, 2012, e616383. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological Intensification: Harnessing Ecosystem Services for Food Security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Arévalo-Gardini, E.; Canto, M.; Alegre, J.; Loli, O.; Julca, A.; Baligar, V. Changes in Soil Physical and Chemical Properties in Long Term Improved Natural and Traditional Agroforestry Management Systems of Cacao Genotypes in Peruvian Amazon. PLoS ONE 2015, 10, e0132147. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melone, A.; Bremer, L.L.; Crow, S.E.; Hastings, Z.; Winter, K.B.; Ticktin, T.; Rii, Y.M.; Wong, M.; Kukea-Shultz, K.; Watson, S.J.; Trauernicht, C. Assessing Baseline Carbon Stocks for Forest Transitions: A Case Study of Agroforestry Restoration from Hawaiʻi. Agriculture 2021, 11, 189. https://doi.org/10.3390/agriculture11030189
Melone A, Bremer LL, Crow SE, Hastings Z, Winter KB, Ticktin T, Rii YM, Wong M, Kukea-Shultz K, Watson SJ, Trauernicht C. Assessing Baseline Carbon Stocks for Forest Transitions: A Case Study of Agroforestry Restoration from Hawaiʻi. Agriculture. 2021; 11(3):189. https://doi.org/10.3390/agriculture11030189
Chicago/Turabian StyleMelone, Angelica, Leah L. Bremer, Susan E. Crow, Zoe Hastings, Kawika B. Winter, Tamara Ticktin, Yoshimi M. Rii, Maile Wong, Kānekoa Kukea-Shultz, Sheree J. Watson, and Clay Trauernicht. 2021. "Assessing Baseline Carbon Stocks for Forest Transitions: A Case Study of Agroforestry Restoration from Hawaiʻi" Agriculture 11, no. 3: 189. https://doi.org/10.3390/agriculture11030189