Enzymatic Activity of Loess Soil in Organic and Conventional Farming Systems
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Setup
- Conventional—the recommended rates of mineral NPK (ammonium nitrate—34% N, enriched superphosphate—40% P2O5, potassium chloride—60% K2O) and organic fertilization (manure applied for sugar beet), seed dressing, fungicide and herbicide application, and mechanical weed control (harrowing before emergence and at the 3–4 leaf stage);
- Organic—organic fertilization with the fertilizer Humac Agro *, catch crops (lacy phacelia, faba bean + field pea mixture—as “green fertilizers” plowed under in autumn), and mechanical weed control (harrowing before emergence and at the 3–4 leaf stage). (* The chemical composition of the fertilizer Humac Agro is as follows: Humic acid content—62% on a dry weight basis; macro- and micronutrient content on a dry weight basis: potassium (K) 1.18 g kg−1; calcium (Ca) 16.80 g kg−1; sodium (Na) 12.80 g kg−1, iron (Fe) 14.50 g kg−1; zinc (Zn) 64 mg kg−1; bromine (Br) 77 mg kg−1; copper (Cu) 19 mg kg−1; selenium (Se) 6 mg kg−1; and moisture content—20%.)
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Medan, D.; Torretta, J.P.; Hodara, K.; de la Fuente, E.B.; Montaldo, N.H. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodivers. Conserv. 2011, 20, 3077–3100. [Google Scholar] [CrossRef]
- Shannon, D.; Sen, A.M.; Johnson, D.B. A comparative study of the microbiology of soils managed under organic and conventional regimes. Soil Use Manag. 2002, 18 (Suppl. S1), 274–283. [Google Scholar] [CrossRef]
- Wang, Y.; Tu, C.; Cheng, L.; Li, C.; Gentry, L.F.; Hoyt, G.D.; Zhang, X.; Hu, S. Long term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity. Soil Tillage Res. 2011, 117, 8–16. [Google Scholar] [CrossRef]
- Balota, E.L.; Kanashiro, M.; Filho, A.C.; Andrade, D.S.; Dick, R.P. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agroecosystems. Braz. J. Microbiol. 2004, 35, 300–306. [Google Scholar] [CrossRef]
- Wallenstein, M.D.; Haddix, M.L.; Lee, D.D.; Conant, R.T.; Paul, E.A. A litter-slurry technique elucidates the key role of enzyme production and microbial dynamics in temperature sensitivity of organic matter decomposition. Soil Biol. Biochem. 2012, 47, 18–26. [Google Scholar] [CrossRef]
- Dick, R.P. Soil enzyme activities as integrative indicators of soil health. In Biological Indicators of Soil Health; Pankhurst, C.E., Boube, B.M., Gupta, V.V.S.R., Eds.; CABI Publishing: Wallingford, UK, 1997; pp. 121–156. [Google Scholar]
- Acosta-Martínez, V.; Reicher, Z.; Bischoff, M.; Turco, R.F. The role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality. Biol. Fertil. Soils 1999, 29, 55–61. [Google Scholar] [CrossRef]
- Wang, A.S.; Angle, J.S.; Chaney, R.L.; Delorme, T.A.; Macintosh, M. Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol. Biochem. 2006, 38, 1451–1461. [Google Scholar] [CrossRef]
- Skowrońska, M.; Bielińska, E.J.; Szymański, K.; Futa, B.; Antonkiewicz, J.; Kołodziej, B. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena 2020, 189, 104484. [Google Scholar] [CrossRef]
- Trasar-Cepeda, C.; Leiros, M.C.; Seoane, S.; Gil-Sotres, F. Limitations of soil enzymes as indicators of soil pollution. Soil Biol. Biochem. 2000, 32, 1867–1875. [Google Scholar] [CrossRef]
- Shaw, L.J.; Burns, R.G. Biodegradation of organic pollutants in the rhizosphere. Adv. Appl. Microbiol. 2003, 53, 1–60. [Google Scholar] [CrossRef]
- Gianfreda, L.; Rao, A.M.; Piotrowska, A.; Palumbo, G.; Colombo, C. Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Sci. Total Environ. 2005, 341, 265–279. [Google Scholar] [CrossRef]
- Saviozzi, A.; Levi-Minzi, R.; Cardelli, R.; Riffaldi, R. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant Soil 2001, 233, 251–259. [Google Scholar] [CrossRef]
- Dahm, H. Generic composition and physiological and cultural properties of heterotrophic bacteria isolated from soil, rhizosphere and mycorrihizosphere of pine (Pinus sylvestris L.). Acta Microbiol. Pol. 1984, 33, 147–156. [Google Scholar] [PubMed]
- Burns, R.G. The rhizosphere: Microbial and enzymatic gradient and prospects for manipulation. Pedologie 1985, 35, 283–295. [Google Scholar]
- Krämer, S.; Douglas, M.; Green, D.M. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biol. Biochem. 2000, 32, 179–188. [Google Scholar] [CrossRef]
- Woźniak, A. Chemical properties and enzyme activity of soil as affected by tillage system and previous crop. Agriculture 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Zhang, X.; Liu, J.; Chen, Q.; Gao, L. Microbial properties of rhizosphere soils as affected by rotation, grafting, and soil sterilization in intensive vegetable production systems. Sci. Hortic. 2009, 123, 139–147. [Google Scholar] [CrossRef]
- Bielińska, E.J.; Mocek-Płóciniak, A. Impact of the tillage system on the soil enzymatic activity. Arch. Environ. Prot. 2012, 38, 75–82. [Google Scholar] [CrossRef]
- N’Daygamiye, A.; Tran, T.S. Effects of green manures on soil organic matter and wheat yields and N nutrition. Can. J. Soil Sci. 2001, 81, 371–382. [Google Scholar] [CrossRef]
- Liu, J.; Bergkvist, G.; Ulen, B. Biomass production and phosphorus retention by catch crops on clayey soils in southern and central Sweden. Field Crop Res. 2015, 171, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Institute of Plant Protection—State Research Institute in Poznan. Crop Protection Calendar. In Cereal, Root, Legume Crops; Institute of Plant Protection—State Research Institute in Poznan: Poznan, Poland, 2017. [Google Scholar]
- Thalmann, A. Zur Methodik der Bestimmung der Dehydrogenase Aktivität in Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch. Forsch. 1968, 21, 249–258. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Zantua, M.I.; Bremner, J.M. Comparison of methods of assaying urease activity in soils. Soil Biol. Biochem. 1975, 7, 291–295. [Google Scholar] [CrossRef]
- Ladd, N.; Butler, J.H.A. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 1972, 4, 19–30. [Google Scholar] [CrossRef]
- Bai, Z.; Casparia, T.; Ruiperez Gonzaleza, M.; Batjesa, N.H.; Mäderb, P.; Bünemannb, E.K.; de Goedec, R.; Brussaardc, L.; Xud, M.; Santos Ferreirae, C.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Letourneau, D.K.; Workneh, F.; van Bruggen, A.H.C.; Shennan, C. Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol. Appl. 1995, 5, 1098–1112. [Google Scholar] [CrossRef]
- Fließbach, A.; Oberholzer, H.R.; Gunst, L.; Mader, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fliesbach, A.; Gunst, L.; Hedlund, K.; et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 2008, 40, 2297–2308. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Mader, P.; Fließbach, A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol. Fertil. Soils 2010, 46, 303–307. [Google Scholar] [CrossRef]
- Loes, A.K.; Ogaard, A.F. Changes in the nutrient content of agricultural soil on conversion to organic farming in relation to farm-level nutrient balances and soil contents of clay and organic matter. Acta Agric. Scand. B. Plant Soil Sci. 1997, 47, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Askegaard, M.; Eriksen, J.; Olesen, J.E. Exchangeable potassium and potassium balances in organic crop rotations on a coarse sand. Soil Use Manag. 2003, 19, 96–103. [Google Scholar] [CrossRef]
- Gosling, P.; Shepherd, M. Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric. Ecosyst. Environ. 2005, 105, 425–432. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnstrom, J.; Weibull, A.C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Marinari, S.; Mancinelli, R.; Campiglia, E.; Grego, S. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 2006, 6, 701–711. [Google Scholar] [CrossRef]
- Roldán, A.; Salinas-Garcia, J.R.; Alguacil, M.M.; Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol. 2005, 30, 11–20. [Google Scholar] [CrossRef]
- Janvier, C.; Villeneuvel, F.; Alabouvette, C.; Edel-Hermenn, V.; Mateille, T.; Steinberg, C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 2007, 39, 1–23. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Prakash, V.; Kundu, S.; Srisignificantva, A.K.; Gupta, S.M. Long term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas. Nutr. Cycl. Agroecosyst. 2010, 86, 1–16. [Google Scholar] [CrossRef]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Avellaneda-Torres, L.M.; Melgarejo, L.M.; Narváez-Cuenca, C.E.; Sánchez, J. Enzymatic activities of potato crop soils subjected to conventional management and grassland soils. J. Soil Sci. Plant Nutr. 2013, 13, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Abdallahi, M.M.; N’Dayegamiye, A. Effets de deux incorporations d’engrais verts sur le rendement et la nutrition en azote du blé (Triticum aestivum L.), ainsi que sur les propriétés physiques et biologiques du sol. Can. J. Soil Sci. 2000, 80, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 2009, 60, 158–169. [Google Scholar] [CrossRef]
- Jurado, M.M.; Suárez-Estrella, F.; Vargas-García, M.C.; López, M.J.; López-González, J.A.; Moreno, J. Evolution of enzymatic activities and carbon fractions throughout composting of plant waste. J. Environ. Manag. 2014, 133, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Brzezińska, M.; Stępniewska, Z.; Stępniewski, W.; Włodarczyk, T.; Przywara, G.; Bennicelli, R. Effect of oxygen deficiency on soil dehydrogenase activity (pot experiment with barley). Int. Agrophys. 2001, 15, 3–7. [Google Scholar]
- Brzostek, E.R.; Finzi, A.C. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils. J. Geophys. Res. 2012, 117, G01018. [Google Scholar] [CrossRef] [Green Version]
- Błońska, E.; Lasota, J.; Gruba, P. Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to Rother properties of soil derived from less and glaciofluvial sand. Ecol. Res. 2016, 31, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Diacomo, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Kong, J.; Cui, H.; Zhang, J.; Wang, F.; Cai, Z.; Huang, X. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biol. Control 2016, 101, 103–113. [Google Scholar] [CrossRef]
- Bielińska, E.J.; Pranagal, J. Enzymatic activity of soil contaminated with triazine herbicides. Pol. J. Environ. Stud. 2007, 16, 295–300. [Google Scholar]
- Bielińska, E.J.; Mocek, A.; Paul-Lis, M. Impact of the tillage system on the enzymatic activity of typologically diverse soils. J. Res. Appl. Agric. Eng. 2008, 53, 10–13. [Google Scholar]
- Niewiadomska, A.; Sulewska, H.; Wolna-Maruwka, A.; Klama, J. Effect of organic fertilization on development of proteolytic bacteria and activity of proteases in the soil for cultivation of maize (Zea mays L.). Arch. Environ. Prot. 2010, 36, 47–56. [Google Scholar]
- Rankoth, L.M.; Udawatta, R.P.; Veum, K.S.; Jose, S.; Alagele, S. Cover crop influence on soil enzymes and selected chemical parameters for a claypan corn–soybean rotation. Agriculture 2019, 9, 125. [Google Scholar] [CrossRef] [Green Version]
Farming System | soil pH (1M KCl) | N (%) | P (mg kg−1) | K (mg kg−1) | C Organic (%) |
---|---|---|---|---|---|
Organic | 6.5 | 0.08 | 129 | 209 | 1.16 |
Conventional | 6.4 | 0.12 | 133 | 217 | 1.25 |
Crop Plant | Mineral Fertilization in kg ha−1 | Manure Fertilization in t ha−1 | ||
---|---|---|---|---|
N | P | K | ||
Sugar beat | 100 (before sowing) | 100 (before sowing) | 140 (before sowing) | 30 (autumn; before sowing) |
Spring barley | 60 (split doses) * | 40 (before sowing) | 80 (before sowing) | - |
Red clover | 30 (before sowing) | 20 (before sowing) | 50 (before sowing) | - |
Winter wheat | 100 (split doses) ** | 80 (before sowing) | 120 (before sowing) | - |
Oats | 40 (before sowing) | 30 (before sowing) | 50 (before sowing) | - |
Crop plant | Mineral Fertilization (Humac Agro) in kg ha−1 | Manure Fertilization (Originating from Organic Livestock Production) in t ha−1 |
---|---|---|
Sugar beat | 500 (before sowing) | 20 (autumn; before sowing) |
Spring barley | 350 (before sowing) | - |
Red clover | 50 (as top dressing) | - |
Winter wheat | 400 (before sowing) | - |
Oats | 300 (before sowing) | - |
Crop Plant | Sowing Date | Harvest Date |
---|---|---|
Sugar beat | 20–25.04 | 16–19.10 |
Spring wheat | 18–21.04 | 10–12.08 |
Red clover | 18–21.04 | 20–22.08 |
Winter wheat * | 20–22.09 | 8–10.08 |
Oats ** | 10–12.04 | 17–19.08 |
Crop Plant | Farming System | pH 1M KCl | Organic C % | Total N % | C/N | P mg kg−1 | K mg kg−1 |
---|---|---|---|---|---|---|---|
Sugar beet | Organic | 6.7 ± 0.1 ** | 1.50 ± 0.11 | 0.16 ± 0.03 | 9.3 ± 0.1 | 159.8 ± 2.2 | 240.1 ± 2.5 |
Conventional | 6.4 ± 0.1 | 0.98 ± 0.08 | 0.09 ± 0.02 | 10.8 ± 0.2 | 192.5 ± 1.9 | 274.2 ± 3.1 | |
Mean | 6.5 | 1.24 | 0.12 | 10.0 | 176.1 | 257.15 | |
Spring barley | Organic | 6.5 ± 0.2 | 0.81 ± 0.03 | 0.09 ± 0.02 | 9.0 ± 0.2 | 139.6 ± 2.0 | 226.0 ± 1.7 |
Conventional | 6.1 ± 0.1 | 0.70 ± 0.04 | 0.06 ± 0.01 | 10.0 ± 0.2 | 180.7 ± 1.6 | 251.9 ± 1.9 | |
Mean | 6.3 | 0.75 | 0.07 | 9.5 | 160.1 | 238.9 | |
Red clover | Organic | 6.6 ± 0.2 | 1.19 ± 0.05 | 0.13 ± 0.04 | 9.1 ± 0.1 | 146.8 ± 2.0 | 219.8 ± 2.5 |
Conventional | 6.3 ± 0.1 | 0.93 ± 0.03 | 0.09 ± 0.03 | 10.3 ± 0.1 | 170.2 ± 1.8 | 243.3 ± 2.6 | |
Mean | 6.4 | 1.06 | 0.11 | 9.7 | 158.5 | 231.5 | |
Winter wheat | Organic | 6.4 ± 0.1 | 0.86 ± 0.04 | 0.09 ± 0.02 | 9.5 ± 0.3 | 141.0 ± 0.8 | 231.6 ± 1.8 |
Conventional | 6.0 ± 0.2 | 0.72 ± 0.01 | 0.07 ± 0.02 | 10.2 ± 0.2 | 186.7 ± 1.4 | 260.4 ± 2.6 | |
Mean | 6.2 | 0.79 | 0.08 | 9.8 | 163.8 | 246.0 | |
Oats | Organic | 6.4 ± 0.1 | 1.03 ± 0.05 | 0.10 ± 0.03 | 10.3 ± 0.2 | 150.2 ± 2.4 | 219.7 ± 2.2 |
Conventional | 6.0 ± 0.2 | 0.96 ± 0.04 | 0.09 ± 0.03 | 10.6 ± 0.2 | 178.8 ± 2.7 | 242.4 ± 2.4 | |
Mean | 6.2 | 0.99 | 0.09 | 10.4 | 164.5 | 231.0 | |
HSD (0.05) for farming system (A) | 0.29 | 0.112 | 0.022 | 0.72 | 44.62 | 33.23 | |
HSD (0.05) for crop plant (B) | 0.28 | 0.178 | 0.015 | n.s. | 19.4 | 24.92 | |
HSD (0.05) for interaction (A × B) | n.s. * | 0.214 | 0.029 | n.s. | n.s. | n.s. |
Crop Plant | Farming System | Dh * | Pal | Pac | Ur | Pr |
---|---|---|---|---|---|---|
Sugar beet | Organic | 9.7 ± 0.3 *** | 170.2 ± 4.3 | 111.4 ± 3.3 | 25.7 ± 1.4 | 20.6 ± 1.1 |
Conventional | 4.1 ± 0.4 | 125.8 ± 2.7 | 41.7 ± 2.7 | 11.0 ± 0.8 | 14.5 ± 0.7 | |
Mean | 6.9 | 148.0 | 76.5 | 18.3 | 17.5 | |
Spring barley | Organic | 6.1 ± 0.4 | 111.3 ± 1.6 | 68.7 ± 2.1 | 16.3 ± 0.9 | 12.9 ± 0.9 |
Conventional | 2.5 ± 0.2 | 70.1 ± 1.2 | 55.2 ± 1.7 | 6.9 ± 0.6 | 7.9 ± 0.5 | |
Mean | 4.3 | 90.7 | 61.9 | 11.6 | 10.4 | |
Red clover | Organic | 8.6 ± 0.5 | 126.2 ± 2.5 | 113.7 ± 3.1 | 19.8 ± 1.0 | 15.3 ± 0.3 |
Conventional | 3.9 ± 0.3 | 98.2 ± 2.2 | 66.9 ± 2.2 | 9.2 ± 0.7 | 10.3 ± 0.2 | |
Mean | 6.2 | 112.2 | 90.3 | 14.5 | 17.3 | |
Winter wheat | Organic | 6.5 ± 0.1 | 102.3 ± 1.8 | 70.4 ± 2.6 | 17.6 ± 0.6 | 13.8 ± 0.4 |
Conventional | 2.8 ± 0.2 | 67.9 ± 0.9 | 56.3 ± 1.8 | 7.1 ± 0.3 | 8.2 ± 0.2 | |
Mean | 4.6 | 85.1 | 63.3 | 12.3 | 11.0 | |
Oats | Organic | 8.1 ± 0.3 | 119.5 ± 3.0 | 111.8 ± 2.3 | 17.5 ± 0.5 | 14.9 ± 0.6 |
Conventional | 3.5 ± 0.3 | 89.4 ± 2.6 | 60.8 ± 1.9 | 7.4 ± 0.2 | 9.0 ± 0.3 | |
Mean | 5.8 | 104.4 | 86.3 | 12.4 | 11.9 | |
HSD (0.05) for farming system (A) | 0.91 | 25.69 | 16.22 | 2.92 | 3.78 | |
HSD (0.05) for crop plant (B) | 0.95 | 29.61 | 9.23 | 2.08 | 4.13 | |
HSD (0.05) for interaction (A × B) | 0.99 | 39.49 | n.s. ** | 5.07 | 4.98 |
Parameter | Farming System | Dh ** | Pal | Pac | Ur | Pr |
---|---|---|---|---|---|---|
pH | Organic | 0.61 * | 0.59 * | 0.56 * | 0.72 * | 0.78 * |
Conventional | 0.45 | 0.34 | 0.30 | 0.36 | 0.38 | |
Organic C | Organic | 0.85 * | 0.57 * | 0.55 * | 0.80 * | 0.77 * |
Conventional | 0.40 | 0.29 | 0.26 | 0.37 | 0.35 | |
Total N | Organic | 0.56 * | 0.49 | 0.46 | 0.53 * | 0.54 * |
Conventional | 0.32 | 0.30 | 0.25 | 0.35 | 0.37 | |
C/N | Organic | 0.81 * | 0.59 * | 0.63 * | 0.77 * | 0.79 * |
Conventional | 0.44 | 0.32 | 0.36 | 0.39 | 0.41 | |
P | Organic | 0.22 | 0.21 | 0.20 | 0.17 | 0.21 |
Conventional | 0.28 | 0.32 | 0.31 | 0.26 | 0.28 | |
K | Organic | 0.18 | 0.11 | 0.14 | 0.23 | 0.16 |
Conventional | 0.35 | 0.19 | 0.22 | 0.28 | 0.21 |
Parameter | Farming System | Dh ** | Pal | Pac | Ur | Pr |
---|---|---|---|---|---|---|
Sugar beet | Organic | 0.77 * | 0.62 * | 0.59 * | 0.69 * | 0.73 * |
Conventional | 0.53 * | 0.41 | 0.33 | 0.44 | 0.49 | |
Spring barley | Organic | 0.38 | 0.32 | 0.25 | 0.28 | 0.30 |
Conventional | 0.25 | 0.30 | 0.17 | 0.22 | 0.19 | |
Red clover | Organic | 0.71 * | 0.57 * | 0.55 * | 0.62 * | 0.68 * |
Conventional | 0.52 * | 0.41 | 0.22 | 0.31 | 0.29 | |
Winter wheat | Organic | 0.42 | 0.38 | 0.55 * | 0.53 * | 0.59 * |
Conventional | 0.40 | 0.28 | 0.42 | 0.35 | 0.51 * | |
Oats | Organic | 0.64 * | 0.57 * | 0.53 * | 0.52 * | 0.58 * |
Conventional | 0.54 * | 0.40 | 0.31 | 0.30 | 0.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwiatkowski, C.A.; Harasim, E.; Feledyn-Szewczyk, B.; Antonkiewicz, J. Enzymatic Activity of Loess Soil in Organic and Conventional Farming Systems. Agriculture 2020, 10, 135. https://doi.org/10.3390/agriculture10040135
Kwiatkowski CA, Harasim E, Feledyn-Szewczyk B, Antonkiewicz J. Enzymatic Activity of Loess Soil in Organic and Conventional Farming Systems. Agriculture. 2020; 10(4):135. https://doi.org/10.3390/agriculture10040135
Chicago/Turabian StyleKwiatkowski, Cezary A., Elżbieta Harasim, Beata Feledyn-Szewczyk, and Jacek Antonkiewicz. 2020. "Enzymatic Activity of Loess Soil in Organic and Conventional Farming Systems" Agriculture 10, no. 4: 135. https://doi.org/10.3390/agriculture10040135