Application of Polynomial Transition Curves for Trajectory Planning on the Headlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Determination of Curvature and Tangent to a Curve Angle Functions
2.2. Algorithm of Trajectory Planning
- the angle tangent to the curve θT at the point T
- the length of single transition curve L
- the time of motion along the single transition curve
- the increase in the coordinates x and y of the single transition curve is calculated from relations (10) and (11) by inserting the adequate values of arguments
- the coordinates of the initial point B in the global system of coordinates
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Šarauskis, E.; Vaitauskienė, K.; Romaneckas, K.; Jasinskas, A.; Butkus, V.; Kriaučiūnienė, Z. Fuel consumption and CO2 emission analysis in different strip tillage scenarios. Energy 2017, 118, 957–968. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.G.; Green, O.; Hameed, I.A.; Berruto, R. Design of a Wildlife Avoidance Planning System for Autonomous Harvesting Operations. Int. J. Adv. Robot. Syst. 2014, 11, 1–10. [Google Scholar] [CrossRef]
- Gonzalez-de-Soto, M.; Emmi, L.; Garcia, I.; Gonzalez-de-Santos, P. Reducing fuel consumption in weed and pest control using robotic tractors. Comput. Electron. Agric. 2015, 114, 96–113. [Google Scholar] [CrossRef]
- Mamkagh, A.M. Effect of Tillage Speed, Depth, Ballast Weight and Tire Inflation Pressure on the Fuel Consumption of the Agricultural Tractor: A Review. J. Eng. Res. Rep. 2018, 3, 1–7. [Google Scholar] [CrossRef]
- Conesa-Muñoz, J.; Bengochea-Guevara, J.M.; Andujar, D.; Ribeiro, A. Route planning for agricultural tasks: A general approach for fleets of autonomous vehicles in site-specific herbicide applications. Comput. Electron. Agric. 2016, 127, 204–220. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Vougioukas, S.G. Minimising the non-working distance travelled by machines operating in aheadland field pattern. Biosyst. Eng. 2008, 101, 1–12. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.G.; Busato, P.; Berruto, R. Benefits from optimal route planning based on B-patterns. Biosyst. Eng. 2013, 115, 389–395. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Griepentrog, H.W.; Vougioukas, S.; Busato, P.; Berruto, R.; Zhou, K. Route planning for orchard operations. Comput. Electron. Agric. 2015, 113, 51–60. [Google Scholar] [CrossRef]
- Han, X.Z.; Kim, H.J.; Jeon, C.W.; Moon, H.C.; Kim, J.H. Development of a low-cost GPS/INS integrated system for tractor automatic navigation. Int. J. Agr. Biol. Eng. 2017, 10, 123–131. [Google Scholar]
- Han, X.Z.; Kim, H.J.; Jeon, C.W.; Moon, H.C.; Kim, J.H.; Yi, S.Y. Application of a 3D tractor-driving simulator for slip estimation-based path-tracking control of auto-guided tillage operation. Biosyst. Eng. 2019, 178, 70–85. [Google Scholar] [CrossRef]
- Kurita, H.; Iida, M.; Cho, W.; Suguri, M. Rice autonomous harvesting: Operation framework. J. Field Robot. 2017, 34, 1084–1099. [Google Scholar] [CrossRef]
- Liu, Y.; Noguchi, N. Development of an unmanned surface vehicle for autonomous navigation in a paddy field. Eng. Agric. Environ. Food 2016, 9, 21–26. [Google Scholar] [CrossRef]
- Zhang, C.; Noguchi, N.; Yang, L. Leader–follower system using two robot tractors to improve work efficiency. Comput. Electron. Agric. 2016, 121, 269–281. [Google Scholar] [CrossRef]
- Backman, J.; Pirainen, P.; Oksanen, T. Smooth turning path generation for agricultural vehicles in headlands. Biosyst. Eng. 2015, 139, 76–86. [Google Scholar] [CrossRef]
- Wang, H.; Noguchi, N. Adaptive turning control for an agricultural robot tractor. Int. J. Agr. Biol. Eng. 2018, 11, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Luo, X.; Zhang, Z. Field verification of the autonomous agricultural machine headland turning control method. Int. Agric. Eng. J. 2016, 25, 98–105. [Google Scholar]
- Yin, X.; Du, J.; Geng, D.; Jin, C. Development of an automatically guided rice transplanter using RTK-GNSS and IMU. Sci. Direct IFAC Pap. On Line 2018, 51–17, 374–378. [Google Scholar] [CrossRef]
- Kortenbruck, D.; Griepentrog, H.W.; Paraforos, D.S. Machine operation profiles generated from ISO 11783 communication. Comput. Electron. Agric. 2017, 140, 227–236. [Google Scholar] [CrossRef]
- Sabelhaus, D.; Röben, F.; Helligen, L.P.M.Z.; Lammers, P.S. Using continuous-curvature paths to generate feasible headland turn manoeuvres. Biosyst. Eng. 2013, 116, 399–409. [Google Scholar] [CrossRef]
- Cariou, C.; Lenain, R.; Thuilot, B.; Humbert, T.; Berducat, M. Maneuvers automation for agricultural vehicle in headland. In Proceedings of the AgEng International Conference on Agricultural Engineering, Clermont-Ferrand, France, 6–8 September 2010. [Google Scholar]
- Koc, W. Analytical method of modelling the geometric system of communication route. Math. Probl. Eng. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Boryga, M.; Kołodziej, P.; Gołacki, K. Clothoid as a transition curie of the manipulator end-effector trajectory for harvesting tomatoes in a greenhouse. In Proceedings of the IX International Scientific SymposiumFarm Machinery and Processes Management in Sustainable Agriculture, Lublin, Poland, 22–24 November 2017; pp. 52–57. [Google Scholar]
- Graf-Plessen, M.M.; Bemporad, A. Reference trajectory planning under constrains and path tracking using linear time-varying model predictive control for agricultural machines. Biosyst. Eng. 2017, 153, 28–41. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Vougioukas, S.G.; Griepentrog, H.W. A mission planner for an autonomous tractor. Trans. ASABE 2009, 52, 1429–1440. [Google Scholar] [CrossRef]
- Evans, J.T., IV; Pitla, S.K.; Luck, J.D.; Kocher, M. Row crop grain harvester path optimization in headland patterns. Comput. Electron. Agric. 2020, 171, 1–8. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Hübner, R.; Griepentrog, H.W. Automatic determination of headland turning from auto-steering position data for minimising the infield non-working time. Comput. Electron. Agric. 2018, 152, 393–400. [Google Scholar] [CrossRef]
- Bulgakov, V.; Pascuzzi, S.; Nadykto, V.; Ivanovs, S. A mathematical model of the plane-parallel movement of an asymmetric machine-and-tractor aggregate. Agriculture 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Bulgakov, V.; Pascuzzi, S.; Beloev, H.; Ivanovs, S. Theoretical Investigations of the Headland Turning Agility of a Trailed Asymmetric Implement-and-Tractor Aggregate. Agriculture 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
Polynomial Degree | Polynomial Coefficients | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
k | a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 |
1 | κ1 | 1/L | - | - | - | - | - | - | - | - |
3 | κ1 | - | 3/L2 | −2/L3 | - | - | - | - | - | - |
5 | κ1 | - | - | 10/L3 | −15/L4 | 6/L5 | - | - | - | - |
7 | κ1 | - | - | - | 35/L4 | −84/L5 | 70/L6 | −20/L7 | - | - |
9 | κ1 | - | - | - | - | 126/L5 | −420/L6 | 540/L7 | −315/L8 | 70/L9 |
Polynomial Degree | Polynomial Coefficients | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
k | a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 |
1 | θb | κ1 | 1/2L | - | - | - | - | - | - | - | - |
3 | θb | κ1 | - | 1/L2 | −1/2L3 | - | - | - | - | - | - |
5 | θb | κ1 | - | - | 5/2L3 | −3/L4 | 1/L5 | - | - | - | - |
7 | θb | κ1 | - | - | - | 7/L4 | −14/L5 | 10/L6 | −5/2L7 | - | - |
9 | θb | κ1 | - | - | - | - | 21/L5 | −60/L6 | 135/2L7 | −35/L8 | 7/L9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boryga, M.; Kołodziej, P.; Gołacki, K. Application of Polynomial Transition Curves for Trajectory Planning on the Headlands. Agriculture 2020, 10, 144. https://doi.org/10.3390/agriculture10050144
Boryga M, Kołodziej P, Gołacki K. Application of Polynomial Transition Curves for Trajectory Planning on the Headlands. Agriculture. 2020; 10(5):144. https://doi.org/10.3390/agriculture10050144
Chicago/Turabian StyleBoryga, Marek, Paweł Kołodziej, and Krzysztof Gołacki. 2020. "Application of Polynomial Transition Curves for Trajectory Planning on the Headlands" Agriculture 10, no. 5: 144. https://doi.org/10.3390/agriculture10050144
APA StyleBoryga, M., Kołodziej, P., & Gołacki, K. (2020). Application of Polynomial Transition Curves for Trajectory Planning on the Headlands. Agriculture, 10(5), 144. https://doi.org/10.3390/agriculture10050144