Development Indicators and Soybean Production in Brazil
Abstract
:1. Introduction
2. Theoretical Background
2.1. Soybean Production and Its Impacts on Socio-Economic and Environmental Aspects
2.2. The DPSIR Conceptual Framework
3. Methodology
3.1. Factor Analysis FA
3.2. Mato Grosso State, Municipalities, and the Data Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castro, N.R.; de Barros, G.S.C.; Almeida, A.N.; Gilio, L.; de Morais, A.C.P. The Brazilian Agribusiness Labor Market: Measurement, Characterization and Analysis of Income Differentials. Rev. Econ. Sociol. Rural 2020, 58, e192298. [Google Scholar] [CrossRef] [Green Version]
- De Nääs, I.A. Introdução ao Agronegócio. In Engenharia de Produção Aplicada ao Agronegócio; dos Reis, J.G.M., de Costa Neto, P.L.O., Eds.; Bluncher: São Paulo, Brazil, 2018; ISBN 978-85-212-1263-8. [Google Scholar]
- Neves, M.F.; Zylbersztajn, D.; Neves, E.M.; Rodrigues, R. Agronegócio do Brasil; Saraiva: São Paulo, Brazil, 2006; ISBN 978-85-02-05378-6. [Google Scholar]
- De Embrapa, E.B.P.A. Visão 2030: O Futuro da Agricultura Brasileira; Embrapa: Brasília, Brazil, 2018; ISBN 978-85-7035-799-1. [Google Scholar]
- Da Mapa, M.A. Pecuária e Abastecimento. Valor da Produção Agropecuária é de R$5656 Bilhões. Available online: http://www.agricultura.gov.br/noticias/valor-da-producao-agropecuaria-e-de-r-565-6-bilhoes (accessed on 23 June 2021).
- Abraham, E.R.; Mendes dos Reis, J.G.; Vendrametto, O.; de Oliveira Costa Neto, P.L.; Carlo Toloi, R.; de Souza, A.E.; de Oliveira Morais, M. Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production. Agriculture 2020, 10, 475. [Google Scholar] [CrossRef]
- Mourão, R.; da Silva Lino, E.N. Expansão Agrícola no Cerrado: O desenvolvimento do Agronegócio no Estado de Goiás entre 2000 a 2019. Caminhos Geogr. 2021, 22, 1–17. [Google Scholar] [CrossRef]
- Dall’Agnol, A. A Soja no Contexto do Desenvolvimento da Soja No Brasil: Histórico e Contribuições, 1st ed.; Embrapa: Brasília, Brazil, 2016; ISBN 978-85-7035-558-4. [Google Scholar]
- Hirakuri, M.H.; Lazzarotto, J.J. O Agronegócio da Soja nos Contextos Mundial e Brasileiro. 2014. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/104753/1/O-agronegocio-da-soja-nos-contextos-mundial-e-brasileiro.pdf (accessed on 25 September 2021).
- Lima, M.; Skutsch, M.; de Costa, G.M. Deforestation and the Social Impacts of Soy for Biodiesel: Perspectives of Farmers in the South Brazilian Amazon. Ecol. Soc. 2011, 16, art4. [Google Scholar] [CrossRef] [Green Version]
- Mendes dos Reis, J.G.; Sanches Amorim, P.; Sarsfield Pereira Cabral, J.A.; Toloi, R.C. The Impact of Logistics Performance on Argentina, Brazil, and the US Soybean Exports from 2012 to 2018: A Gravity Model Approach. Agriculture 2020, 10, 338. [Google Scholar] [CrossRef]
- De Conab, C.N.A. Conab-Série Histórica das Safras; Conab: Brasília, Brazil, 2021.
- FAS/USDA World Agricultural Production; USDA-United States Department of Agriculture: Washington, DC, USA, 2021; p. 41.
- Da Rocha, F.V.; João, A.M.; Costa, E.L.; Caixeta Filho, J.V. Política de Precificação de GEE: Impactos Econômicos e Ambientais na Agrologística de Grãos no Mato Grosso. Rev. Políticas Públicas 2020, 24, 137–155. [Google Scholar] [CrossRef]
- De Miranda, E.E.; de Carvalho, C.A.; Oshiro, O.T. Atribuição, Ocupação e Uso das Terras No Estado Do Mato Grosso; Atribuição, Uso e Ocupação de Mato Grosso; EMBRAPA: Campinas, Brazil, 2017. [Google Scholar]
- Comexstat Exportação e Importação Municípios. Available online: http://comexstat.mdic.gov.br/pt/municipio (accessed on 25 September 2021).
- De Imea, I.M.G.; Boletim de Soja, E.A. Boletim Semanal; IMEA: Cuiabá, Brazil, 2021; p. 14. [Google Scholar]
- Castro, L.S.; Miranda, M.H.; Lima, J.E. Indicadores Sociais de Desenvolvimento e a Produção de Soja: Uma Análise Multivariada nos 150 Maiores Municípios Produtores Brasileiros. Rev. Bras. Gest. Desenvolv. Reg. 2015, 11, 69–87. [Google Scholar]
- Russo Lopes, G.; Bastos Lima, M.G.; dos Reis, T.N.P. Maldevelopment Revisited: Inclusiveness and Social Impacts of Soy Expansion over Brazil’s Cerrado in Matopiba. World Dev. 2021, 139, 17. [Google Scholar] [CrossRef]
- Richards, P.; Pellegrina, H.; VanWey, L.; Spera, S. Soybean Development: The Impact of a Decade of Agricultural Change on Urban and Economic Growth in Mato Grosso, Brazil. PLoS ONE 2015, 10, e0122510. [Google Scholar] [CrossRef]
- De Almeida, P.G.; Reinaldo, L.R.L.R.; de Sousa Alves, L.; da Silva Sousa, J.; Maracajá, P.B.; Wanderley, J.A.C.; dos Santos, D.P. Impactos Ambientais Causados pela Agricultura e a Pecuária nas propriedades São João e Areia Branca, Pombal-PB. Rev. Bras. Gest. Ambient. 2010, 4, 34–63. [Google Scholar]
- Raucci, G.S.; Moreira, C.S.; Alves, P.A.; Mello, F.F.; de Almeida Frazão, L.; Cerri, C.E.P.; Cerri, C.C. Greenhouse Gas Assessment of Brazilian Soybean Production: A Case Study of Mato Grosso State. J. Clean. Prod. 2015, 96, 418–425. [Google Scholar] [CrossRef]
- Dall’Agnol, A.; Lazarotto, J.J.; Hirakuri, M.H. Desenvolvimento, Mercado, Rentabilidade da Soja Brasileira. 2010. Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/854125/desenvolvimento-mercado-rentabilidade-da-soja-brasileira (accessed on 25 September 2021).
- De Freitas, P.L.; Landers, J.N. The Transformation of Agriculture in Brazil Through Development and Adoption of Zero Tillage Conservation Agriculture. Int. Soil Water Conserv. Res. 2014, 2, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Prudêncio da Silva, V.; van der Werf, H.M.G.; Spies, A.; Soares, S.R. Variability in Environmental Impacts of Brazilian Soybean According to Crop Production and Transport Scenarios. J. Environ. Manag. 2010, 91, 1831–1839. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Naylor, R.; Vitousek, P.M.; Moutinho, P. Agriculture in Brazil: Impacts, Costs, and Opportunities for a Sustainable Future. Curr. Opin. Environ. Sustain. 2010, 2, 431–438. [Google Scholar] [CrossRef]
- Martine, G.; Alves, J.E.D. Economia, Sociedade e Meio Ambiente no Século 21: Tripé ou Trilema da Sustentabilidade? Rev. Bras. Estud. Popul. 2015, 32, 433–460. [Google Scholar] [CrossRef]
- Smeets, E.; Weterings, R. Environmental Indicators: Typology and Overview; TNO Centre for Strategy, Technology and Policy; European Environment Agency: Copenhagen, Denmark, 1999; p. 19.
- Hannouf, M.B.; Assefa, G.; Hannouf, M.B.; Gates, I. Cause-Effect Chains in S-LCA Based on DPSIR Framework Using Markov Healthcare Model: An Application to “Working Hours” in Canada. Int. J. Life Cycle Assess. 2021, 26, 936–949. [Google Scholar] [CrossRef]
- Zhou, S.; Mueller, F.; Burkhard, B.; Cao, X.; Hou, Y. Assessing Agricultural Sustainable Development Based on the DPSIR Approach: Case Study in Jiangsu. China J. Integr. Agric. 2013, 12, 1292–1299. [Google Scholar] [CrossRef]
- Gilandeh, A.G.; Behjou, F.K.; Yarmohammadi, K. Evaluation of Ardabil City Carrying Capacity Using DPSIR Method and ELECTRE Model. Glob. J. Agric. Innov. Res. Dev. 2018, 5, 15–23. [Google Scholar] [CrossRef]
- De Araújo, M.D.; Ribeiro, M.M.R.; Braga, C.F.C. Integrando a Modelagem da Alocação de Água ao Sistema de Indicadores FPEIR: Aplicação ao Semiárido do Brasil. Eng. Sanit. Ambient. 2019, 24, 1167–1181. [Google Scholar] [CrossRef] [Green Version]
- Porto, D.T.; Basso, L.A.; Strohaecker, T.M. Diagnóstico Ambiental da Bacia Hidrográfica do Rio Mampituba, Região Sul do Brasil, Utilizando a Matriz FPEIR. Geosul 2019, 34, 28–50. [Google Scholar] [CrossRef] [Green Version]
- De Santos, R.O.; Gorgulho, B.M.; de Castro, M.A.; Fisberg, R.M.; Marchioni, D.M.; Baltar, V.T. Principal Component Analysis and Factor Analysis: Differences and Similarities in Nutritional Epidemiology Application. Rev. Bras. Epidemiol. 2019, 22, e190041. [Google Scholar] [CrossRef] [Green Version]
- Field, A.; Miles, J.; Field, Z. Discovering Statistics Using R, 1st ed.; Sage: London, UK, 2012; p. 992. ISBN 978-1-4462-0046-9. [Google Scholar]
- Toloi, R.C.; da Gunes, A.C.R.S.L.; Toloi, M.N.V.; dos Reis, J.G.M.; Bonilla, S.H.; Freitas, M.J. Main Variables That Are Influenced by the Anthropic Activity Resulting from the Soybean Production in the Municipalities of Mato Grosso. Indep. J. Manag. Prod. 2018, 9, 607–622. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística. Pesquisa Agrícola Municipal; IBGE: Brasília, Brazil, 2021.
- De Inpe, I.N.P.E. Projeto Prodes. Available online: http://www.dpi.inpe.br/prodesdigital/prodesmunicipal.php (accessed on 5 September 2021).
- Toloi, M.N.V.; Toloi, R.C.; Bueno, R.E.; Bonilla, S.H. Análise das Emissões de CO2 dos Insumos da Cultura da Soja nos Âmbitos Upstream e Direto em Diferentes Macrorregiões do Estado de Mato Grosso-Brasil. Rev. Cuba. Ing. 2021, 12, e293. [Google Scholar]
- FIRJAN IFDM-Índice FIRJAN de Desenvolvimento Municipal; Federação das Indústrias do Estado do Rio de Janeiro-FIRJAN: Rio de Janeiro, Brazil, 2018.
- Ministério da Economia Relação Anual de Informações Sociais. Available online: http://www.rais.gov.br/sitio/index.jsf (accessed on 25 September 2021).
- Instituto Brasileiro de Geografia e Estatística. Mato Grosso|Cidades e Estados|. Available online: https://www.ibge.gov.br/cidades-e-estados/mt.html (accessed on 25 September 2021).
- Tonello, V.M.M. Principais Aspectos do Ciclo Biogeoquímico do Elemento Carbono e seu Contexto na Atualidade. Master’s Thesis, Universidade de São Paulo, Piracicaba, Brazil, 2007. [Google Scholar]
- Milne, E.; Cerri, C.E.P.; Carvalho, J.L.N. Agricultural expansion in the Brazilian state of Mato Grosso; implications for C stocks and greenhouse gas emissions. In Tropical Rainforests and Agroforests under Global Change; Tscharntke, T., Leuschner, C., Veldkamp, E., Faust, H., Guhardja, E., Bidin, A., Eds.; Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2010; pp. 447–460. [Google Scholar] [CrossRef]
- Griffiths, P.; Jakimow, B.; Hostert, P. Reconstructing Long Term Annual Deforestation Dynamics in Pará and Mato Grosso Using the Landsat Archive. Remote Sens. Environ. 2018, 216, 497–513. [Google Scholar] [CrossRef]
- Instituto Mato-Grossense de Economia Agropecuári. Mapa de Microrregiões do IMEA; IMEA: Cuiabá, Brazil, 2017. [Google Scholar]
- De Araújo, F.A.O.M.; Boaventura, D.M.R. Os Municípios do Agronegócio no Estado do Mato Grosso: Efeitos e defeitos da atividade da moderna agricultura. Rev. Geogr. Acad. 2020, 14, 100–122. [Google Scholar]
Indicators | Source |
---|---|
Area of the municipality (ha) * | [37] |
Soybean area (ha) ** | |
Soybean production (ton) *** | |
Deforestation until 2019 (ha) **** | [38] |
Remanent biomes until 2019 (ha) ***** | |
CO emission per soybean plantation (ton/ha) | [36,39] |
(Equation (1)) | |
CO sequestration due to remanent biomes | Calculations based on remaining forests areas and according to their biome, made by the authors. |
Global IFDM (Firjam index of municipal development, includes health, education, job and income) | [40] |
Jobs in other activities (except agriculture) | [41] |
Jobs in agriculture | |
Population | [42] |
Formal jobs | |
Agriculture GDP | |
Other activities GDP |
Biome Soybean Crop Area (ha) | Carbon Sequestration Potential Index by Biome/ha TC/ha/year * | Carbon Sequestration Potential (t)/the Total Remaining Forest (ha) |
---|---|---|
Amazon | 12.5 | TCFA |
Cerrado | 5.4 | TCFC |
Pantanal | 5.4 | TCFP |
Seq. | Municipality | Production (t) | Seq. | Municipality | Production (t) |
---|---|---|---|---|---|
1° | Sorriso | 2,232,000 | 16° | Campo Verde | 693,000 |
2° | Nova Mutum | 1,335,600 | 17° | Nova Maringá | 610,200 |
3° | Campo Novo do Parecis | 1,322,400 | 18° | Tapurah | 597,600 |
4° | Sapezal | 1,235,400 | 19° | Gaúcha do Norte | 579,120 |
5° | Nova Ubiratã | 1,218,000 | 20° | Itiquira | 561,600 |
6° | Querência | 1,176,000 | 21° | Água Boa | 528,000 |
7° | Diamantino | 1,091,880 | 22° | Porto dos Gaúchos | 526,612 |
8° | Primavera Do Leste | 890,400 | 23° | Sinop | 515,040 |
9° | Canarana | 841,500 | 24° | Santa Rita do Trivelato | 511,600 |
10° | Brasnorte | 786,480 | 25° | Vera | 460,200 |
11° | Lucas do Rio Verde | 772,800 | 26° | Tabaporã | 445,200 |
12° | Paranatinga | 748,800 | 27° | Feliz Natal | 410,400 |
13° | São Félix do Araguaia | 746,428 | 28° | São José do Rio Claro | 390,000 |
14° | Ipiranga do Norte | 739,200 | 29° | Tangará da Serra | 368,880 |
15° | Campos de Júlio | 717,360 | 30° | Bom Jesus do Araguaia | 360,137 |
Kaiser-Meyer-Olkin Adequacy | 0.655 | |
---|---|---|
Bartlett’s sphericity test | Aprox. Qui-square | 717,437 |
ld | 91 | |
p | 0 |
F1 | F2 | F3 | |
---|---|---|---|
Eigenvalue | 4.18 | 3.44 | 3.31 |
Total explained variance (%) | 29.9 | 24.9 | 23.6 |
Cumulative variance (%) | 29.9 | 54.6 | 78.1 |
Variable | F1 | F2 | F3 | Initial Communality | Extraction Communality |
---|---|---|---|---|---|
Soybean production | 0.200 | 0.932 | 0.135 | 1.00 | 0.902 |
Soybean area | 0.166 | 0.945 | 0.159 | 1.00 | 0.906 |
Total area | −0.161 | 0.190 | 0.653 | 1.00 | 0.621 |
Deforestation | 0.001 | −0.027 | 0.880 | 1.00 | 0.77 |
Remanent forest | −0,254 | −0.022 | 0.927 | 1.00 | 0.931 |
CO emission | 0.058 | 0.325 | 0.276 | 1.00 | 0.409 |
CO sequester | −0.179 | −0.053 | 0.932 | 1.00 | 0.849 |
IFDM | 0.347 | 0.226 | −0.265 | 1.00 | 0.425 |
Jobs other sectors | 0.989 | 0.059 | −0.106 | 1.00 | 0.989 |
Agricultural jobs | 0.213 | 0.754 | −0.301 | 1.00 | 0.826 |
Population | 0.983 | 0.065 | −0.079 | 1.00 | 0.964 |
Formal jobs | 0.976 | 0.175 | −0.107 | 1.00 | 0.991 |
Agric GDP. | 0.157 | 0.901 | −0.235 | 1.00 | 0.928 |
Other sectors GDP | 0.948 | 0.258 | −0.111 | 1.00 | 0.979 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toloi, M.N.V.; Bonilla, S.H.; Toloi, R.C.; Silva, H.R.O.; Nääs, I.d.A. Development Indicators and Soybean Production in Brazil. Agriculture 2021, 11, 1164. https://doi.org/10.3390/agriculture11111164
Toloi MNV, Bonilla SH, Toloi RC, Silva HRO, Nääs IdA. Development Indicators and Soybean Production in Brazil. Agriculture. 2021; 11(11):1164. https://doi.org/10.3390/agriculture11111164
Chicago/Turabian StyleToloi, Marley Nunes Vituri, Silvia Helena Bonilla, Rodrigo Carlo Toloi, Helton Raimundo Oliveira Silva, and Irenilza de Alencar Nääs. 2021. "Development Indicators and Soybean Production in Brazil" Agriculture 11, no. 11: 1164. https://doi.org/10.3390/agriculture11111164
APA StyleToloi, M. N. V., Bonilla, S. H., Toloi, R. C., Silva, H. R. O., & Nääs, I. d. A. (2021). Development Indicators and Soybean Production in Brazil. Agriculture, 11(11), 1164. https://doi.org/10.3390/agriculture11111164