Practices and Strategies for Adaptation to Climate Variability in Family Farming. An Analysis of Cases of Rural Communities in the Andes Mountains of Colombia and Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Approach
2.2.1. Trend Analysis of Rainfall Periods
2.2.2. Analysis of Climate Change Scenarios
2.3. Socioeconomic, Productive, and Adaptation Practices Characterization
3. Results
3.1. CV Characterization: Precipitation Trends
3.2. Climatic Trends
3.3. Socioeconomic and Productive Characterization of the Rural Community in Cauca, Colombia
The Bottom-Up Strategy of the TeSac-Cauca Project for Adaptation to Climate Variability
- Design of Farm-level Adaptation Plans
- Smart water management
- Generation of smart weather and climate information
- Vertical house gardens
3.4. Characterization of Rural Communities in Southern Chile: Curarrehue and Pucón
Intuitive and Individual Adaptation Practices of the Farmers of Curarrehue and Pucón
- Practices aimed at regeneration of the vegetational cover
- Practices for the efficient use of water
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Thematic Table for Interviews
Socioeconomic Profile | Associativity and Networks |
Characteristics of the family group How is the family group composed? N° members, gender, ages, educational level. Who works on the property? Who works outside? | Networking Who do you ask for help when you need it? Do you belong to a peasant or production association? which? Support from public organisms Have you received any kind of help to improve your production or sales? for example: subsidies, training, loans, spaces to market your products |
Characteristics of the production system | Adaptation practices |
Farm area What is the size of your farm? Variety of production How many different products do you produce per season? Which? Income How is the family income (stable, sporadic)? Where do they come from (land, pension, jobs outside the home, etc.)? What do you produce on your property? For example: vegetable garden, farm, greenhouses, animals, dairy products, honey, wool, preserves, fabrics, looms, handicrafts, etc. Is production for sale, domestic consumption, or both? Do you offer any paid services to other people? For example: babysitting, cooking, horseback riding, tourist services, etc. Technologies What technological devices or tools or infrastructures do you have to facilitate work on your farm? Do you have a greenhouse? Do you have a solar panel? Water management practices Where do you get your water for domestic use? Where do you get your water for productive use? How do you manage the water? How do you water? Do you collect rainwater? Have you made changes to your water management practices? | Practices What do you do when the weather changes? What actions do you take? Have you had to change your agricultural or water management practices? What changes have you made in the last 10 years? |
Appendix B. Socioeconomic and Productive Characterization
Dimension | Indicator | Categories | Colombia | Chile |
Demographic | Age range | Children (0–14 años) | 17.4% | 14% |
Youth (15–29 años) | 22.9% | 28% | ||
Adults (30–59 años) | 41.8% | 40.2% | ||
Elderly (60 y más) | 17.9% | 17.8% | ||
Percentage of population by gender | Female | 52.5% | 50.5% | |
Male | 47.5% | 49.5% | ||
Socioeconomic | Number of household members | 1 | 6.4% | 13.3% |
2 to 4 | 67.9% | 66.7% | ||
5 to 9 | 24.9% | 20% | ||
10 or more | 0.8% | 0% | ||
Education leer | Informal education | 1.4% | 0% | |
Primary school | 37.9% | 3.3% | ||
High school | 47.9% | 50% | ||
Technical/University studies | 12.9% | 46.7% | ||
Livelihoods on the farm | Subsistence | 43.6% | 26.7% | |
Crop production for commercialization: (Colombia coffee, caña; Chile: wheat, others)=) | 0% | 0% | ||
Mixed activities: | 56.4% | 73.3% | ||
Diversification of sources of income and types: (salary, subsidies, rents) | 0 | 12.1% | 3.3% | |
1 source | 35.7% | 20% | ||
2 sources | 36.4% | 23.3% | ||
3 sources | 11.4% | 46.7% | ||
4 or more sources | 4.3% | 6.7% | ||
Participation in organizations rural drinking water committee, agricultural association, peasant associations) | Does not belong to any group | 71.4% | 0% | |
1 group | 23.6% | 20% | ||
2 groups | 2.9% | 46.7% | ||
3 or more groups | 2.1% | 33.3% | ||
Productive | Access to land | >1 ha | 26.4% | 26.7% |
Between 1 to 5 ha | 61.4% | 43.3% | ||
More than 5 ha | 12.1% | 30% | ||
Main activity on the farm | Mainly agriculture | 40% | 46.2% | |
Livestock and crop production | 33% | 34.6% | ||
Other activities | 27% | 19.2% | ||
Ways to obtain and use water on the property (by total number of cases) | Irrigation (Colombia)/Rural drinking water (Chile) | 2.9% | 20.4% | |
Tanks or infrastructures for rainwater harvesting | 27.0% | 5.6% | ||
Water Ponds | 17.2% | 46.3% | ||
Wells | 0.6% | 5.6% | ||
Solar powered water pumps | 2.3% | 31.9% | ||
Water pumps with wind power source | 0.6% | 0% | ||
Other type of pumps | 6.9% | 9.3% | ||
None of the above | 42.5% | 11.1% | ||
Change on water practices management in the last 10 years | No changes | 81.4% | 30% | |
1 change | 12.1% | 46.7% | ||
2 or more | 6.4% | 23.3% |
References
- FAO. El legado del AIAF 2014 y el camino a seguir. In Acto de Clausura Año Internacional de la Agricultura Familiar 2014; FAO: Rome, Italy, 2014. [Google Scholar]
- Kohler, T.; Romeo, R. La agricultura de montaña es agricultura familiar. In La Agricultura de Montaña es Agricultura Familiar: Una Contribución de las Zonas de Montaña al Año Internacional de la Agricultura Familiar 2014; Wymann von Dach, S., Romeo, R., Vita, A., Wurzinger, M., Kohler, T., Eds.; FAO, CDE, BOKU: Rome, Italy, 2014; pp. 10–11. [Google Scholar]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Pereira Lindoso, D.; Dalboni Rocha, J.; Debortoli, N.; Cavalcanti, I.; Eiró, F.; Bursztyn, M.; Rodrigues Filho, S. Indicators for Assessing the Vulnerability of Smallholder Farming to Climate Change: The Case of Brazil’ s Semi-Arid Northeastern Region; IPEA: Brazilia, Brazil, 2012; p. 1.
- Eitzinger, J. Der Klimawandel–seine Auswirkungen auf agrarmeteorologische Aspekte und Anpassungsoptionen für die Landwirtschaft im europäischen Kontext. Ländlicher Raum 2010, 3, 1–11. [Google Scholar]
- Campos, M.; Herrador, D.; Valdés, C.M.; McCall, M.K. Estrategias de adaptación al cambio climático en dos comunidades rurales de México y El Salvador. Boletín Asoc. Geógrafos Españoles 2013, 61, 329–352. [Google Scholar]
- Maletta, H. Tendencias y Perspectivas de la Agricultura Familiar en América Latina. In Documento de Trabajo N° 1. Proyecto Conocimiento y Cambio en Pobreza Rural y Desarrollo; Rimisp: Santiago, Chile, 2011; Available online: http://bit.ly/1g63Fcg (accessed on 30 October 2021).
- Vermeulen, S.; Campbell, B.; Ingram, J. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Antón, J.; Kimura, S.; Lankiski, J.; Cattaneo, A. A Comparative Study of Risk Management in Agriculture under Climate Change. In OECD Food, Agriculture and Fisheries Papers; 2012; Available online: https://www.oecd-ilibrary.org/content/paper/5k94d6fx5bd8-en (accessed on 30 October 2021). [CrossRef]
- Córdova, R.; Hogarth, N.J.; Kanninen, M. Sustainability of smallholder livelihoods in the ecuadorian highlands: A comparison of agroforestry and conventional agriculture systems in the indigenous territory of Kayambi People. Land 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Anexo II: Glosario. In Cambio Climático 2014: Informe de Síntesis; Contribución de los Grupos de trabajo I, II y III al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático; IPCC: Ginebra, Suiza, 2014; pp. 127–141. [Google Scholar]
- Montaña, E. Escenarios de Cambio Ambiental Global, Escenarios de Pobreza Rural; CLACSO: Buenos Aires, Argentina, 2013. [Google Scholar]
- CONDESAN. 20 Years of Sustainable Mountain Development in the Andes—From Rio 1992 to 2012 and Beyond; CONDESAN: Lima, Perú, 2011. [Google Scholar]
- Seaman, J.A.; Sawdon, G.E.; Acidri, J.; Petty, C. The Household Economy Approach. Managing the impact of climate change on poverty and food security in developing countries. Clim. Risk Manag. 2014, 4, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Acevedo-Osorio, Á.; Leiton, A.A.; Durán, M.V.L.; Quiroga, K.L.F. Sustentabilidad y variabilidad climática: Acciones agroecológicas participativas de adaptación y resiliencia socioecológica en la región Alto-Andina colombiana. Rev. Luna Azul 2017, 44, 6–26. [Google Scholar] [CrossRef] [Green Version]
- Martínez Barón, D. Análisis del Cambio Institucional en la Zona Rural Noroccidental de Popayán en un Contexto de Variabilidad Climática. Master’s Thesis, Pontificia Universidad Javeriana, Facultad de Estudios Ambientales y Rurales, Bogotá, Colombia, 2016. [Google Scholar]
- CDKN. Análisis interinstitucional y multisectorial de vulnerabilidad y adaptación al cambio climático para el sector agrícola de la cuenca alta del río Cauca. Impactando políticas de adaptación. In Metodología de Análisis de Vulnerabilidad Para la Cuenca Alta del río Cauca; Reporte Técnico; CDKN: Cauca, Colombia, 2013. [Google Scholar]
- Lara, A.; Wolodarsky-Franke, A.; Aravena, A.; Villalba, R.; Solari, M.; Pezoa, L.; Rivera, A.; Le Quesne, C. Climate Fluctuations Derived from Tree-rings and Other Proxy-records in the Chilean Andes: State of the Art and Future Prospects. Glob. Chang. Mt. Reg. 2005, 23, 145–156. [Google Scholar]
- Díaz, D.; Morales, L.; Castellaro, G.; Neira, F. Topoclimatic Modeling of Thermopluviometric Variables for the Bío Bío and La Araucanía regions, Chile. Chil. J. Agric. Res. 2010, 70, 604–615. [Google Scholar] [CrossRef]
- Christie, D.; Boninsegna, J.; Cleaveland, M.; Lara, A.; Le Quesne, C.; Morales, M.; Mudelsee, M.; Stahle, D.; Villalba, R. Aridity changes in the Temperate-Mediterranean transition of the Andes since AD 1346 reconstructed from tree-rings. Clim. Dyn. 2011, 36, 1505–1521. [Google Scholar] [CrossRef]
- González-Reyes, A.; Muñoz, A. Cambios en la precipitación de la ciudad de Valdivia (Chile) durante los últimos 150 años. Bosque 2013, 34, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.D.; Álvarez-Garretón, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; Le Quesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010-2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Garretón, C.; Boisier, J.P.; Garreaud, R.; Seibert, J.; Vis, M. Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile. Hydrol. Earth Syst. Sci. 2021, 25, 429–446. [Google Scholar] [CrossRef]
- FAO. Food Security and Agricultural Mitigation in Developing Countries: Options for Capturing Synergies; FAO: Rome, Italy, 2009. [Google Scholar]
- Philip, A.; Kaunza-Nu-Dem, M.K.; Ayembilla, J.A. Smallholder farmers’livelihood adaptation to climate variability andecological changes in thesavanna agroecological zone of Ghana. Heliyon 2019, 5, e01492. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Singh, A.; Kumar, S.; Sheoran, P.; Sharma, D.K.; Stringer, L.C.; Quinn, C.H.; Kumar, A.; Singh, D. Perceived Climate Variability and Compounding Stressors: Implications for Risks to Livelihoods of Smallholder Indian Farmers. Environ. Manag. 2020, 66, 826–844. [Google Scholar] [CrossRef]
- Abid, M.; Scheffran, J.; Schneider, U.A.; Elahi, E. Farmer Perceptions of Climate Change, Observed Trends and Adaptation of Agriculture in Pakistan. Environ. Manag. 2019, 63, 110–123. [Google Scholar] [CrossRef]
- Herrador-Valencia, D.; Paredes, M. Cambio climático y agricultura de pequeña escala en los Andes ecuatorianos: Un estudio sobre percepciones locales y estrategias de adaptación. J. Lat. Am. Geogr. 2016, 15, 101–121. [Google Scholar] [CrossRef]
- Paz, L.A.; Ortega, L.P. Estudio de Línea Base de Comunidades: Informe de Análisis del sitio Para Cauca–Los Cerrillos, Colombia; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2014. [Google Scholar]
- Marchant, C.; Fuentes Acuña, N.; Kaulen Luks, S.; Ibarra, J.T. Saberes locales en huertas de montaña del sur de los Andes: Un refugio de memoria biocultural mapuche pewenche. Pirineos 2020, 175, e060. [Google Scholar] [CrossRef]
- Cai, X.M.; Wang, D.B.; Laurent, R. Impact of climate change on crop yield: A case study of rainfed corn in central Illinois. J. Appl. Meteorol. Clim. 2009, 48, 1868–1881. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics: Design and Analysis, and Time-Series; Charles Griffin & Company Limited: London, UK, 1968. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Sneyers, R. On the Statistical Analysis of Series of Observations; World Meteorological Organization: Geneva, Italy, 1990. [Google Scholar]
- Rodrigo, F.S.; Trigo, R.M. Trends in daily rainfall in the Iberian Peninsula from 1951 to 2002. Int. J. Climatol. 2007, 27, 513–529. [Google Scholar] [CrossRef]
- Wambua, R.M.; Mutua, B.M.; Raude, J.M. Detection of Spatial, Temporal and Trend of Meteorological Drought Using Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) in the Upper Tana River Basin, Kenya. Earth Environ. Sci. 2018, 3, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Hunziker, S.; Brönnimann, S.; Calle, J.M.; Moreno, I.; Andrade, M.; Ticona, L.; Huerta, A.; Lavado-Casimiro, W. Effects of undetected data quality issues on climatological analyses. Clim. Past Discuss. 2017, 1–31. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Pohlert, T. Trend: Non-Parametric Trend Tests and Change-Point Direction; R Package Version 1.1.0; 2018; Available online: https://cran.r-project.org/ (accessed on 30 October 2021).
- IPCC. Climate Change 2013: The Physical Science Basis; Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Meehl, G.A. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.R.; Benassi, R.B.; Martins, F.B.; Lapola, D.M. Projected impacts of 1.5 and 2 °C global warming on temperature and precipitation patterns in South America. Int. J. Climatol. 2021, 1–15. [Google Scholar] [CrossRef]
- Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramírez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Parker, C.; Scott, S.; Geddes, A. Snowball Sampling; SAGE Research Methods Foundations: London, UK, 2019. [Google Scholar]
- Gibson, C.B. Elaboration, generalization, triangulation, and interpretation: On enhancing the value of mixed method research. Organ. Res. Methods 2017, 20, 193–223. [Google Scholar] [CrossRef] [Green Version]
- FAO. Climate Smart Agriculture: Policies, Practices and Financing for Food Security, Adaptation and Mitigation; FAO: Rome, Italy, 2010. [Google Scholar]
- Lipper, L.; McCarthy, N.; Zilberman, D.; Asfaw, S.; Branca, G. (Eds.) Climate Smart Agriculture. Building Resilience to Climate Change; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Budds, J. El acceso a los recursos de agua de los agricultores en el valle de La Ligua, Chile. Rev. Derecho Adm. Económico 2003, 2, 371–379. [Google Scholar]
- Puertas, O.; Carvajal, Y.; Quintero, M. Estudio de tendencias de la precipitación mensual en la cuenca alta-media del río Cauca, Colombia. DYNA 2011, 78, 112–120. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532011000500013&lng=en&tlng=es (accessed on 16 October 2021).
- Devereux, T.; Acosta, M. Manual de las Medidas de Adaptación al Cambio Climático Practicadas por los Campesinos de Asocampo de la Cuenca Río Las Piedras, Cauca, Colombia; Centro Internacional de Agricultura Tropical (CIAT): Popayán, Colombia, 2013. [Google Scholar]
- Agrawal, A.; Perrin, N. Climate adaptation, local institutions and rural livelihoods. In Adaptation to Climate Change: Thresholds, Values, Governance; Adger, N., Lorenzoni, I., O’Brien, K., Eds.; Cambridge University Press: New York, NY, USA, 2009; pp. 350–367. [Google Scholar]
- Montalba, R.; Fonseca, F.; García, M.; Vieli, L.; Altieri, M. Determinación de los niveles de riesgo socioecológico ante sequías en sistemas agrícolas campesinos de La Araucanía chilena: Influencia de la diversidad cultural y la agrobiodiversidad. Pap. Rev. Sociol. 2015, 100, 607–624. [Google Scholar] [CrossRef] [Green Version]
- Herzog, S.K.; Martínez, R.; Jørgensen, P.; Tiessen, H. Climate Change and Biodiversity in the Tropical Andes; Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE): Montevideo, Uruguay, 2011. [Google Scholar]
- Carrasco, J.; Cassas, G.; Pizarro, R.; Saravia, M. Impactos del Cambio Climático, Adaptación y Desarrollo en las Regiones Montañosas de América Latina; FAO: Santiago, Chile, 2011. [Google Scholar]
- Li, Y.; Westlund, H.; Liu, Y. Why some rural areas decline while some others not: An overview of rural evolution in the world. J. Rural Stud. 2019, 68, 135–143. [Google Scholar] [CrossRef]
- Xiao, W.; Zhao, G. Agricultural land and rural-urban migration in China: A new pattern. Land Use Policy 2018, 74, 142–150. [Google Scholar] [CrossRef]
- Johnson, K.M.; Lichter, D.T. Rural Depopulation: Growth and Decline Processes over the Past Century. Rural Sociol. 2019, 84, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Soler, R.; Uribe-Toril, J.; De Pablo Valenciano, J. Worldwide trends in the scientific production on rural depopula-tion, a bibliometric analysis using bibliometrix R-tool. Land Use Policy 2020, 97, 104787. [Google Scholar] [CrossRef]
- Landini, A. Concepción de extensión rural en 10 países latinoamericanos. Andamios 2016, 13, 211–236. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, N.; Marchant, C. ¿Contribuyen las prácticas agroecológicas a la sustentabilidad de la agricultura familiar de montaña? El caso de Curarrehue, región de la Araucanía, Chile. Cuad. Desarro. Rural 2016, 13, 35–66. [Google Scholar] [CrossRef]
- Hatfield, S.C.; Marino, E.; Whyte, K.P.; Dello, K.D.; Mote, P.W. Indian time: Time, seasonality, and culture in Traditional Ecological Knowledge of climate change. Ecol. Process. 2018, 7, 25. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
Dimension | Indicator | Description |
---|---|---|
Socioeconomics | Number of household members | Characterizes the existing workforce potential in each farm/property |
Education level | Describes the highest level of formal education obtained by family members | |
Livelihoods on the farm | Corresponds to the forms of obtaining income that the family generates | |
Diversification of sources of income and types | Reflects the family’s ability to generate multiple incomes | |
Participation in organizations | Evaluates the number of organizations in which the family participates | |
Productive | Access to land | Determines the area in hectares available per farm/property |
Main activity on the farm | Describes the main productive activity of each farm/property: agriculture, livestock, other | |
Ways to obtain and use water on the property (by total number of cases) | Identifies the number of sources/wells for obtaining water on the property | |
Water management practices | Identifies the number of practices implemented on the farm |
Name | Average | Variance | CV (%) | Kendall’s Tau | S-Statistics | p Value | Significance | Sen’s Slope | Trends |
---|---|---|---|---|---|---|---|---|---|
Curarrehue | 2611.2 | 198,849 | 17.1 | −0.324 | −68 | 0.043 | * | −38.438 | - |
Pucón | 2164.7 | 136,172 | 17.0 | −0.362 | −76 | 0.024 | * | −29.365 | - |
Popayan | 2176.7 | 180,689 | 19.5 | 0.242 | 16 | 0.304 | ns | 39.069 | + |
Decade | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 254.1 | 364.4 | 347.9 | 312.2 | 228.2 | 249.2 | 313.9 | 336.4 | 255.8 | 220.6 | 209.7 | 254.5 |
2030 | 256.9 | 358.6 | 344.1 | 317.5 | 239.7 | 251.6 | 316.5 | 341.7 | 262.1 | 225.8 | 213.4 | 255.3 |
2040 | 254.3 | 361.6 | 349.1 | 314.0 | 233.9 | 250.7 | 316.5 | 340.2 | 259.8 | 229.6 | 213.6 | 251.4 |
2050 | 260.5 | 356.0 | 342.6 | 320.7 | 241.8 | 255.7 | 320.4 | 346.2 | 268.7 | 236.2 | 218.1 | 256.2 |
2060 | 258.6 | 362.5 | 350.6 | 323.0 | 234.9 | 253.2 | 320.1 | 344.2 | 268.4 | 239.8 | 220.7 | 253.4 |
2070 | 264.5 | 354.2 | 343.9 | 324.1 | 242.1 | 256.5 | 321.7 | 350.5 | 277.0 | 245.0 | 223.7 | 255.0 |
2080 | 266.5 | 352.7 | 343.8 | 325.7 | 242.5 | 256.8 | 322.7 | 354.4 | 280.1 | 250.0 | 225.4 | 253.1 |
Trend | 0.203 | −0.154 | −0.040 | 0.225 | 0.174 | 0.125 | 0.144 | 0.270 | 0.398 | 0.490 | 0.268 | −0.009 |
Decade | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 21.7 | 49.6 | 44.7 | 38.8 | 27.6 | 54.4 | 88.7 | 170.5 | 203.8 | 217.5 | 159.4 | 89.5 |
2030 | 23.1 | 49.5 | 45.1 | 38.1 | 28.2 | 54.7 | 85.0 | 169.8 | 203.5 | 217.1 | 157.6 | 89.0 |
2040 | 19.7 | 45.5 | 42.1 | 36.2 | 25.4 | 52.8 | 83.8 | 164.0 | 201.0 | 215.3 | 159.1 | 84.5 |
2050 | 21.5 | 46.6 | 42.4 | 35.6 | 26.8 | 52.0 | 80.7 | 163.9 | 197.5 | 212.7 | 154.6 | 84.7 |
2060 | 17.6 | 40.8 | 38.4 | 32.9 | 23.4 | 49.5 | 77.7 | 155.0 | 192.0 | 209.6 | 152.0 | 79.3 |
2070 | 20.5 | 42.5 | 40.1 | 33.5 | 25.3 | 48.9 | 76.0 | 157.0 | 190.7 | 208.4 | 147.6 | 80.5 |
2080 | 20.4 | 41.5 | 39.2 | 32.8 | 24.8 | 48.2 | 74.7 | 155.0 | 187.9 | 205.5 | 145.7 | 79.2 |
Slope | −0.04 | −0.15 | −0.11 | −0.11 | −0.06 | −0.12 | −0.24 | −0.29 | −0.29 | −0.21 | −0.24 | −0.19 |
Decade | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 20.4 | 20.3 | 20.2 | 20.3 | 20.6 | 20.7 | 20.6 | 20.6 | 20.4 | 20.4 | 20.5 | 20.5 |
2030 | 20.7 | 20.7 | 20.5 | 20.6 | 20.9 | 21.1 | 21.0 | 21.0 | 20.8 | 20.8 | 20.9 | 20.9 |
2040 | 20.8 | 20.8 | 20.6 | 20.7 | 21.0 | 21.2 | 21.1 | 21.1 | 20.9 | 20.9 | 21.0 | 21.0 |
2050 | 21.3 | 21.2 | 21.1 | 21.2 | 21.5 | 21.6 | 21.5 | 21.5 | 21.4 | 21.4 | 21.5 | 21.4 |
2060 | 21.4 | 21.3 | 21.2 | 21.3 | 21.5 | 21.7 | 21.6 | 21.6 | 21.5 | 21.4 | 21.5 | 21.5 |
2070 | 21.7 | 21.6 | 21.5 | 21.6 | 21.9 | 22.0 | 22.0 | 21.9 | 21.8 | 21.8 | 21.9 | 21.8 |
2080 | 21.9 | 21.9 | 21.7 | 21.8 | 22.1 | 22.2 | 22.2 | 22.2 | 22.0 | 22.0 | 22.1 | 22.1 |
Trend | 0.025 | 0.026 | 0.026 | 0.025 | 0.025 | 0.024 | 0.026 | 0.026 | 0.027 | 0.027 | 0.026 | 0.026 |
Decade | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 14.6 | 8.0 | 10.5 | 12.8 | 14.0 | 11.9 | 8.4 | 5.5 | 3.4 | 3.3 | 3.9 | 5.5 |
2030 | 14.8 | 8.2 | 10.7 | 13.1 | 14.2 | 12.1 | 8.6 | 5.6 | 3.6 | 3.5 | 4.1 | 5.6 |
2040 | 15.1 | 8.3 | 10.9 | 13.3 | 14.5 | 12.4 | 8.7 | 5.8 | 3.7 | 3.6 | 4.2 | 5.8 |
2050 | 15.4 | 8.7 | 11.2 | 13.6 | 14.8 | 12.7 | 9.1 | 6.0 | 3.9 | 3.8 | 4.5 | 6.0 |
2060 | 15.8 | 8.8 | 11.5 | 13.9 | 15.3 | 13.0 | 9.3 | 6.1 | 4.0 | 3.9 | 4.5 | 6.1 |
2070 | 15.9 | 9.0 | 11.6 | 14.1 | 15.4 | 13.2 | 9.5 | 6.3 | 4.2 | 4.1 | 4.8 | 6.3 |
2080 | 16.2 | 9.2 | 11.9 | 14.3 | 15.6 | 13.4 | 9.7 | 6.4 | 4.3 | 4.2 | 4.9 | 6.5 |
Trend | 0.025 | 0.026 | 0.026 | 0.025 | 0.025 | 0.024 | 0.026 | 0.026 | 0.027 | 0.027 | 0.026 | 0.026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchant Santiago, C.; Rodríguez Díaz, P.; Morales-Salinas, L.; Paz Betancourt, L.; Ortega Fernández, L. Practices and Strategies for Adaptation to Climate Variability in Family Farming. An Analysis of Cases of Rural Communities in the Andes Mountains of Colombia and Chile. Agriculture 2021, 11, 1096. https://doi.org/10.3390/agriculture11111096
Marchant Santiago C, Rodríguez Díaz P, Morales-Salinas L, Paz Betancourt L, Ortega Fernández L. Practices and Strategies for Adaptation to Climate Variability in Family Farming. An Analysis of Cases of Rural Communities in the Andes Mountains of Colombia and Chile. Agriculture. 2021; 11(11):1096. https://doi.org/10.3390/agriculture11111096
Chicago/Turabian StyleMarchant Santiago, Carla, Paulina Rodríguez Díaz, Luis Morales-Salinas, Liliana Paz Betancourt, and Luis Ortega Fernández. 2021. "Practices and Strategies for Adaptation to Climate Variability in Family Farming. An Analysis of Cases of Rural Communities in the Andes Mountains of Colombia and Chile" Agriculture 11, no. 11: 1096. https://doi.org/10.3390/agriculture11111096
APA StyleMarchant Santiago, C., Rodríguez Díaz, P., Morales-Salinas, L., Paz Betancourt, L., & Ortega Fernández, L. (2021). Practices and Strategies for Adaptation to Climate Variability in Family Farming. An Analysis of Cases of Rural Communities in the Andes Mountains of Colombia and Chile. Agriculture, 11(11), 1096. https://doi.org/10.3390/agriculture11111096