Weed Infestation and Health of Organically Grown Chamomile (Chamomilla recutita (L.) Rausch.) Depending on Selected Foliar Sprays and Row Spacing
Abstract
:1. Introduction
2. Methods
- “Złoty Łan”—a commonly grown cultivar;
- “Mastar”—a new and less popular cultivar.
- Evaluation of weed infestation of the crop using the agro-phytosociological method at the 2– leaf stage of chamomile (moving around the 6.25 m2 plots according to the scheme in Figure 2). Weed infestation intensity was determined using the Braun-Blanquet scale [15], where: - = no individuals; r = 1–3 individuals; + means less than 1% of ground cover; 1 = 1–5% of ground cover; 2 = 5–25% of ground cover; 3 = 25–50% of ground cover; 4 = 50–75% of ground cover; 5 = 75–100% of ground cover.
- Determination of health of chamomile plants according to a five-point scale carried out 15 days before harvest, based on 30 randomly selected plants per 6.25 m2 plot (Table 3).
- Over a period of 10 days before harvest of chamomile, evaluation of weed infestation of the plantation was performed by the dry-weight-rank method (number and air dry weight of weeds as well as their botanical composition) using a 0.25 × 1.0 m quadrat frame (Figure 3) in 4 randomly selected places in each 6.25 m2 plot. The frame was placed in the randomly selected places in each plot (Figure 4), taking care not to damage chamomile plants. Within the frame, weeds were cut down just above ground and subsequently the species composition and number of weeds were determined. Next, weeds collected from 4 replicates in a given plot were combined into a composite sample and placed in paper bags with labels (plot number). The collected weed samples were dried in a plant house, bringing them slowly to air-dry weight.
3. Statistical Analysis
4. Results
4.1. Weed Infestation of the Chamomile Crop
4.2. Health of Chamomile Plants
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Srivastava, J.K.; Shankar, E.; Gupta, S. Chamomile. A herbal medicine of the past with bright future. Mol. Med. Rep. 2010, 3, 895–901. [Google Scholar] [CrossRef]
- Cavalieri, E.; Rigo, A.; Bonifacio, M.; Carcereri de Prati, A.; Guardalben, E.; Bergamini, C.; Fato, R.; Pizzolo, G.; Suzuki, H.; Vinante, F. Pro-apoptotic activity of α-bisabolol in preclinical models of primary human acute leukemia cells. J. Transl. Med. 2011, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, C.A. Yield and quality of chamomile (Chamomila recutita (L.) Rausch.) raw material depending on selected foliar sprays and plant spacing. Acta Sci. Pol. Hortorum Cultus 2015, 14, 143–156. [Google Scholar]
- Kwiatkowski, C.A.; Haliniarz, M.; Harasim, E.; Kołodziej, B.; Yakimovich, A. Foliar applied biopreparations as a natural method to increase the productivity of garden thyme (Thymus vulgaris L.) and to improve the quality of herbal raw material. Acta Sci. Pol. Hortorum Cultus 2020, 19, 107–118. [Google Scholar] [CrossRef]
- Radosevich, S.; Holt, J.; Ghersa, C. Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resources Management, 3rd ed.; John Wiley&Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Rao, V.S. Principles of Weed Science. In Weed Biology and Ecology, 2nd ed.; Science Publishers, Inc.: Enfield, NH, USA, 2000. [Google Scholar] [CrossRef]
- Milberg, P.; Hallgren, E. Yield loess due to weeds in cereals and its large-scale variability in Sweden. Field Crops Res. 2004, 86, 199–209. [Google Scholar] [CrossRef]
- Demjanová, E.; Macák, M.; Ćaloviü, I.; Majernik, F.; Týr, S.; Smatana, J. Effects of tillage systems and crop rotation on weed density, weed species composition and weed biomass in maize. Agron. Res. 2009, 7, 785–792. [Google Scholar]
- Santin-Montanyáa, M.I.; Martin-Lammerding, D.; Walter, I.; Zembrana, E.; Tenorio, J.L. Effects of tillage, crop systems and fertilization of weed abundance and diversity in 4-year dry land winter wheat. Eur. J. Agron. 2013, 48, 43–49. [Google Scholar] [CrossRef]
- Dolijanovic, Z.; Kovacevic, D.; Momirovic, Ä.; Oljaca, S.; Jovovic, Z. Effect of crop rotations on weed infestation in winter wheat. Bulg. J. Agric. Sci. 2014, 20, 416–420. [Google Scholar]
- Datnoff, L.E.; Elmer, W.H.; Huber, D.M. (Eds.) . Mineral Nutrition and Plant Disease; APS Press: St. Paul, MN, USA, 2007. [Google Scholar]
- Kwiatkowski, C.A.; Harasim, E.; Yakimovich, A.; Kołodziej, B.; Tomczyńska-Mleko, M. Evaluation of spent mushroom substrate, mineral NPK fertilization and manure fertilization on chamomile (Chamomilla recutita L. Rausch) yield and raw material quality. Acta Sci. Pol. Hortorum Cultus 2018, 17, 3–16. [Google Scholar] [CrossRef]
- Javaid, A. Foliar application of effective microorganisms on pea an alternative fertilizer. Agron. Sustain. Dev. 2006, 26, 257–262. [Google Scholar] [CrossRef]
- Dobromilska, R.; Mikiciuk, M.; Gubarewicz, K. Evaluation of cherry tomato yielding and fruit mineral composition after using of Bio-algeen S-90 preparation. J. Elem. 2008, 13, 491–499. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie; Springer-Verlag: Wien, Austria, 1951. [Google Scholar]
- Menalled, F. Weed Seedbank Dynamics & Integrated Management of Agricultural Weeds. Bozeman: Extension Publication, Montana State University. Available online: https://www.mssoy.org/uploads/files/weed-seed-bank-mont (accessed on 12 May 2020).
- Swanton, C.; Nkoa, R.; Blackshaw, R.E. Experimental methods for crop-weed competition studies. Weed Sci. 2015, 63, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Böhringer, Ä.; Möhring, J.; Rueda-Ayala, V.; Gutjar, C.; Gerhards, R. Changes in weed communities, herbicides, yield levels and effect of weeds on yield in winter cereals based on three decades of field experiments in south-western Germany. Gesunde Pflanzen 2015, 67, 11–20. [Google Scholar] [CrossRef]
- Lunkvist, A.; Salomonsson, L.; Karlsson, L.; Gustavsson, A.D. Effects of organic farming on weed flora composition in a long term perspective. Eur. J Agron. 2008, 28, 570–578. [Google Scholar] [CrossRef]
- Edesi, L.; Järvan, M.; Adamson, A.; Lauringson, E.; Kuht, J. Weed species diversity and community composition in conventional and organic farming: A five-year experiment. Zemdirb. Agric. 2012, 99, 339–346. [Google Scholar]
- Kolářová, M.; Tyšer, L.; Soukup, J. Weed species diversity in the Czech Republic under different farming and site conditions. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 741–749. [Google Scholar] [CrossRef] [Green Version]
- Petit, S.; Munier-Jolain, Ä.; Bretagnolle, V.; Bockstaller, C.; Gaba, S.; Cordeau, S.; Lechenet, M.; Mézière, D.; Colbach, N. Ecological intensification through pesticide reduction: Weed Control, Weed Biodiversity and Sustainability in Arable Farming. Environ. Manag. 2015, 56, 1078–1090. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Brandt, R.N.; Janzen, H.H.; Entz, T.; Grant, C.A.; Derksen, D.A. Differential response of weed species to added nitrogen. Weed Biol. Ecol. 2003, 51, 532–539. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Baessler, C.; Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 2006, 115, 3–50. [Google Scholar] [CrossRef]
- Fried, G.; Petit, S.; Dessaint, F.; Reboud, X. Arable weed decline in Northern France: Crop edges as refugia for weed conservation? Biol. Conserv. 2009, 142, 238–243. [Google Scholar] [CrossRef]
- Odum, E.P.; Park, T.Y.; Hutcheson, K. Comparison on the weedy vegetation in old-fields and crop fields on the same site reveals the fallowing crop fields does not result in seedbank buildup of agricultural weeds. Agric. Ecosyst. Environ. 1994, 49, 247–252. [Google Scholar] [CrossRef]
- Zanin, G.; Otto, S.; Riello, L.; Borin, M. Ecological interpretation of weed flora dynamics under different tillage systems. Agric. Ecosyst. Environ. 1997, 66, 177–188. [Google Scholar] [CrossRef]
- Alnenhofen, L.M.; Dekker, J. Complex regulation of Chenopodium album seed germination. Appl. Ecol. Environ. Sci. 2013, 1, 133–142. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Staniak, M.; Róźyło, K.; Rusecki, H. Supporting crop and different row spacing as factors influencing weed infestation in lentil crop and seed yield under organic farming conditions. Agronomy 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, C.A.; Gawęda, D.; Drabowicz, M.; Haliniarz, M. Effect of diverse fertilization, row spacing and sowing rate on weed infestation and yield of winter oilseed rape. Acta Sci. Pol. Agric. 2012, 11, 53–63. [Google Scholar]
- Lins, R.D.; Boerboom, C.M. Effect of Soybean Row Spacing on Weed Competition. In Proceedings of the 2002 Wisconsin Fertilizer Aglime, and Pest Management Conference, Madison, WI, USA, 15–17 January 2002. [Google Scholar]
- Primot, S.; Valantin-Morison, M.; Makowski, D. Predicting the risk of weed infestation in winter oilseed rape crops. Weed Res. 2006, 46, 22–33. [Google Scholar] [CrossRef]
- Lutman, P.J.W.; Bowerman, P.; Palmer, G.M.; Whytock, G.P. Prediction of competition between oilseed rape and Stellaria media. Weed Res. 2000, 40, 255–269. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B. Comparison of the competitiveness of modern and old winter wheat cultivars in relation to weeds. J. Res. Appl. Agric. Eng. 2009, 54, 60–67. [Google Scholar]
- Trewavas, A. Urban myths of organic farming. Nature 2001, 410, 409–410. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; Van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Elad, Y. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot. 2000, 19, 709–714. [Google Scholar] [CrossRef]
- Prokkola, S.; Kivijärvi, P. Effect of biological sprays on the incidence of grey mould, fruit yield and fruit quality in organic strawberry production. Agric. Food Sci. 2007, 16, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Jamiołkowska, A. The influence of bio-preparation Biosept 33 SL on fungi colonizing of sweet pepper plants (Capsicum annuum L.) cultivated in the field. Electron. J. Polish Agric. Univ. Ser. Hortic. 2009, 12, 117. [Google Scholar]
- Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agent: Current methods and future trends. J. Med. Plants Res. 2010, 4, 104–111. [Google Scholar] [CrossRef]
- Escobar, Ä.; Solarte, V. Microbial diversity associated with organic fertilizer obtained by composting of agricultural waste. Int. J. Biosci. Biochem. Bioinform. 2015, 5, 70–79. [Google Scholar] [CrossRef] [Green Version]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2017, 82, 277–285. [Google Scholar] [CrossRef]
- Ballaré, C.L.; Mazza, C.A.; Austin, A.T.; Pierik, R. Canopy light and plant health. Plant Physiol. 2012, 160, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Lal, M.; Kanwar, H.S.; Kanwar, R.; Lal, C. Effect of planting density and training on plant health and seed quality of bell pepper (Capsicum annuum L.) under protected conditions. J. Appl. Nat. Sci. 2016, 8, 1219–1222. [Google Scholar] [CrossRef]
- Vila, M.; Williamson, M.; Lonsdale, M. Competition experiments on alien weeds with crops: Lessons for measuring plant invasion impact? Biol. Invasions 2004, 6, 59–69. [Google Scholar] [CrossRef]
- Tracy, B.F.; Sanderson, M.A. Forage productivity, species evenness and weed invasion in pasture communities. Agric. Ecosyst. Environ. 2004, 102, 175–183. [Google Scholar] [CrossRef]
- French, R.J.; Smart, W.L.; McCarthy, K. Optimum plant population densities for lupin (Lupinus angustifolius L.) in the Western Australian wheat belt. Aust. J. Exp. Agric. 1994, 34, 491–497. [Google Scholar] [CrossRef]
Nutrient Content on A Dry Weight Basis * | ||||||||
---|---|---|---|---|---|---|---|---|
Humic acid % | K g kg−1 | Ca g kg−1 | Na g kg−1 | Fe g kg−1 | Zn mg kg−1 | Br mg kg−1 | Cu mg kg−1 | Se mg kg−1 |
62.0 | 1.18 | 16.80 | 12.80 | 14.50 | 64.0 | 77.0 | 19.0 | 6.0 |
Name of Spray | Spray Composition |
---|---|
Bio-algeen S90 | An extract from sea algae; the spray contains 90 groups of chemical compounds, including amino acids, vitamins, alginic acid, and other unidentified active ingredients of seaweeds; the major elements include the following: nitrogen—0.02%, phosphorus—0.006%, potassium—0.096%, calcium—0.31%,magnesium—0.021%, as well as boron—16 mg kg−1, iron—6.3 mg kg−1, copper—0.2 mg kg−1, manganese—0.6 mg kg−1; zinc—1.0 mg kg−1; moreover, the spray contains molybdenum and selenium. |
Herbagreen Basic | Calcium oxide (CaO)—36.7%, silicon dioxide (SiO2)—17.0%, iron trioxide (Fe2O3)—3.4%, magnesium oxide (MgO)—2.4%, titanium dioxide (TiO2)—0.5%, potassium oxide (K2O)—0.5%, sodium oxide (Na2O)—0.5%, sulfur trioxide (SO3)—0.4%, phosphorus pentoxide (P2O5)—0.5%, manganese oxide (MnO)—0.1%; and trace amounts of boron (1), cobalt (13), copper (26), zinc (34) (mg kg−1 DM). |
EM Farming | Anaerobic organisms which release free, chemically uncombined oxygen into the environment during metabolic processes (photosynthetic bacteria, actinobacteria, lactic acid bacteria, fermentation fungi, yeasts)—the percentage contributions of particular microorganism strains in the spray is the manufacturer’s secret (patent) and this information is not included in any available data sheets. |
Degree of Health | % of Plants Infected |
---|---|
I | 1–10 |
II | 11–25 |
III | 26–50 |
IV | 51–75 |
V | 76–100 |
Species | Row Spacing—40 cm | Row Spacing—30 cm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A * | B | C | D | E | F | G | A | B | C | D | E | F | G | |
Annual | ||||||||||||||
Galeopsis tetrahit L. | 1 ** | + | + | + | 1 | + | + | + | + | + | + | + | + | + |
Viola arvensis Murray | + | 1 | 1 | + | + | + | 1 | 1 | + | + | + | + | + | + |
Juncus bufonius L. | + | r | r | + | + | r | + | + | r | r | r | r | + | r |
Spergula arvensis L. | + | r | r | r | + | + | + | + | + | r | r | r | r | r |
Scleranthus annuus L. | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Geranium pusillum L. | + | + | r | r | + | - | r | r | - | r | - | + | + | + |
Erigeron canadensis (L.) Cronquist) | r | r | + | - | + | r | r | + | r | - | + | r | r | r |
Tripleurospermum maritimum (L.) W. D. J. Koch | r | r | r | r | - | - | - | r | r | r | - | - | r | r |
Polygonum convolvulus L. | r | - | - | - | - | - | r | r | r | r | - | - | - | - |
Chenopodium album L. | - | - | - | - | r | r | - | r | - | r | r | - | - | - |
Veronica arvensis L. | - | - | - | - | r | - | r | - | r | - | - | - | - | - |
Erodium cicutarium (L.) L’Her. | r | - | r | r | - | - | r | - | r | r | r | - | - | - |
Capsella bursa-pastoris (L.) Medik | - | - | - | r | r | r | - | - | r | - | - | - | - | - |
Number of annual species | 10 | 8 | 9 | 9 | 10 | 8 | 10 | 10 | 11 | 10 | 8 | 7 | 8 | 8 |
Perennial | ||||||||||||||
Elymus repens (L.) Gould | r | r | r | - | r | r | r | r | r | - | r | r | r | r |
Convolvulus arvensis L. | - | r | - | - | - | - | - | - | - | - | - | r | - | - |
Number of perennial species | 1 | 2 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 2 | 1 | 1 |
Species | Row Spacing—40 cm | Row Spacing—30 cm | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A * | B | C | D | E | F | G | A | B | C | D | E | F | G | |
Annual | ||||||||||||||
Galeopsis tetrahit L. | 1 ** | 1 | + | 1 | + | 1 | + | 1 | + | 1 | + | + | + | + |
Viola arvensis Murray | + | + | 1 | 1 | 1 | 1 | 1 | 1 | 1 | + | 1 | 1 | + | + |
Juncus bufonius L. | + | + | r | + | r | + | + | + | + | + | r | r | + | r |
Spergula arvensis L. | + | + | + | r | r | r | r | + | + | r | r | r | r | r |
Scleranthus annuus L. | + | r | r | + | r | + | + | + | r | r | + | r | + | + |
Geranium pusillum L. | + | + | - | r | + | - | - | r | - | r | - | + | + | + |
Erigeron canadensis (L.) Cronquist) | r | + | + | - | + | r | r | + | r | - | + | r | r | r |
Tripleurospermum maritimum (L.) W. D. J. Koch | r | r | - | r | - | r | - | r | - | r | - | - | r | r |
Polygonum convolvulus L. | r | r | - | - | r | - | - | r | - | r | - | r | - | - |
Chenopodium album L. | r | r | - | - | r | - | - | r | r | - | r | - | - | - |
Veronica arvensis L. | - | - | - | r | r | - | r | - | r | - | - | - | - | - |
Erodium cicutarium (L.) L’Her. | r | - | r | - | - | r | r | - | r | - | r | - | r | - |
Capsella bursa-pastoris (L.) Medik | - | r | r | - | - | - | - | - | - | - | - | - | - | - |
Number of annual species | 11 | 11 | 8 | 8 | 10 | 8 | 8 | 10 | 9 | 8 | 8 | 8 | 9 | 8 |
Perennial | ||||||||||||||
Elymus repens (L.) Gould | r | r | r | r | r | r | r | r | r | - | r | r | - | r |
Convolvulus arvensis L. | r | - | - | - | r | - | - | - | r | - | - | r | - | - |
Equisetum arvense L. | - | - | - | r | - | r | - | - | - | r | - | - | - | - |
Number of perennial species | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 0 | 1 |
Treatment | Złoty Łan | Mastar | Mean for Spacing | ||||||
---|---|---|---|---|---|---|---|---|---|
40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | |
A * | 21.6 ± 1.9 ** | 19.4 ± 1.8 | 20.5 | 23.8 ± 1.9 | 19.6 ± 1.2 | 21.7 | 22.7 | 19.5 | 21.1 |
B | 17.1 ± 1.7 | 13.2 ± 1.4 | 15.2 | 19.9 ± 1.7 | 15.1 ± 0.9 | 17.5 | 18.5 | 14.2 | 16.3 |
C | 17.1 ± 1.6 | 17.4 ± 1.6 | 17.2 | 19.1 ± 1.1 | 12.9 ± 0.8 | 16.0 | 18.0 | 15.2 | 16.6 |
D | 21.2 ± 1.1 | 18.6 ± 1.7 | 20.0 | 22.9 ± 1.5 | 14.8 ± 0.9 | 18.3 | 22.2 | 16.7 | 19.4 |
E | 21.4 ± 1.8 | 15.8 ± 1.3 | 18.5 | 22.8 ± 0.9 | 18.2 ± 1.3 | 20.5 | 22.0 | 17.0 | 19.5 |
F | 20.1 ± 1.5 | 18.2 ± 1.8 | 19.2 | 19.7 ± 1.0 | 17.0 ± 1.0 | 18.3 | 19.8 | 17.7 | 18.8 |
G | 19.7 ± 1.6 | 13.3 ± 1.4 | 16.5 | 17.6 ± 1.5 | 15.1 ± 0.6 | 16.3 | 18.7 | 14.2 | 16.4 |
CV (%) *** | 6.2 | 5.6 | 6.7 | 5.9 | |||||
Mean | 19.7 | 16.6 | 18.1 | 20.8 | 16.1 | 18.5 | 20.3 | 16.3 | - |
HSD(0.05) | for years—n.s. ****; for cultivars—n.s.; for row spacing—2.5; for foliar sprays—4.3; for interaction: cultivar × row spacing—n.s.; for interaction: cultivar × foliar spray—n.s.; for interaction: row spacing × foliar spray—n.s.; for interaction: cultivar × row spacing × foliar sprays—n.s. |
Treatment | Złoty Łan | Mastar | Mean for Row Spacing | ||||||
---|---|---|---|---|---|---|---|---|---|
40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | |
A * | 15.01 ± 1.22 ** | 9.23 ± 0.87 | 12.12 | 15.41 ± 1.90 | 10.73 ± 0.92 | 13.07 | 15.21 | 9.98 | 12.59 |
B | 11.77 ± 0.74 | 6.15 ± 0.93 | 8.96 | 14.78 ± 0.99 | 7.43 ± 0.58 | 11.10 | 13.27 | 6.79 | 10.03 |
C | 7.28 ± 0.71 | 6.81 ± 0.66 | 7.04 | 15.95 ± 1.33 | 4.68 ± 0.42 | 10.31 | 11.61 | 5.74 | 8.67 |
D | 11.52 ± 0.86 | 7.45 ± 0.91 | 9.48 | 10.67 ± 0.83 | 7.74 ± 0.61 | 9.20 | 11.09 | 7.59 | 9.34 |
E | 12.43 ± 1.04 | 9.74 ± 0.65 | 11.08 | 11.31 ± 0.92 | 11.15 ± 0.79 | 11.23 | 11.87 | 10.52 | 11.19 |
F | 8.91 ± 0.83 | 8.80 ± 0.52 | 8.85 | 8.66 ± 0.49 | 6.23 ± 0.47 | 7.44 | 8.78 | 7.51 | 8.14 |
G | 11.33 ± 0.92 | 5.32 ± 0.39 | 8.32 | 9.15 ± 0.59 | 6.67 ± 0.56 | 7.91 | 10.24 | 5.99 | 8.11 |
CV (%) *** | 4.8 | 5.2 | 5.1 | 6.1 | |||||
Mean | 11.17 | 7.64 | 9.41 | 12.27 | 7.80 | 10.03 | 11.72 | 7.72 | - |
HSD(0.05) | for years—n.s. **; for cultivars—n.s.; for row spacing—2.79; for foliar sprays—3.52; for interaction: cultivar × row spacing—n.s.; for interaction: cultivar × foliar spray—n.s.; for interaction: row spacing × foliar spray—n.s.; for interaction: cultivar × row spacing × foliar spray—n.s. |
Species | Foliar Spray Application Treatments | Row Spacing | Cultivar | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A * | B | C | D | E | F | G | 40 cm | 30 cm | Złoty Łan | Mastar | |
Annual | |||||||||||
Viola arvensis Murray | 4.3 | 3.0 | 3.3 | 3.5 | 2.7 | 2.9 | 2.8 | 3.9 | 2.7 | 3.5 | 3.1 |
Spergula arvensis L. | 3.9 | 2.4 | 3.1 | 2.4 | 2.2 | 2.1 | 2.4 | 3.1 | 2.1 | 2.5 | 2.7 |
Galeopsis tetrahit L. | 3.7 | 3.1 | 2.9 | 2.5 | 3.4 | 2.8 | 2.9 | 3.4 | 2.4 | 2.7 | 3.1 |
Juncus bufonius L. | 1.9 | 1.4 | 1.5 | 1.5 | 1.2 | 2.6 | 2.1 | 2.2 | 1.5 | 1.5 | 2.1 |
Scleranthus annuus L. | 1.1 | 1.9 | 1.4 | 1.2 | 2.0 | 1.5 | 1.2 | 1.5 | 1.6 | 1.5 | 1.2 |
Erigeron canadensis (L.) Cronquist) | 0.8 | 0.7 | 0.3 | 1.1 | 0.7 | 0.9 | 0.5 | 0.7 | 0.6 | 0.8 | 0.9 |
Tripleurospermum maritimum (L.) W. D. J. Koch | 0.7 | 0.4 | 0.1 | 0.4 | 0.3 | 0.7 | 0.9 | 0.7 | 0.4 | 0.5 | 0.6 |
Echinochloa crus-galli (L.) P. Beauv. | 0.7 | 0.2 | 0.4 | 0.7 | 1.2 | 1.1 | 0.7 | 0.6 | 0.7 | 0.9 | 0.4 |
Geranium pusillum L. | 0.6 | 0.5 | 0.2 | 1.5 | 1.0 | 0.5 | 0.3 | 0.6 | 0.8 | 0.7 | 0.8 |
Setaria pumila (Poir.) Roem. | 0.5 | 0.4 | - | 0.4 | 0.2 | 0.4 | 0.2 | 0.3 | 0.1 | 0.3 | 0.2 |
Polygonum convolvulus L. | 0.5 | 0.3 | 0.6 | 0.3 | 0.5 | 0.8 | 0.4 | 0.4 | 0.5 | 0.6 | 0.5 |
Hypericum humifusum L. | 0.5 | 0.5 | 0.8 | 0.6 | 0.7 | 0.4 | 0.3 | 0,5 | 0.7 | 0.7 | 0.3 |
Chenopodium album L. | 0.3 | 0.2 | - | 0.4 | 0.4 | - | 0.6 | 0.4 | 0.2 | 0.1 | 0.5 |
Capsella bursa-pastoris (L.) Medik | 0.3 | 0.1 | 0.1 | 0.5 | 0.5 | 0.6 | 0.3 | 0.2 | 0.4 | 0.2 | 0.3 |
Veronica arvensis L. | 0.1 | - | 0.2 | 0.3 | 0.3 | 0.4 | 0.2 | 0.3 | 0.1 | 0.2 | 0.2 |
Erodium cicutarium (L.) L’Her. | - | 0.1 | 0.2 | 0.2 | 0.5 | - | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 |
Galinsoga parviflora Cav. | - | - | 0.1 | 0.5 | 0.2 | 0.3 | - | 0.1 | 0.2 | 0.1 | 0.2 |
Number of annual weeds | 19.6 | 15.1 | 15.2 | 18.1 | 17.8 | 17.7 | 15.8 | 19.1 | 15.1 | 17.0 | 17.1 |
Number of annual species | 15 | 15 | 15 | 17 | 17 | 15 | 16 | 17 | 17 | 17 | 17 |
Perennial | |||||||||||
Elymus repens (L.) Gould | 1.1 | 0.7 | 1.1 | 0.9 | 1.3 | 0.9 | 0.6 | 1.0 | 0.9 | 0.7 | 1.0 |
Equisetum arvense L. | 0.3 | 0.3 | 0.2 | 0.1 | - | 0.2 | - | 0.1 | 0.2 | 0.1 | 0.1 |
Convolvulus arvensis L. | 0.1 | 0.3 | 0.1 | 0.4 | 0.4 | - | - | 0.1 | 0.1 | 0.2 | 0.3 |
Number of perennial weeds | 1.5 | 1.2 | 1.4 | 1.3 | 1.7 | 1.1 | 0.6 | 1.2 | 1.2 | 1.1 | 1.4 |
Number of perennial species | 3 | 3 | 3 | 3 | 2 | 2 | 1 | 3 | 3 | 3 | 3 |
Treatment | Złoty Łan | Mastar | Mean for Row Spacing | ||||||
---|---|---|---|---|---|---|---|---|---|
40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | 40 cm | 30 cm | Mean | |
A * | 6.2 ± 0.9 ** | 7.9 ± 1.1 | 7.0 | 11.5 ± 1.3 | 15.4 ± 1.7 | 13.4 | 8.8 | 11.6 | 10.2 |
B | 3.4 ± 0.6 | 4.5 ± 0.6 | 3.9 | 7.5 ± 1.0 | 8.0 ± 0.9 | 7.7 | 5.4 | 6.2 | 5.8 |
C | 3.2 ± 0.6 | 3.8 ± 0.7 | 3.5 | 6.1 ± 0.7 | 6.5 ± 0.8 | 6.3 | 4.6 | 5.1 | 4.8 |
D | 4.0 ± 0.7 | 5.1 ± 0.8 | 4.5 | 8.4 ± 0.5 | 9.7 ± 0.9 | 9.0 | 6.2 | 7.4 | 6.8 |
E | 2.0 ± 0.3 | 2.4 ± 0.5 | 2.2 | 3.1 ± 0.3 | 3.4 ± 0.4 | 3.2 | 2.5 | 2.9 | 2.7 |
F | 2.2 ± 0.5 | 2.8 ± 0.6 | 2.5 | 3.7 ± 0.4 | 4.0 ± 0.5 | 3.8 | 2.9 | 3.4 | 3.1 |
G | 3.4 ± 0.8 | 4.1 ± 0.9 | 3.7 | 5.5 ± 0.6 | 6.2 ± 0.7 | 5.8 | 4.4 | 5.1 | 4.7 |
CV (%) *** | 8.4 | 7.3 | 12.5 | 13.2 | |||||
Mean | 3.4 | 4.4 | 3.9 | 6.5 | 7.6 | 7.0 | 5.0 | 6.0 | - |
HSD(0.05) | for years—n.s. ****; for cultivars—0.97; for row spacing—0.94; for foliar sprays—1.11; for interaction: cultivar × row spacing—n.s.; for interaction: cultivar × foliar spray—n.s.; for interaction: row spacing × foliar spray—n.s.; for interaction: cultivar × row spacing × foliar spray—n.s. |
Treatment | Row Spacing (cm) | Number of Weeds | Weight of Weeds | ||
---|---|---|---|---|---|
Złoty Łan | Mastar | Złoty Łan | Mastar | ||
A * | 30 | 0.71 ** | 0.89 ** | 0.36 | 0.55 ** |
40 | 0.58 ** | 0.62 ** | 0.28 | 0.33 | |
B | 30 | 0.18 | 0.23 | 0.11 | 0.15 |
40 | 0.09 | 0.16 | 0.07 | 0.06 | |
C | 30 | 0.20 | 0.22 | 0.09 | 0.13 |
40 | 0.08 | 0.10 | 0.06 | 0.09 | |
D | 30 | 0.27 | 0.33 | 0.21 | 0.26 |
40 | 0.22 | 0.28 | 0.14 | 0.18 | |
E | 30 | 0.22 | 0.21 | 0.20 | 0.17 |
40 | 0.28 | 0.32 | 0.31 | 0.26 | |
F | 30 | 0.18 | 0.19 | 0.22 | 0.28 |
40 | 0.13 | 0.11 | 0.12 | 0.15 | |
G | 30 | 0.13 | 0.15 | 0.11 | 0.23 |
40 | 0.09 | 0.12 | 0.09 | 0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, C.A.; Haliniarz, M.; Harasim, E. Weed Infestation and Health of Organically Grown Chamomile (Chamomilla recutita (L.) Rausch.) Depending on Selected Foliar Sprays and Row Spacing. Agriculture 2020, 10, 168. https://doi.org/10.3390/agriculture10050168
Kwiatkowski CA, Haliniarz M, Harasim E. Weed Infestation and Health of Organically Grown Chamomile (Chamomilla recutita (L.) Rausch.) Depending on Selected Foliar Sprays and Row Spacing. Agriculture. 2020; 10(5):168. https://doi.org/10.3390/agriculture10050168
Chicago/Turabian StyleKwiatkowski, Cezary A., Małgorzata Haliniarz, and Elżbieta Harasim. 2020. "Weed Infestation and Health of Organically Grown Chamomile (Chamomilla recutita (L.) Rausch.) Depending on Selected Foliar Sprays and Row Spacing" Agriculture 10, no. 5: 168. https://doi.org/10.3390/agriculture10050168