Yield, Essential Oil Content, and Quality Performance of Lavandula angustifolia Leaves, as Affected by Supplementary Irrigation and Drying Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Station’s Location
2.2. Experimental Design and Management Practices
2.3. Raw Material Collection and Post-Harvest Treatments
2.4. Sample Preparation and Analyses
2.4.1. Extract Preparation
2.4.2. Total Phenolic Acid Content
2.4.3. DPPH Radical Scavenging Activity Assay
2.4.4. Essential Oil Distillation
2.4.5. Essential Oil Composition
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cavanagh, H.M.; Wilkinson, J.M. Biological activities of lavender essential oils. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Herraiz-Peñalver, D.; Cases, M.A.; Varela, F.; Navarrete, P.; Sánchez-Vioque, R.; Usano-Alemany, J. Chemical characterization of Lavandula latifolia Medik. essential oil from Spanish wild populations. Biochem. Syst. Ecol. 2013, 46, 59–68. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Zawiślak, G. Chemical composition and antioxidant activity of lavender (Lavandula angustifolia Mill.) aboveground parts. Acta Sci. Pol. Hortorum Cultus 2016, 15, 225–241. [Google Scholar]
- Sałata, A. Supplementary irrigation and drying method affect the yield and essential oil content and composition of lavender (Lavandula angustifolia Mill.) flowers. Acta Sci. Pol. Hortorum Cultus 2020. (accepted for print 12 August 2020). [Google Scholar]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; Masztalerz, K.; Szumny, A. Hs-spme analysis of true lavender (Lavandula angustifolia Mill.) leaves treated by various drying methods. Molecules 2019, 24, 764. [Google Scholar] [CrossRef] [Green Version]
- Nikšić, H.; Kovac-Besović, E.; Makarević, E.; Durić, K.; Kusturica, J.; Murotovic, S. Antiproliferative, antimicrobial, and antioxidant activity of Lavandula angustifolia Mill. essential oil. J. Health Sci. 2017, 7, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Ouedrhiri, W.; Balouiri, M.; Harki, E.; Moja, S.; Greche, H. Synergistic antimicrobial activity of two binary combinations of marjoram, lavender and wild thyme essential oils. Int. J. Food Prop. 2017, 20, 12. [Google Scholar] [CrossRef] [Green Version]
- Alexa, E.; Danciu, C.; Radulov, I.; Obistiou, D.; Sumalan, R.M.; Morar, A.; Dehelean, C.A. Phytochemical screening and biological activity of Mentha × piperita L. and Lavandula angustifolia Mill. extracts. Anal. Cell. Pathol. 2018, 2018, 2678924. [Google Scholar] [CrossRef] [Green Version]
- El Hamdaoui, A.; Msanda, F.; Boubaker, H.; Leach, D.; Bombarda, I.; Vanloot, P.N.; El Aouad, N.; Abbad, A.; Boudyach, E.H.; Achemchem, F.; et al. Essential oil composition, antioxidant and antibacterial activities of wild and cultivated Lavandul amairei Humbert. Biochem. Syst. Ecol. 2018, 76, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hajhashemi, V.; Ghannadi, A.; Sharif, B. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. J. Ethnopharmacol. 2003, 89, 67–71. [Google Scholar] [CrossRef]
- Lin, P.W.; Chan, W.; Ng, B.F.; Lam, L.C. Efficacy of aromatherapy (Lavandula angustifolia) as an intervention for agitated behaviours in Chinese older persons with dementia: A cross-over randomized trial. Int. J. Geriatr. Psychiatry 2007, 22, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Hawrelak, J.A.; Cattley, T.; Myers, S.P. Essential oils in the treatment of intestinal dysbiosis: A preliminary in vitro study. Altern. Med. Rev. 2009, 14, 380–384. [Google Scholar] [PubMed]
- Morgan, T.J.; Morden, W.E.; Al-Muhareb, E.; Herod, A.A.; Kandiyoti, R. Essential oils investigated by size exclusion chromatography and gas chromatography–mass spectrometry. Energy Fuels 2006, 20, 734–737. [Google Scholar] [CrossRef]
- Mantovani, A.L.L.; Vieira, G.P.G.; Cunha, W.R.; Groppo, M.; Santos, R.A.; Rodrigues, V.; Magalhães, L.G.; Crotti, A.E.M. Chemical composition, antischistosomal and cytotoxic effects of the essential oil of Lavandula angustifolia grown in Southeastern Brazil. Rev. Bras. Farmacogn. 2013, 23, 877–884. [Google Scholar] [CrossRef] [Green Version]
- Golubkina, N.; Logvinenko, L.; Novitsky, M.; Zamana, S.; Sokolov, S.; Molchanova, A.; Shevchuk, O.; Sekara, A.; Tallarita, A.; Caruso, G. Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants 2020, 9, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renaud, E.N.C.; Charles, D.J.; Simon, J.E. Essential oil quantity and composition from 10 cultivars of organically grown Lavender and Lavandin. J. Essent. Oil Res. 2001, 13, 269–273. [Google Scholar] [CrossRef]
- García-Caparrós, P.; José Romero, M.; Llanderal, A.; Cermeño, P.; Lao, M.T.; Segura, M.L. Effects of drought stress on biomass, essential oil content, nutritional parameters, and costs of production in six Lamiaceae species. Water 2019, 11, 573. [Google Scholar] [CrossRef] [Green Version]
- Misra, A.; Sricastatva, N.K. Influence of water stress on Japanese mint. J. Herbs Spices Med. Plants 2000, 7, 51–58. [Google Scholar] [CrossRef]
- Govahi, M.; Ghalavand, A.; Nadjafi, F.; Sorooshzadeh, A. Comparing different soil fertility systems in Sage (Salvia officinalis) under water deficiency. Ind. Crops Prod. 2015, 74, 20–27. [Google Scholar] [CrossRef]
- Singh, M. Effect of nitrogen and irrigation regimes on the yield an quality of sweet basil (Ocimum basilicum L.). J. Spic. Arom. Crops 2003, 11, 151–154. [Google Scholar]
- Moeini Alishah, H.; Heidari, R.; Hassani, A.; Asadi Dizaji, A. Effect of water stress on some morphological and biochemical characteristics of purple basil (Ocimum basilicum L.). J. Biol. Sci. 2006, 6, 763–767. [Google Scholar]
- Khalid, K.A. Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). Int. Agrophys. 2006, 20, 289–296. [Google Scholar]
- Hassan, F.A.S.; Bazaid, S.; Ali, E.F. Effect of deficit irrigation on growth, yield and volatile oil content on Rosnarinus officinalis L. plant. J. Med. Plants Stud. 2013, 1, 12–21. [Google Scholar]
- Ekren, S.; Sonmez, C.; Ozcakal, E.; Kurttas, Y.S.K.; Bayram, E.; Gurgulu, H. The effect of different irrigation water levels on yield and quality characteristics of Purple basil (Ocimum basilicum L.). Agric. Water Manag. 2012, 109, 155–161. [Google Scholar] [CrossRef]
- Okwany, R.O.; Peters, T.R.; Ringer, K.L.; Walsh, D.B.; Rubio, M. Impact of sustained deficit irrigation on spearmint (Mentha spicata L.) biomass production, oil yield, and oil quality. Irrig. Sci. 2012, 30, 213–219. [Google Scholar] [CrossRef]
- Bettaieb, I.; Zakhama, N.; Wannes, W.A.; Kchouk, M.E.; Marzouk, B. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Baher, Z.F.; Mirza, M.; Ghorbanli, M.; Rezaii, M.B. The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour. Fragr. J. 2002, 17, 275–277. [Google Scholar] [CrossRef]
- Yassen, M.; Ram, P.; Anju, Y.; Singh, K. Response of Indian basil (Ocimum basilicum L.) to irrigation and nitrogen schedule in Central Uttar Pradesh. Ann. Plant Physiol. 2003, 17, 177–181. [Google Scholar]
- Liu, H.; Wang, X.; Wang, D.; Zou, Z.; Liang, Z. Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind. Crops Prod. 2011, 33, 84–88. [Google Scholar] [CrossRef]
- Peijć, B.; Adamović, D.; Maksimowić, L.; Maćkić, K. Effect of irrigaton on yield, evapotranspiration and water use efficiency of sweet basil (Ocimum basilicum L.). Ratar. Povrt. 2017, 54, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Król, B.; Kiełtyka-Dadasiewicz, A. Wpływ metody suszenia na cechy sensoryczne oraz skład olejku eterycznego tymianku właściwego (Thymus vulgaris L.). Żywn. Nauka Technol. Jakość 2015, 4, 162–175. (In Polish) [Google Scholar] [CrossRef]
- Sellami, I.H.; Wannes, W.A.; Bettaieb, I.; Berrima, S.; Chahed, T.; Marzouk, B.; Limam, F. Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chem. 2011, 126, 691–697. [Google Scholar] [CrossRef]
- Sadowska, U.; Kopeć, A.; Kourimska, L.; Zarubova, L.; Kloucek, P. The effect of drying methods on the concentration of compounds in sage and thyme. J. Food Process. Pres. 2017, 41, e13286. [Google Scholar] [CrossRef]
- Calín-Sánchez, A.; Lech, K.; Szumny, A.; Figiel, A.; Carbonell-Barrachina, A.A. Volatile composition of sweet basil essential oil (Ocimum basilicum L.) as affected by drying method. Food Res. Int. 2012, 48, 217–222. [Google Scholar] [CrossRef]
- Szumny, A.; Figiel, A.; Carbonell-Barrachina, A.A. Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. J. Food Eng. 2010, 97, 253–260. [Google Scholar] [CrossRef]
- Sellami, I.H.; Rebey, I.B.; Sriti, J.; Rahali, F.Z.; Limam, F.; Marzouk, B. Drying sage (Salvia officinalis L.) plants and its effects on content, chemical composition, and radical scavenging activity of the essential oil. Food Bioprocess Technol. 2012, 5, 2978–2989. [Google Scholar] [CrossRef]
- Sadowska, U.; Łapczyńska-Kordon, B.; Żabiński, A. Effect of modifications of lavandin convective drying on the course of the process and essential oil content. J. Res. Appl. Agric. Eng. 2016, 61, 147–150. [Google Scholar]
- Rahimmalek, M.; Goli, S.A.H. Evaluation of six drying treatments with respect to essential oil yield, composition and color characteristics of Thymys daenensis subsp. daenensis. Celak leaves. Ind. Crops Prod. 2013, 42, 613–619. [Google Scholar] [CrossRef]
- Argyropoulos, D.; Müller, J. Effect of convective-, vacuum- and freeze drying on sorption behaviour and bioactive compounds of lemon balm (Melissa officinalis L.). J. Appl. Res. Med. Aromat. Plants 2014, 1, 59–69. [Google Scholar] [CrossRef]
- Arabhosseini, A.; Padhye, S.; van Beek, T.A.; van Boxtel, A.J.; Huisman, W.; Posthumus, M.A.; Müller, J. Loss of essential oil of tarragon (Artemisia dracunculus L.) due to drying. J. Sci. Food Agric. 2006, 86, 2543–2550. [Google Scholar] [CrossRef]
- Asekun, O.T.; Grierson, D.S.; Afolayan, A.J. Effects of drying methods on the quality and quantity of the essential oil of Mentha longifolia L. subsp. Capensis. Food Chem. 2007, 10, 995–998. [Google Scholar] [CrossRef]
- Diaz-Maroto, M.C.; Perez-Coello, M.S.; Cabezudo, M.D. Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.). J. Agric. Food Chem. 2002, 50, 4520–4524. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Maroto, M.; Pérez-Coello, M.; Cabezudo, M. Effect of different drying methods on the volatile components of parsley (Petroselinum crispum L.). Eur. Food Res. Technol. 2002, 215, 227–230. [Google Scholar] [CrossRef]
- Hadjibagher Kandi, M.N.; Sefidkon, F. The influence of drying methods on essential oil content and composition of Laurus nobilis L. J. Essent. Oil Bear. Plant 2011, 14, 302–308. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 6th ed.; Council of Europe: Starasbourg, France, 2008.
- Pharmacopoeia Poland; Polish Pharmaceutical Society: Warszawa, Poland, 1999; Volume 5, p. 472.
- Pharmacopoeia Poland; Polish Pharmaceutical Society: Warszawa, Poland, 2014; Volume 10, pp. 371–373.
- Brand-Wiliams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extract in relation to their antimutagenicity. J. Agroc. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Rossi, M.; Giussani, E.; Morelli, R.; Scalzo, R.; Nani, R.C.; Torreggiani, D. Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Res. Int. 2003, 36, 999–1005. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Compounds by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Pub. Corporation: Carol Stream, IL, USA, 2004; p. 804. [Google Scholar]
- Khorasaninejad, S.; Mousavi, A.; Soltanloo, H.; Hemmati, K.; Khalighi, A. The effect of drought stress on growth parameters, essential oil yield and constituent of peppermint (Mentha piperita L.). J. Med. Plants Res. 2011, 5, 5360–5365. [Google Scholar]
- Di Cesare, L.F.; Forni, E.; Viscardi, D.; Nani, R.C. Influence of drying techniques on the volatile phenolic compounds, chlorophyll and colour of oregano (Origanum vulgare L. ssp. prismaticum Gaudin). Ital. J. Food. Sci. 2004, 2, 165–175. [Google Scholar]
- Kleinwächter, M.; Paulsen, J.; Bloem, E.; Schnug, E.; Selmar, D. Moderate drought and signal transducer induced biosynthesis of relevant secondary metabolites in thyme (Thymus vulgaris), greater celandine (Chelidonium majus) and parsley (Petroselinum crispum). Ind. Crops Prod. 2015, 64, 158–166. [Google Scholar] [CrossRef]
- Karamzadeh, S. Drought and production of second metabolites in medicinal and aromatic plants. Drought J. 2003, 7, 90–95, (In Persian, abstract in English). [Google Scholar]
- Chrysargyris, A.; Mikallou, M.; Petropoulos, S.; Tzortzakis, N. Profiling of essential oils components and polyphenols for their antioxidant activity of medicinal and aromatic plants grown in different environmental conditions. Agronomy 2020, 10, 727. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Swarcewicz, M. Skład chemiczny i aktywność biologiczna lawendy lekarskiej. [Chemical composition and biological activity of medical lavender]. Wiad. Chem. 2014, 68, 1073–1093. (In Polish) [Google Scholar]
- Blanco, M.C.S.G.; Ming, L.C.; Marques, M.O.M.; Bovi, O.A. Drying temperature effects in peppermint essential oil content and composition. Acta Hortic. 2002, 569, 95–98. [Google Scholar] [CrossRef]
- Nunes, J.C.; Lago, M.G.; Castelo-Branco, V.N.; Oliveira, F.R.; Torres, A.G.; Perrone, D.; Monteiro, M. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders. Food Chem. 2016, 197, 881–890. [Google Scholar] [CrossRef]
- Gumul, D.; Korus, J.; Achremowicz, B. Wpływ procesów przetwórczych na aktywność przeciwutleniającą surowców pochodzenia roślinnego. [The effect of processing operations on antioxidant activity of plant raw materials]. Żywność Nauka Technol. Jakość 2005, 4, 41–48. (In Polish) [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Ghasemi Pirbalouti, A.; Mahdad, E.; Craker, L. Effect of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chem. 2013, 141, 2440–2449. [Google Scholar] [CrossRef]
- Śledź, M.; Witrowa-Rajchert, D. Kinetics of microwave-convective drying of some herbs. Food Bioprod. Process. 2013, 4, 421–428. [Google Scholar] [CrossRef]
Treatments | * YFH a (kg·m2) | % Water Content | |
---|---|---|---|
Irrigation | WI | 1.37 ± 0.46 a | 78.62 ± 6 a |
NI | 0.69 ± 0.20 b | 66.53 ± 5 b | |
Year | 2016 | 1.20 ± 0.16 a | 76.59 ± 4 a |
2017 | 0.86 ± 0.25 b | 71.87 ± 4 b | |
Irrigation (I) × Year (Y) | |||
WI × 2016 WI × 2017 NI × 2016 NI × 2017 | 1.68 ± 0.48 a | 81.25 ± 6 a | |
1.07 ± 0.15 b | 74.58 ± 5 b | ||
0.72 ± 0.24 bc | 65.56 ± 8 c | ||
0.66 ± 0.16 c | 67.73 ± 4 c | ||
Mean | 2.03 ± 42 | 72.28 ± 5 |
Year | Month | Temperature (°C) | Precipitation (mm) | Total Insolation (h) | ||
---|---|---|---|---|---|---|
Average Maximum | Average Minimum | Average Diurnal | ||||
2016 | May | 19.2 | 8.2 | 14.3 | 38 | 222 |
June | 22.4 | 13.0 | 18.6 | 43 | 205 | |
July | 22.0 | 14.7 | 18.4 | 130 | 170 | |
August | 24.5 | 13.4 | 18.8 | 71 | 202 | |
September | 22.1 | 12.1 | 15.2 | 11 | 169 | |
Average/Total | 22.0 | 12.3 | 17.1 | 59/293 | 194/968 | |
2017 | May | 20.6 | 8.5 | 14.2 | 29 | 198 |
June | 24.1 | 13.3 | 18.6 | 28 | 222 | |
July | 23.9 | 14.5 | 19.0 | 108 | 185 | |
August | 24.5 | 13.6 | 20.0 | 48 | 201 | |
September | 21.3 | 10.2 | 14.0 | 77 | 103 | |
Average/Total | 22.9 | 12.0 | 17.2 | 58/290 | 182/909 |
Source of Variation | Degrees of Freedom | YDH a | YDL b | EO c | TPA d | DPPH e |
---|---|---|---|---|---|---|
Irrigation (I) | 1 | 31.8 * | 36.8 * | 28.0 * | 4.4 * | 48.7 * |
Drying (D) | 1 | 50.0 * | 46.7 * | 14.3 * | 85.1 * | 36.8 * |
Year (Y) | 1 | 12.6 * | 13.1 * | 1.4 * | 1.1 * | 10.5 * |
Y × I | 2 | 0.1 NS | 0.5 NS | 0.3 * | 1.3 * | 0.5 * |
Y × D | 2 | 0.7 NS | 0.0 NS | 0.7 * | 1.1 NS | 0.1 NS |
I × D | 2 | 1.4 NS | 2.8 * | 55.2 * | 7.1 * | 3.1 * |
Y × I × D | 3 | 3.4 * | 0.1 NS | 0.0 NS | 0.0 NS | 0.4 * |
Total mean square | 217,055 | 44,157 | 2.8 | 1.8 | 9448 |
Treatments * | ** YDH a (g·m2) | YDL b (g·m2) | EO c (mg 100 g−1) | TPA d (%) | AA by DPPH e Inhibition (%) | |
---|---|---|---|---|---|---|
Irrigation | WI | 293 ± 5 a | 190 ± 25 a | 0.88 ± 0.22 a | 0.466 ± 0.19 a | 57 ± 6 a |
NI | 231 ± 6 b | 160 ± 20 b | 0.67 ± 0.09 b | 0.399 ± 0.14 b | 41 ± 5 b | |
Drying method | O | 223 ± 5 b | 158 ± 16 b | 0.85 ± 0.26 a | 0.580 ± 0.11 a | 56 ± 7 a |
N | 301 ± 4 a | 192 ± 25 a | 0.70 ± 0.05 b | 0.284 ± 0.06 b | 42 ± 8 b | |
Year | 2016 | 281 ± 7 a | 184 ± 27 a | 0.80 ± 0.19 a | 0.441 ± 0.16 a | 53 ± 10 a |
2017 | 242 ± 5 b | 166 ± 25 b | 0.75 ± 0.20 b | 0.423 ± 0.18 a | 45 ± 10 b | |
Irrigation (I) × Year (Y) | ||||||
WI × 2016 | 315 ± 4 a | 201 ± 24 a | 0.89 ± 0.24 a | 0.493 ± 0.18 a | 60 ± 5 a | |
WI × 2017 | 272 ± 5 b | 180 ± 23 b | 0.87 ± 0.06 a | 0.438 ± 0.21 ab | 55 ± 7 b | |
NI × 2016 | 249 ± 5 b | 167 ± 19 bc | 0.71 ± 0.22 b | 0.389 ± 0.13 b | 46 ± 10 c | |
NI × 2017 | 213 ± 6 b | 153 ± 20 c | 0.63 ± 0.10 c | 0.409 ± 0.15 b | 37 ± 9 d | |
Drying method (D) × Year (Y) | ||||||
O × 2016 | 238 ± 7 c | 167 ± 19 c | 0.89 ± 0.24 a | 0.573 ± 0.13 a | 60 ± 5 a | |
O × 2017 | 208 ± 3 c | 150 ± 14 c | 0.81 ± 0.28 b | 0.588 ± 0.08 a | 53 ± 8 b | |
N × 2016 | 325 ± 3 a | 202 ± 26 a | 0.71 ± 0.05 c | 0.310 ± 0.06 b | 46 ± 10 c | |
N × 2017 | 277 ± 4 b | 183 ± 23 b | 0.70 ± 0.04 c | 0.259 ± 0.06 b | 39 ± 10 d | |
Irrigation (I) × Drying method (D) | ||||||
WI × O | 261 ± 4 b | 170 ± 13 b | 1.10 ± 0.02 a | 0.657 ± 0.02 a | 62 ± 3 a | |
WI × N | 325 ± 2 a | 212 ± 15 a | 0.66 ± 0.02 c | 0.275 ± 0.04 c | 53 ± 5 b | |
NI × O | 186 ± 4 c | 148 ± 13 c | 0.60 ± 0.06 d | 0.504 ± 0.11 b | 50 ± 6 b | |
NI × N | 276 ± 5 b | 173 ± 19 b | 0.75 ± 0.03 b | 0.294 ± 0.084 c | 33 ± 5 c | |
Year (Y) × Irrigation (I) × Drying method (D) | ||||||
2016 × WI × O 2016 × WI × N 2016 × NI × O 2016 × NI × N 2017 × WI × O 2017 × WI × N 2017 × NI × O 2017 × NI × N | 288 ± 5 ab | 179 ± 8 c | 1.13 ± 0.01 a | 0.670 ± 0.03 a | 64 ± 3 a | |
314 ± 2 a | 223 ± 5 a | 0.66 ± 0.01 d | 0.316 ± 0.01 c | 56 ± 2 bc | ||
189 ± 4 d | 155 ± 10 de | 0.66 ± 0.03 d | 0.475 ± 0.11 b | 55 ± 2 c | ||
308 ± 4 a | 180 ± 17 c | 0.76 ± 0.03 c | 0.303 ± 0.08 c | 36 ± 2 e | ||
234 ± b cd | 159 ± 9 d | 1.08 ± 0.01 b | 0.644 ± 0.01 a | 60 ± 2 ab | ||
310 ± 11 a | 200 ± 12 b | 0.66 ± 0.02 d | 0.233 ± 0.01 c | 48 ± 2 d | ||
183 ± 4 d | 140 ± 9 e | 0.54 ± 0.01 e | 0.533 ± 0.09 b | 45 ± 2 d | ||
244 ± 4 bc | 166 ± 18 cd | 0.73 ± 0.03 c | 0.284 ± 0.08 c | 28 ± 2 f | ||
Mean | 262 ± 5 | 175 ± 27 | 0.77 ± 0.02 | 0.432 ± 0.17 | 49 ± 11 |
Treatments * | Linalool ** | Borneol | Camphor | Linalyl Acetate | |
---|---|---|---|---|---|
Irrigation | WI | 4.51 ± 0.26 a | 9.72 ± 0.90 b | 1.88 ± 0.13 b | 7.35 ± 0.67 b |
NI | 3.23 ± 0.17 b | 11.98 ± 1.88 a | 2.11 ± 0.33 a | 7.54 ± 0.71 a | |
Drying method | O | 5.95 ± 0.13 a | 9.66 ± 0.86b | 2.20 ± 0.22 a | 14.26 ± 0.97 a |
N | 1.79 ± 0.04 b | 12.04 ± 1.83 a | 1.78 ± 0.11 b | 0.63 ± 0.16 b | |
Year | 2016 | 4.07 ± 0.28 a | 11.24 ± 1.75 a | 2.05 ± 0.26 a | 7.86 ± 0.72 a |
2017 | 3.68 ± 0.16 b | 10.46 ± 1.90 b | 1.94 ± 0.28 b | 7.04 ± 0.66 b | |
Irrigation (I) × Year (Y) | |||||
WI × 2016 | 4.81 ± 0.32 a | 10.29 ± 0.48 c | 1.92 ± 0.15 c | 7.88 ± 0.72 a | |
WI × 2017 | 4.22 ± 0.18 b | 9.15 ± 0.87 d | 1.84 ± 0.09 c | 6.83 ± 0.63 d | |
NI × 2016 | 3.33 ± 0.22 c | 12.19 ± 2.04 a | 2.18 ± 0.28 a | 7.83 ± 0.74 b | |
NI × 2017 | 3.14 ± 0.12 d | 11.76 ± 1.75 b | 2.04 ± 0.37 b | 7.26 ± 0.70 c | |
Drying method (D) × Year (Y) | |||||
O × 2016 | 6.71 ± 1.12a | 10.07 ± 0.48 c | 2.25 ± 0.21 a | 14.98 ± 0.63 a | |
O × 2017 | 5.21 ± 0.88b | 9.24 ± 0.96 d | 2.16 ± 0.25 b | 13.55 ± 0.67 b | |
N × 2016 | 1,44 ± 0.26d | 12.41 ± 1.78 a | 1.84 ± 0.10 c | 0.73 ± 0.14 c | |
N × 2017 | 2.15 ± 0.26c | 11.67 ± 1.85 b | 1.73 ± 0.09 d | 0.53 ± 0.12 c | |
Irrigation (I) × Drying method (D) | |||||
WI × O | 6.99 ± 0.97 a | 9.10 ± 0.78 c | 1.99 ± 0.07 b | 13.94 ± 0.99 b | |
WI × N | 2.04 ± 0.37 c | 10.22 ± 0.49 b | 1.77 ± 0.05 c | 0.76 ± 0.11 c | |
NI × O | 4.92 ± 0.62 b | 10.34 ± 0.50 b | 2.42 ± 0.11 a | 14.59 ± 0.85 a | |
NI × N | 1.55 ± 0.38 c | 13.73 ± 0.75 a | 1.80 ± 0.15 c | 0.50 ± 0.09 c | |
Year (Y) × Irrigation (I) × Drying method (D) | |||||
2016 × WI × O | 7.94 ± 0.13 a | 9.85 ± 0.16 d | 2.06 ± 0.03 b | 14.89 ± 0.25 a | |
2016 × WI × N | 1.68 ± 0.03 g | 10.73 ± 0.19 c | 1.77 ± 0.03 d | 0.87 ± 0.01 d | |
2016 × NI × O | 5.47 ± 0.32 c | 10.30 ± 0.60 cd | 2.43 ± 0.14 a | 15.07 ± 0.88 a | |
2016 × NI × N | 1.18 ± 0.05 h | 14.08 ± 0.66 a | 1.92 ± 0.09 c | 0.59 ± 0.02 d | |
2017 × WI × O | 6.05 ± 0.05 b | 8.34 ± 0.07 e | 1.92 ± 0.01 c | 13.00 ± 0.11 c | |
2017 × WI × N | 2.39 ± 0.09 e | 9.95 ± 0.41 d | 1.77 ± 0.07 d | 0.66 ± 0.02 d | |
2017 × NI × O | 4.35 ± 0.15 d | 10.15 ± 0.36 cd | 2.40 ± 0.08 a | 14.10 ± 0.50 b | |
2017 × NI × N | 1.91 ± 0.10 f | 13.38 ± 0.71 b | 1.68 ± 0.08 d | 0.41 ± 0.02 d | |
Mean | 3.87 ± 0.38 | 10.85 ± 1.85 | 1.99 ± 0.28 | 7.45 ± 0.68 |
Treatments * | β-Caryophyllene ** | γ-Cadinene | Caryophyllene Oxide | α-Muurolol | |
---|---|---|---|---|---|
Irrigation | WI | 2.32 ± 0.17 a | 4.87 ± 0.64 b | 5.96 ± 0.78 b | 13.94 ± 3.20 b |
NI | 1.27 ± 0.08 b | 7.13 ± 0.18 a | 6.39 ± 0.62 a | 15.25 ± 4.34 a | |
Drying method | O | 3.39 ± 0.09 a | 5.18 ± 0.95 b | 5.79 ± 0.67 b | 10.93 ± 0.48 b |
N | 0.19 ± 0.00 b | 6.82 ± 0.14 a | 6.57 ± 0.70 a | 18.26 ± 1.48 a | |
Year | 2016 | 1.82 ± 0.09 a | 6.24 ± 0.62 a | 6.97 ± 0.32 a | 14.77 ± 4.10 a |
2017 | 1.76 ± 0.08 b | 5.76 ± 0.30 b | 5.39 ± 0.81 b | 14.43 ± 3.62 b | |
Irrigation (I) × Year (Y) | |||||
WI × 2016 | 2.36 ± 0.23 a | 5.02 ± 0.57 c | 7.24 ± 0.75 a | 13.92 ± 3.58 c | |
WI × 2017 | 2.28 ± 0.20 b | 4.71 ± 0.68 d | 4.69 ± 0.24 d | 13.96 ± 2.88 c | |
NI × 2016 | 1.28 ± 0.12 c | 7.46 ± 0.14 a | 6.69 ± 0.59 b | 15.61 ± 4.50 a | |
NI × 2017 | 1.25 ± 0.09 c | 6.80 ± 0.84 b | 6.09 ± 0.50 c | 14.86 ± 4.28 b | |
Drying method (D) × Year (Y) | |||||
O × 2016 | 3.54 ± 0.11 a | 5.30 ± 0.90 c | 5.88 ± 0.43 b | 10.87 ± 0.60 c | |
O × 2017 | 3.25 ± 0.10 b | 5.05 ± 0.02 d | 5.70 ± 0.85 b | 11.00 ± 0.34 c | |
N × 2016 | 0.10 ± 0.00 d | 7.17 ± 0.16 a | 8.05 ± 0.94 a | 18.66 ± 1.46 a | |
N × 2017 | 0.28 ± 0.00 c | 6.46 ± 0.11 b | 5.08 ± 0.65 c | 17.86 ± 1.43 b | |
Irrigation (I) × Drying method (D) | |||||
WI × O | 4.46 ± 0.01 a | 4.26 ± 0.21 d | 5.21 ± 0.34 c | 10.82 ± 0.41 c | |
WI × N | 0.18 ± 0.00 c | 5.47 ± 0.19 c | 6.36 ± 0.33 b | 17.06 ± 0.63 b | |
NI × O | 2.32 ± 0.01 b | 6.09 ± 0.29 b | 6.71 ± 0.29 a | 11.05 ± 0.54 c | |
NI × N | 0.21 ± 0.01 c | 8.17 ± 0.73 a | 6.42 ± 0.83 b | 19.46 ± 1.05 a | |
Year (Y) × Irrigation (I) × Drying method (D) | |||||
2016 × WI × O | 4.62 ± 0.07 a | 4.46 ± 0.07 e | 5.54 ± 0.09 d | 10.45 ± 0.17 d | |
2016 × WI × N | 0.10 ± 0.00 f | 5.57 ± 0.10 d | 8.94 ± 0.16 a | 17.40 ± 0.32 c | |
2016 × NI × O | 2.46 ± 0.14 c | 6.15 ± 0.36 c | 6.21 ± 0.36 c | 11.30 ± 0.57 d | |
2016 × NI × N | 0.11 ± 0.00 f | 8.77 ± 0.41 a | 7.17 ± 0.33 b | 19.93 ± 0.93 a | |
2017 × WI × O | 4.31 ± 0.03 b | 4.07 ± 0.03 f | 4.89 ± 0.04 e | 11.20 ± 0.10 d | |
2017 × WI × N | 0.25 ± 0.00 e | 5.36 ± 0.22 d | 4.49 ± 0.18 f | 16.72 ± 0.69 c | |
2017 × NI × O | 2.18 ± 0.07 d | 6.03 ± 0.21 c | 6.51 ± 0.23 c | 10.80 ± 0.38 d | |
2017 × NI × N | 0.31 ± 0.00 e | 7.56 ± 0.40 b | 5.56 ± 0.30 d | 18.99 ± 1.00 b | |
Mean | 1.78 ± 0.08 | 6.00 ± 1.48 | 6.18 ± 1.34 | 14.60 ± 3.84 |
Source of Variation | Degree of Freedom | Linalool | Borneol | Camphor | Linalyl Acetate |
---|---|---|---|---|---|
Irrigation (I) | 1 | 7.8 * | 39.5 * | 18.3 * | 0.0 * |
Drying (D) | 1 | 82.2 * | 43.9 * | 61.7 * | 99.2 * |
Year (Y) | 1 | 0.7 * | 4.7 * | 3.7 * | 0.3 * |
Y × I | 2 | 0.1 * | 1.0 * | 0.1 NS | 0.0 * |
Y × D | 2 | 5.8 * | 0.0 NS | 0.0 NS | 0.2 * |
I × D | 2 | 3.0 * | 9.9 * | 13.4 * | 0.1 * |
Y × I × D | 3 | 0.1 * | 0.7 * | 2.5 * | 0.0 * |
Total mean square | 379.1 | 231.6 | 5.1 | 3369.4 |
Source of Variation | Degree of Freedom | β-Caryophyllene | γ-Cadinene | Caryophyllene Oxide | α-Muurolol |
---|---|---|---|---|---|
Irrigation (I) | 1 | 8.8 * | 60.8 * | 2.6 * | 3.0 * |
Drying (D) | 1 | 81.3 * | 31.9 * | 8.6 * | 93.9 * |
Year (Y) | 1 | 0.0 * | 2.7 * | 35.8 * | 0.2 * |
Y × I | 2 | 0.0 NS | 0.3 * | 13.7 * | 0.2 * |
Y × D | 2 | 0.4 * | 0.6 * | 28.1 * | 0.3 * |
I × D | 2 | 9.3 * | 2.2 * | 7.5 * | 2.0 * |
Y × I × D | 3 | 0.0 NS | 1.2 * | 3.5 * | 0.1 NS |
Total mean square | 226.7 | 151.3 | 125.2 | 1028.1 |
No. | Compound | RI ** | WI * | NI | ||
---|---|---|---|---|---|---|
O | N | O | N | |||
1 | Cumene | 926 | 0.14 | 0.13 | 0.10 | 0.07 |
2 | α-Pinene | 933 | 1.40 | 0.78 | 1.39 | 0.58 |
3 | Camphene | 950 | 0.83 | 0.97 | 0.80 | 0.87 |
4 | Verbenene | 968 | 0.29 | 0.27 | 0.20 | - |
5 | Sabinene | 973 | 0.57 | 0.44 | 0.27 | 0.34 |
6 | β-Pinene | 978 | 3.50 | 1.77 | 3.70 | 1.97 |
7 | 1-Octen-3-ol | 980 | 0.13 | 0.25 | 0.13 | 0.25 |
8 | 3-Octanone | 986 | 0.24 | - | 0.18 | - |
9 | Myrcene | 990 | 0.55 | 0.31 | 0.50 | 0.28 |
10 | 2-δ-Carene | 1009 | 1.85 | 1.51 | 1.20 | 1.01 |
11 | Hexyl acetate | 1012 | 0.11 | - | 0.19 | - |
12 | p-Cymene | 1019 | 0.88 | 0.83 | 0.98 | 1.13 |
13 | ortho-Cymene | 1023 | 1.61 | 1.87 | 1.91 | 2.07 |
14 | β-Phelandrene | 1026 | - | 0.65 | - | 0.15 |
15 | Limonene | 1027 | 1.44 | 3.15 | 1.74 | 3.75 |
16 | 1,8-Cineole | 1030 | 2.97 | 5.90 | 1.97 | 3.90 |
17 | (Z)-β-Ocimene | 1033 | 0.70 | 0.18 | 0.50 | 0.08 |
18 | (E)-β-Ocimene | 1042 | 0.24 | 0.08 | 0.14 | 0.08 |
19 | trans-Linalool oxide | 1064 | - | 0.22 | - | 1.22 |
20 | cis-Linalool oxide | 1079 | 0.17 | - | 1.17 | - |
21 | Linalool | 1093 | 7.87 | 1.71 | 5.72 | 1.17 |
22 | 1-Octen-3-yl acetate | 1095 | 0.40 | - | 1.40 | - |
23 | 2Z-Heptenyl acetate | 1098 | - | 0.20 | - | - |
24 | trans-p-Mentha-2,8-dien-1-ol | 1100 | 0.07 | 0.11 | 0.17 | 0.21 |
25 | 3-Octanol acetate | 1111 | - | 0.13 | - | 0.07 |
26 | cis-p-Menth-2-en-1-ol | 1113 | - | 0.26 | - | 0.16 |
27 | allo-Ocimene | 1121 | 0.11 | 0.12 | 0.21 | 0.08 |
28 | cis-Limone oxide | 1123 | 0.13 | 0.15 | 0.23 | 0.07 |
29 | cis-p-Mentha-2,8-dien-1-ol | 1127 | - | 0.20 | - | 0.10 |
30 | trans-Sabinol | 1132 | 0.40 | - | 0.30 | |
31 | cis-Sabinol | 1136 | 0.48 | 0.18 | 0.58 | - |
32 | Camphor | 1143 | 2.05 | 1.80 | 2.55 | 1.90 |
33 | Pinocarvone | 1158 | 0.99 | 0.79 | 0.59 | 0.59 |
34 | Borneol | 1172 | 9.77 | 10.90 | 10.77 | 13.90 |
35 | Cryptone | 1188 | 1.17 | 4.57 | 2.27 | 3.57 |
36 | γ-Terpineol | 1197 | 2.08 | 1.09 | 1.58 | 1.29 |
37 | Verbenone | 1211 | 0.44 | 0.67 | 0.59 | 1.17 |
38 | cis-Carvenol | 1223 | - | 0.62 | - | 0.92 |
39 | Nerol | 1228 | - | 0.10 | - | 1.10 |
40 | Isobornyl formate | 1228 | - | 0.40 | - | 1.40 |
41 | trans-Chrysanthenyl acetate | 1232 | 0.30 | 0.10 | 0.40 | - |
42 | Cumin aldehyde | 1247 | 0.46 | 2.13 | 0.26 | 1.13 |
43 | Carvone | 1248 | 0.28 | 0.26 | 0.48 | 0.26 |
44 | Linalyl acetate | 1254 | 14.76 | 0.89 | 15.76 | 0.59 |
45 | Geraniol | 1255 | - | 0.18 | - | 0.58 |
46 | Thymoquinone | 1269 | - | 0.06 | - | 0.06 |
47 | Neryl formate | 1284 | 3.84 | 2.17 | 2.04 | 1.17 |
48 | p-Cymen-7-ol | 1297 | 0.35 | 0.79 | 0.25 | 0.39 |
49 | γ-Terpinen-7-al | 1310 | 0.12 | 0.21 | 0.22 | 0.11 |
50 | Piperitenone | 1313 | 0.31 | - | 0.21 | - |
51 | trans-Verbenyl acetate | 1333 | - | 0.19 | - | 0.49 |
52 | Neryl acetate | 1361 | 0.36 | 1.86 | 0.56 | 2.96 |
53 | Linalyl isobutanoate | 1381 | 1.90 | - | 1.50 | - |
54 | 7-epi-Sesquithujene | 1389 | 0.13 | - | 0.13 | - |
55 | α-Santalene | 1420 | - | 3.16 | - | 1.16 |
56 | β-Caryophyllene | 1425 | 4.58 | 0.11 | 2.58 | 0.11 |
57 | α-trans-Bergamotene | 1439 | 0.31 | 0.34 | 0.21 | 0.54 |
58 | (Z)-β-Farnesene | 1458 | 1.11 | 0.42 | 2.11 | 0.42 |
59 | α-Humulene | 1465 | 0.06 | 0.50 | - | 0.70 |
60 | Germacrene D | 1494 | 0.27 | 0.12 | 0.17 | 0.15 |
61 | (Z)-α-Bisabolene | 1516 | 0.12 | 0.13 | 0.42 | 0.15 |
62 | β-Bisabolene | 1520 | 0.14 | 0.08 | 0.34 | - |
63 | γ-Cadinene | 1525 | 4.43 | 5.66 | 6.43 | 8.66 |
64 | trans-Calamenene | 1528 | 0.76 | 0.85 | 0.46 | - |
65 | β-Sesquiphellandrene | 1534 | - | 0.74 | - | 0.94 |
66 | epi-Longipinalol | 1559 | 1.06 | 1.56 | 1.56 | 1.06 |
67 | Caryophyllene oxide | 1587 | 5.50 | 9.08 | 6.50 | 7.08 |
68 | 1,10-di-epi-Cubenol | 1621 | 0.88 | 1.73 | 0.58 | 1.73 |
69 | α-Muurolol | 1653 | 10.36 | 17.67 | 11.36 | 19.67 |
70 | Himachalol | 1665 | - | 0.61 | - | 0.11 |
71 | 14-hydroxy-9-epi-(E)-Caryphylene | 1670 | 0.27 | 0.26 | 0.17 | 0.16 |
72 | (Z)-α-Santalol | 1687 | 0.24 | 0.72 | 0.14 | 0.62 |
73 | cis-14-nor-Muurol-5-en-4-one | 1703 | 1.38 | 1.95 | 0.78 | 1.95 |
Total Identified | 98.09 | 99.13 | 99.28 | 99.63 | ||
Monoterpenes Hydrocarbons | 13.99 | 13.16 | 13.36 | 12.63 | ||
Oxygenated Monoterpenes | 51.87 | 39.39 | 52.05 | 40.86 | ||
Sesquiterpenes Hydrocarbons | 12.97 | 13.67 | 14.41 | 13.89 | ||
Oxygenated Sesquiterpenes | 19.37 | 33.03 | 19.67 | 32.33 | ||
Others | 0.74 | 1.01 | 0.14 | 1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sałata, A.; Buczkowska, H.; Nurzyńska-Wierdak, R. Yield, Essential Oil Content, and Quality Performance of Lavandula angustifolia Leaves, as Affected by Supplementary Irrigation and Drying Methods. Agriculture 2020, 10, 590. https://doi.org/10.3390/agriculture10120590
Sałata A, Buczkowska H, Nurzyńska-Wierdak R. Yield, Essential Oil Content, and Quality Performance of Lavandula angustifolia Leaves, as Affected by Supplementary Irrigation and Drying Methods. Agriculture. 2020; 10(12):590. https://doi.org/10.3390/agriculture10120590
Chicago/Turabian StyleSałata, Andrzej, Halina Buczkowska, and Renata Nurzyńska-Wierdak. 2020. "Yield, Essential Oil Content, and Quality Performance of Lavandula angustifolia Leaves, as Affected by Supplementary Irrigation and Drying Methods" Agriculture 10, no. 12: 590. https://doi.org/10.3390/agriculture10120590
APA StyleSałata, A., Buczkowska, H., & Nurzyńska-Wierdak, R. (2020). Yield, Essential Oil Content, and Quality Performance of Lavandula angustifolia Leaves, as Affected by Supplementary Irrigation and Drying Methods. Agriculture, 10(12), 590. https://doi.org/10.3390/agriculture10120590