Feeding Behavior of Lactating Dairy Cattle Fed Sorghum-Based Diets and Increasing Levels of Tannic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Management, and Experimental Design
2.2. Behavioural Measures
2.3. Measurement of Water Intake
2.4. Statistical Analysis
3. Results
3.1. Effect of the Tannin Content on Feeding Behaviour
3.2. Daily Variations in Feeding Behavior
3.3. Effect of Tannin Content on Water Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haslam, E.; Lilley, T.H.; Butler, L.G. Natural Astringency in Foodstuffs. Crit. Rev. Food Sci. Nutr. 1988, 27, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Mcnabb, W.C.; Waghorn, G.C.; Peters, J.S.; Barry, T.N. The effect of condensed tannins in Lotus pedunculatus on the solubilization and degradation of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39; Rubisco) protein in the rumen and the sites of Rubisco digestion. Br. J. Nutr. 1996, 76, 535–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller-Harvey, I. Analysis of hydrolysable tannins. Anim. Feed Sci. Technol. 2001, 91, 3–20. [Google Scholar] [CrossRef]
- Kronberg, S.L.; Schauer, C.S. Cattle and sheep develop preference for drinking water containing grape seed tannin. Animal 2013, 7, 1714–1720. [Google Scholar] [CrossRef] [Green Version]
- Ahnert, S.; Dickhoefer, U.; Schulz, F.; Susenbeth, A. Influence of ruminal Quebracho tannin extract infusion on apparent nutrient digestibility, nitrogen balance, and urinary purine derivatives excretion in heifers. Livest. Sci. 2015, 177, 63–70. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Blummel, M.; Becker, K. In Vitro Effects of and interactions between tannins and saponins and fate of tannins in the rumen. J. Sci. Food Agric. 1995, 69, 481–493. [Google Scholar] [CrossRef]
- Lamy, E.R.; Rawel, H.; Schweigert, F.J.; Capela e Silva, F.; Ferreira, A.; Costa, A.R.; Antunes, C.; Almeida, A.M.; Coelho, A.V.; Sales-Baptista, E. The effect of tannins on mediterranean ruminant ingestive behavior: The role of the oral cavity. Molecules 2011, 16, 2766–2784. [Google Scholar] [CrossRef] [Green Version]
- Grainger, C.; Clarke, T.; Auldist, M.J.; Beauchemin, K.; McGinn, S.M.; Waghorn, G.C.; Eckard, R.J. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can. J. Anim. Sci. 2009, 84, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Molle, G.; Decandia, M.; Giovanetti, V.; Cabiddu, A.; Fois, N.; Sitzia, M. Responses to condensed tannins of flowering sulla (Hedysarumcoronarium L.) grazed by dairy sheep—Part 1: Effects on feeding behaviour, intake, diet digestibility and performance. Livest. Sci. 2009, 123, 138–146. [Google Scholar] [CrossRef]
- Landau, S.; Silanikove, N.; Nitsan, Z.; Barkai, D.; Baram, H.; Provenza, F.D.; Perevolotsky, A. Short-term changes in eating patterns explain the effects of condensed tannins on feed intake in heifers. Appl. Anim. Behav. Sci. 2000, 69, 199–213. [Google Scholar] [CrossRef]
- Alves, T.P.; Dall-Orsoletta, A.C.; Ribeiro-Filho, H.M.N. The effects of supplementing Acacia mearnsii tannin extract on dairy cow dry matter intake, milk production, and methane emission in a tropical pasture. Trop. Anim. Hearth Prod. 2017, 49, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Terril, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations en forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Butler, L.G. The specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 1978, 256, 4494–4497. [Google Scholar]
- National Research Council—NRC. Nutrient Requirements of the Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001; 363p. [Google Scholar]
- Martin, P.; Bateson, P.P.G. Measuring Behaviour: An Introductory Guide; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Fonsêca, V.F.C.; Saraiva, E.P.; PimentaFilho, E.C.; Furtado, D.A.; Mariz, T.M.A.; Silva, A.L.; Pinheiro, A.C. Influence of the climatic environment and duration of labor on the mother-offspring interaction in Morada Nova sheep. J. Anim. Sci. 2014, 92, 4123–4129. [Google Scholar] [CrossRef]
- Statistical Analysis System Institute. Institute SAS/STAT Software, CD-ROOM; Statistical Analysis System Institute: Cary, NC, USA, 2010. [Google Scholar]
- Waghorn, G.C.; Shelton, I.D. Effect of condensed tannins in Lotus pedunculatus on the nutritive value of ryegrass (Loliumperenne) fed to sheep. J. Agric. Sci. 1995, 125, 291–297. [Google Scholar] [CrossRef]
- Min, B.R.; Barry, T.N.; Attwood, G.T.; McNabb, W.C. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: A review. Anim. Feed Sci. Technol. 2003, 106, 3–19. [Google Scholar] [CrossRef]
- Puchala, R.; Min, B.R.; Goetsch, A.L.; Sahlu, T. The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci. 2005, 83, 182–186. [Google Scholar] [CrossRef]
- Woodward, S.L.; Waghorn, G.C.; Ulyatt, M.J.; Lassey, K.R. Early indications that feeding lotus will reduce methane emission from ruminants. N. Z. Soc. Anim. Prod. 2001, 61, 23–26. [Google Scholar]
- Wiggins, N.L.; Mcarthur, C.; Boyle, R. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. J. Chermical Ecol. 2003, 29, 1447–1464. [Google Scholar] [CrossRef] [PubMed]
- Charlton, A.J.; Baxter, N.J.; Khan, M.L.; Moir, A.J.G.; Haslam, E.; Davies, A.P.; Williamson, M.P. Polyphenol/peptide binding and precipitation. J. Agric. Food Chem. 2002, 50, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
Behavioral Variable | Times | p Value | ||||
---|---|---|---|---|---|---|
I | II | III | Diets | Times | Diets × Times | |
Diets/Total tannin (%) | Feeding (%/h) | |||||
Diet 1—0.46 | 16.29 | 16.32 | 15.64 | 0.206 | 0.378 | 0.150 |
Diet 2—1.30 | 19.98 | 17.79 | 16.04 | |||
Diet 3—2.60 | 18.45 | 17.53 | 17.90 | |||
Diet 4—3.90 | 18.14 | 14.47 | 16.58 | |||
Diet 5—5.20 | 15.82 | 17.13 | 18.99 | |||
Rumination (%/h) | ||||||
Diet 1—0.46 | 38.96 | 35.27 | 36.41 | 0.133 | 0.568 | 0.120 |
Diet 2—1.30 | 35.85 | 36.51 | 38.83 | |||
Diet 3—2.60 | 36.91 | 39.51 | 40.57 | |||
Diet 4—3.90 | 34.96 | 37.94 | 35.36 | |||
Diet 5—5.20 | 37.83 | 40.41 | 36.86 | |||
Inactivity (%/h) | ||||||
Diet 1—0.46 | 44.17 | 47.91 | 47.38 | 0.057 | 0.999 | 0.726 |
Diet 2—1.30 | 43.50 | 44.71 | 44.58 | |||
Diet 3—2.60 | 44.03 | 42.47 | 41.02 | |||
Diet 4—3.90 | 46.17 | 47.09 | 47.38 | |||
Diet 5—5.20 | 45.86 | 41.78 | 43.54 | |||
Water intake (%/h) | ||||||
Diet 1—0.46 | 0.57 | 0.72 | 0.57 | 0.915 | 0.865 | 0.962 |
Diet 2—1.30 | 0.67 | 0.99 | 0.55 | |||
Diet 3—2.60 | 0.61 | 0.49 | 0.58 | |||
Diet 4—3.90 | 0.72 | 0.50 | 0.67 | |||
Diet 5—5.20 | 0.50 | 0.68 | 0.61 |
Behavioral Variable | Times | p Value | ||||
---|---|---|---|---|---|---|
I | II | III | Diets | Times | Diets × Times | |
Diets/Total tannin (%) | Defecation (n) | |||||
Diet 1—0.46 | 13.5 | 14.0 | 13.1 | 0.595 | 0.537 | 0.770 |
Diet 2—1.30 | 14.4 | 13.3 | 15.5 | |||
Diet 3—2.60 | 13.7 | 13.7 | 15.9 | |||
Diet 4—3.90 | 12.5 | 14.2 | 12.6 | |||
Diet 5—5.20 | 13.5 | 13.6 | 14.8 | |||
Linear | 1 ns | |||||
Quadratic | 1 ns | |||||
Urination (n) | ||||||
Diet 1—0.46 | 7.2 | 7.7 | 7.1 | 0.998 | 0.880 | 0.319 |
Diet 2—1.30 | 7.9 | 5.9 | 8.8 | |||
Diet 3—2.60 | 7.4 | 7.7 | 7.2 | |||
Diet 4—3.90 | 6.9 | 8.7 | 7.0 | |||
Diet 5—5.20 | 6.8 | 7.6 | 7.4 | |||
Linear | 1 ns | |||||
Quadratic | 1 ns | |||||
Feeding trough (n) | ||||||
Diet 1—0.46 | 10.0 bC | 14.9 aA | 12.5 abB | 0.172 | 0.064 | <0.001 |
Diet 2—1.30 | 21.2 aA | 14.2 bA | 8.3 cC | |||
Diet 3—2.60 | 13.2 aB | 16.0 aA | 10.1 bBC | |||
Diet 4—3.90 | 12.8 bBC | 9.5 cB | 16.9 aA | |||
Diet 5—5.20 | 11.2 BC | 10.9 B | 11.9 B | |||
Linear | 1 ns | |||||
Quadratic | 1 ns | |||||
Drinking trough (n) | ||||||
Diet 1—0.46 | 7.9 | 9.0 | 7.6 | 0.163 | 0.547 | 0.230 |
Diet 2—1.30 | 9.3 | 8.9 | 7.8 | |||
Diet 3—2.60 | 7.5 | 6.4 | 6.8 | |||
Diet 4—3.90 | 9.6 | 6.4 | 8.7 | |||
Diet 5—5.20 | 7.5 | 8.9 | 7.9 | |||
Linear | 1 ns | |||||
Quadratic | 1 ns |
Behavioral Variable | Times | p Value | ||||
---|---|---|---|---|---|---|
I | II | III | Diets | Times | Diets × Times | |
Diets/Total tannin (%) | Forage (%/h) | |||||
Diet 1—0.46 | 87.80 | 84.96 A | 83.97 | 0.333 | 0.638 | 0.002 |
Diet 2—1.30 | 86.67 a | 73.63 bB | 84.51 a | |||
Diet 3—2.60 | 84.08 | 85.07 A | 80.69 | |||
Diet 4—3.90 | 82.58 | 86.73 A | 85.47 | |||
Diet 5—5.20 | 81.79 | 86.58 A | 81.07 | |||
Linear | 1 ns | |||||
Quadratic | 1 ns | |||||
Concentrate (%/h) | ||||||
Diet 1—0.46 | 12.20 B | 15.04 B | 16.03 | 0.285 | 0.601 | 0.005 |
Diet 2—1.30 | 13.33 bAB | 26.37 aA | 15.49 b | |||
Diet 3—2.60 | 15.92 AB | 14.93 B | 19.31 | |||
Diet 4—3.90 | 17.42 AB | 13.27 B | 14.53 | |||
Diet 5—5.20 | 18.21 A | 13.42 B | 18.93 | |||
Linear | 1 ns | |||||
Quadratic | 1 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, J.D.C.d.; Saraiva, E.P.; Gonzaga Neto, S.; Saraiva, C.A.S.; Pinheiro, A.d.C.; Fonsêca, V.d.F.C.; Santos, S.G.C.G.d.; Souza, C.G.d.; Almeida, M.E.V.; Veríssimo, T.N.S.; et al. Feeding Behavior of Lactating Dairy Cattle Fed Sorghum-Based Diets and Increasing Levels of Tannic Acid. Agriculture 2021, 11, 172. https://doi.org/10.3390/agriculture11020172
Santos JDCd, Saraiva EP, Gonzaga Neto S, Saraiva CAS, Pinheiro AdC, Fonsêca VdFC, Santos SGCGd, Souza CGd, Almeida MEV, Veríssimo TNS, et al. Feeding Behavior of Lactating Dairy Cattle Fed Sorghum-Based Diets and Increasing Levels of Tannic Acid. Agriculture. 2021; 11(2):172. https://doi.org/10.3390/agriculture11020172
Chicago/Turabian StyleSantos, José Danrley Cavalcante dos, Edilson Paes Saraiva, Severino Gonzaga Neto, Carla Aparecida Soares Saraiva, Antônio da Costa Pinheiro, Vinícius de França Carvalho Fonsêca, Severino Guilherme Caetano Gonçalves dos Santos, Carla Giselly de Souza, Maria Elivânia Vieira Almeida, Tarsys Noan Silva Veríssimo, and et al. 2021. "Feeding Behavior of Lactating Dairy Cattle Fed Sorghum-Based Diets and Increasing Levels of Tannic Acid" Agriculture 11, no. 2: 172. https://doi.org/10.3390/agriculture11020172
APA StyleSantos, J. D. C. d., Saraiva, E. P., Gonzaga Neto, S., Saraiva, C. A. S., Pinheiro, A. d. C., Fonsêca, V. d. F. C., Santos, S. G. C. G. d., Souza, C. G. d., Almeida, M. E. V., Veríssimo, T. N. S., & Morais, L. K. d. C. (2021). Feeding Behavior of Lactating Dairy Cattle Fed Sorghum-Based Diets and Increasing Levels of Tannic Acid. Agriculture, 11(2), 172. https://doi.org/10.3390/agriculture11020172