Conyza sumatrensis Resistant to Paraquat, Glyphosate and Chlorimuron: Confirmation and Monitoring the First Case of Multiple Resistance in Paraguay
Abstract
:1. Introduction
2. Material and Methods
2.1. Seed Collection
2.2. Screening
2.3. Dose–Response Curves
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heap, I. International Survey of Herbicide-Resistant Weeds. 2020. Available online: http://www.weedscience.org (accessed on 26 August 2020).
- Trezzi, M.M.; Vidal, R.A.; Patel, F.; Miotto, E., Jr.; Debastiani, F.; Balbinot, A.A., Jr.; Mosquen, R. Impact of Conyza bonariensis density and establishment period on soyabean grain yield, yield components and economic threshold. Weed Res. 2015, 55, 34–41. [Google Scholar] [CrossRef]
- Moreira, H.J.C.; Bragança, H.N.P. Manual de Identificação de Plantas Infestantes: Cultivos de Verão; FMC Agricultural Products: Campinas, Brazil, 2011. [Google Scholar]
- Lorenzi, H. Manual de Identificação e Controle de Plantas Daninhas: Plantio Direto e Convencional, 7th ed.; Instituto Plantarum: Nova Odessa, Brazil, 2014. [Google Scholar]
- Hao, J.H.; Qiang, S.; Liu, Q.Q.; Cao, F. Reproductive traits associated with invasiveness in Conyza sumatrensis. J. Syst. Evol. 2009, 47, 245–254. [Google Scholar] [CrossRef]
- Thebaud, C.; Finzi, A.C.; Affre, L.; Debussche, M.; Escarre, J. Assessing why two introduced Conyza differ in their ability to invade Mediterranean old fields. Ecology 1996, 77, 791–804. [Google Scholar] [CrossRef]
- Weaver, S.E. The biology of Canadian weeds. 115. Conyza canadensis. Can. J. Plant Sci. 2001, 81, 867–875. [Google Scholar] [CrossRef]
- Riar, D.S.; Norsworthy, J.K.; Steckel, L.E.; Stephenson, D.O.; Eubank, T.W.; Bond, J.; Scott, R.C. Adoption of best management practices for herbicide-resistant weeds in midsouthern United States cotton, rice, and soybean. Weed Technol. 2013, 27, 788–797. [Google Scholar] [CrossRef]
- Green, J.M. The rise and future of glyphosate and glyphosate-resistant crops. Pest Manag. Sci. 2018, 74, 1035–1039. [Google Scholar] [CrossRef]
- Gage, K.L.; Krausz, R.F.; Walters, S.A. Emerging challenges for weed management in herbicide-resistant crops. Agriculture 2019, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Ovejero, R.F.; Takano, H.K.; Nicolai, M.; Ferreira, A.; Melo, M.S.; Cavenaghi, A.L.; Christoffoleti, P.J.; Oliveira, R.S., Jr. Frequency and dispersal of glyphosate-resistant sourgrass (Digitaria insularis) populations across Brazilian agricultural production areas. Weed Sci. 2017, 65, 285–294. [Google Scholar] [CrossRef]
- Broster, J.C.; Pratley, J.E.; Ip, R.H.L.; Ang, L.; Seng, K.P. A quarter of a century of monitoring herbicide resistance in Lolium rigidum in Australia. Crop Pasture Sci. 2019, 70, 283–293. [Google Scholar] [CrossRef]
- Lucio, F.R.; Kalsing, A.; Adegas, F.S.; Rossi, C.V.S.; Correia, N.M.; Gazziero, D.L.P.; Silva, A.F. Dispersal and frequency of glyphosate-resistant and glyphosate-tolerant weeds in soybean-producing edaphoclimatic microregions in Brazil. Weed Technol. 2019, 33, 217–231. [Google Scholar] [CrossRef]
- Albrecht, A.J.P.; Pereira, V.G.C.; Souza, C.N.Z.; Zobiole, L.H.S.; Albrecht, L.P.; Adegas, F.S. Multiple resistance of Conyza sumatrensis to three mechanisms of action of herbicides. Acta Sci. Agron. 2020, 42, e42485. [Google Scholar] [CrossRef]
- Burgos, N.R.; Tranel, P.J.; Streibig, J.C.; Davis, V.M.; Shaner, D.; Norsworthy, J.K.; Ritz, C. Confirmation of resistance to herbicides and evaluation of resistance levels. Weed Sci. 2013, 61, 4–20. [Google Scholar] [CrossRef]
- Velini, D.E.; Osipe, R.; Gazziero, D.L.P. Procedimentos Para Instalação, Avaliação e Análise de Experimentos Com Herbicidas; SBCPD: Londrina, Brazil, 1995. [Google Scholar]
- Streibig, J.C. Herbicide bioassay. Weed Res. 1988, 28, 479–484. [Google Scholar] [CrossRef]
- Souza, A.P.; Ferreira, F.A.; Silva, A.A.; Cardoso, A.A.; Ruiz, H.A. Logistic equation use in studying the dose-response of glyphosate and imazapyr by using bioassays. Planta Daninha 2000, 18, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Takano, H.K.; Oliveira, R.S., Jr.; Constantin, J.; Braz, G.B.P.; Franchini, L.H.M.; Burgos, N.R. Multiple resistance to atrazine and imazethapyr in hairy beggarticks (Bidens pilosa). Ciencia e Agrotecnologia 2016, 40, 548–554. [Google Scholar] [CrossRef]
- Takano, H.K.; Oliveira, R.S., Jr.; Constantin, J.; Braz, G.B.P.; Gheno, E.A. Goosegrass resistant to glyphosate in Brazil. Planta Daninha 2017, 35, e017163071. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.M.; Stromme, K.M.; Horsman, G.P.; Devine, M.D. Resistance to acetolactate synthase inhibitors and quinclorac in a biotype of false cleavers (Galium spurium). Weed Sci. 1998, 46, 390–396. [Google Scholar] [CrossRef]
- Santos, G.; Oliveira, R.S., Jr.; Constantin, J.; Francischini, A.C.; Osipe, J.B. Multiple resistance of Conyza sumatrensis to chlorimuron-ethyl and to glyphosate. Planta Daninha 2014, 32, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Zobiole, L.H.S.; Pereira, V.G.C.; Albrecht, A.J.P.; Rubin, R.S.; Adegas, F.S.; Albrecht, L.P. Paraquat resistance of Sumatran fleabane (Conyza sumatrensis). Planta Daninha 2019, 37, e019183264. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, A.R.; Delatorre, C.A.; Lucio, F.R.; Rossi, C.V.S.; Zobiole, L.H.S.; Merotto, A., Jr. Rapid necrosis: A novel plant resistance mechanism to 2,4-D. Weed Sci. 2020, 68, 6–18. [Google Scholar] [CrossRef]
- Waggoner, B.S.; Mueller, T.C.; Bond, J.A.; Steckel, L.E. Control of glyphosate-resistant horseweed (Conyza canadensis) with saflufenacil tank mixtures in no-till cotton. Weed Technol. 2011, 25, 310–315. [Google Scholar] [CrossRef]
- Dalazen, G.; Kruse, N.D.; Machado, S.L.D.; Balbinot, A. Synergism of the glyphosate and saflufenacil combination for controlling hairy fleabane. Pesquisa Agropecuária Tropical 2015, 45, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Tahmasebi, B.K.; Alebrahim, M.T.; Roldán-Gómez, R.A.; Silveira, H.M.; Carvalho, L.B.; Alcántara de la Cruz, R.; De Prado, R. Effectiveness of alternative herbicides on three Conyza species from Europe with and without glyphosate resistance. Crop Prot. 2018, 112, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Flessner, M.L.; Pittman, K.B. Horseweed control with preplant herbicides after mechanical injury from small grain harvest. Agron. J. 2019, 111, 3274–3280. [Google Scholar] [CrossRef]
- Albrecht, A.J.P.; Albrecht, L.P.; Silva, A.F.M.; Ramos, R.A.; Corrêa, N.B.; Carvalho, M.G.; Lorenzetti, J.B.; Danilussi, M.T.Y. Control of Conyza spp. with sequential application of glufosinate in soybean pre-sowing. Ciencia Rural 2020, 50, e20190868. [Google Scholar] [CrossRef]
- São Miguel, A.S.C.; Pacheco, L.P.; Souza, E.D.; Silva, C.M.R.; Carvalho, I.C. Cover crops in the weed management in soybean culture. Planta Daninha 2018, 36, e018172534. [Google Scholar] [CrossRef]
- Büchi, L.; Wendling, M.; Amossé, C.; Jeangros, B.; Charles, R. Cover crops to secure weed control strategies in a maize crop with reduced tillage. Field Crop. Res. 2020, 247, 107583. [Google Scholar] [CrossRef]
- Loddo, D.; Scarabel, L.; Sattin, M.; Pederzoli, A.; Morsiani, C.; Canestrale, R.; Tommasini, M.G. Combination of herbicide band application and inter-row cultivation provides sustainable weed control in maize. Agronomy 2020, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, E.; Radicetti, E.; Mancinelli, R. Cover crops and mulches influence weed management and weed flora composition in strip-tilled tomato (Solanum lycopersicum). Weed Res. 2015, 55, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Guareschi, A.; Cechin, J.; Bianchi, M.A.; Kruse, N.D.; Piccinini, F.; Pinheiro, R.T.; Machado, S.L.O. Cover plants as a suppression and increasing tool to hairy fleabane control. Revista Brasileira de Ciencias Agrarias 2020, 15, e7522. [Google Scholar] [CrossRef]
- Ye, R.; Huang, H.; Alexander, J.; Liu, W.; Millwood, R.J.; Wang, J.; Stewart, C.N. Field studies on dynamic pollen production, deposition, and dispersion of glyphosate-resistant horseweed (Conyza canadensis). Weed Sci. 2016, 64, 101–111. [Google Scholar] [CrossRef]
- Zabala, D.; Carranza, N.; Darghan, A.; Plaza, G. Spatial distribution of multiple herbicide resistance in Echinochloa colona (L.) Link. Chil. J. Agric. Res. 2019, 79, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Schultz, J.L.; Chatham, L.A.; Riggins, C.W.; Tranel, P.J.; Bradley, K.W. Distribution of herbicide resistances and molecular mechanisms conferring resistance in Missouri waterhemp (Amaranthus rudis Sauer) populations. Weed Sci. 2015, 63, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Bailly, G.C.; Dale, R.P.; Archer, S.A.; Wright, D.J.; Kaundun, S.S. Role of residual herbicides for the management of multiple herbicide resistance to ACCase and ALS inhibitors in a black-grass population. Crop Prot. 2012, 34, 96–103. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Feist, D.; Eskelsen, S.; Scott, J.E.; Knezevic, S.Z. Weed control in soybean with preemergence- and postemergence-applied herbicides. Crop Forage Turfgrass Manag. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Busi, R.; Powles, S.B.; Beckie, H.J.; Renton, M. Rotations and mixtures of soil-applied herbicides delay resistance. Pest Manag. Sci. 2020, 76, 487–496. [Google Scholar] [CrossRef]
- (HRAC) Herbicide Resistance Action Committee. Critérios Para Relatos Oficiais Estatísticos de Biótipos de Plantas Daninhas Resistentes a Herbicidas. 2017. Available online: https://www.hrac-br.org (accessed on 26 November 2019).
Site | Department | Latitude | Longitude | Crop |
---|---|---|---|---|
01 | Canindeyú | 24°10’30” S | 54°41’33” W | Soybean |
02 | Canindeyú | 24°15’28” S | 54°47’30” W | Soybean |
03 | Canindeyú | 24°14’42” S | 54°52’25” W | Soybean |
04 | Canindeyú | 24°13’18” S | 54°52’09” W | Soybean |
05 | Canindeyú | 24°20’09” S | 54°49’41” W | Soybean |
06 | Canindeyú | 24°22’23” S | 54°50’26” W | Soybean |
07 | Canindeyú | 24°23’59” S | 54°50’54” W | Soybean |
08 | Canindeyú | 24°34’53” S | 54°51’39” W | Soybean |
09 | Alto Paraná | 24°41’04” S | 54°52’11” W | Soybean |
10 | Alto Paraná | 25°00’01” S | 54°52’59” W | Soybean |
11 | Alto Paraná | 25°03’13” S | 54°55’00” W | Soybean |
12 | Alto Paraná | 25°08’01” S | 54°58’02” W | Soybean |
13 | Alto Paraná | 25°10’38” S | 54°56’42” W | Soybean |
14 | Alto Paraná | 25°37’56” S | 54°58’16” W | Soybean |
15 | Alto Paraná | 25°36’42” S | 54°58’55” W | Soybean |
16 | Alto Paraná | 25°54’16” S | 55°07’03” W | Soybean |
17 | Alto Paraná | 25°00’14” S | 54°56’50” W | Soybean |
18 | Canindeyú | 24°04’26” S | 54°27’05” W | Soybean |
19 | Canindeyú | 24°06’33” S | 54°31’46” W | Soybean |
20 | Canindeyú | 24°07’01” S | 54°34’59” W | Soybean |
21 | Canindeyú | 24°33’15” S | 54°46’47” W | Soybean |
22 | Alto Paraná | 25°02’23” S | 54°54’18” W | Soybean |
23 | Canindeyú | 24°21’03” S | 55°02’29” W | Soybean |
24 | Canindeyú | 24°04’08” S | 54°49’33” W | Soybean |
25 | Canindeyú | 24°15’57” S | 54°43’34” W | Soybean |
26 | Canindeyú | 24°20’19” S | 55°00’56” W | Soybean |
27 | Canindeyú | 24°03’34” S | 55°00’20” W | Soybean |
28 | Canindeyú | 24°09’26” S | 54°52’21” W | Oat |
29 | Canindeyú | 24°10’39” S | 54°53’20” W | Oat |
30 | Canindeyú | 24°12’00” S | 54°56’02” W | Oat |
31 | Alto Paraná | 25°45’04” S | 55°04’39” W | Oat |
32 | Canindeyú | 24°11’60” S | 54°56’10” W | Chia |
33 | Canindeyú | 24°08’58” S | 54°51’24” W | Pasture |
Herbicide | Group | Dose ¹ | Commercial Product ² |
---|---|---|---|
2,4-D | O—synthetic auxins | 1005 | DMA® 6 |
paraquat | D—photosystem I inhibitors | 400 | Tecnoquat® SL |
glyphosate | G—EPSPs inhibitors | 720 | Roundup Full® II |
chlorimuron | B—ALS inhibitors | 20 | Poker® 75 WG |
saflufenacil | E—PPO inhibitors | 35 | Heat® |
glufosinate | H—GS inhibitors | 500 | Finale® |
control (without application) | - | - | - |
Site | Paraquat | Glyphosate | Chlorimuron | 2,4-D | Glufosinate | Saflufenacil | No Application |
---|---|---|---|---|---|---|---|
----------------------------------------------------%---------------------------------------------------- | |||||||
1 | 100 | 65 | 70 | 100 | 100 | 100 | 0 |
2 | 90 | 70 | 80 | 100 | 100 | 100 | 0 |
3 | 70 | 65 | 65 | 98 | 100 | 100 | 0 |
4 | 45 | 70 | 65 | 100 | 100 | 100 | 0 |
5 | 100 | 60 | 75 | 100 | 100 | 100 | 0 |
6 | 95 | 75 | 60 | 100 | 100 | 100 | 0 |
7 | 25 | 65 | 65 | 100 | 100 | 100 | 0 |
8 | 30 | 60 | 65 | 100 | 100 | 100 | 0 |
9 | 60 | 45 | 45 | 95 | 100 | 100 | 0 |
10 | 15 | 40 | 60 | 100 | 100 | 100 | 0 |
11 | 95 | 50 | 40 | 100 | 100 | 100 | 0 |
12 | 20 | 55 | 55 | 95 | 100 | 100 | 0 |
13 | 20 | 40 | 50 | 100 | 100 | 100 | 0 |
14 | 15 | 45 | 70 | 100 | 100 | 100 | 0 |
15 | 15 | 60 | 65 | 100 | 100 | 100 | 0 |
16 | 95 | 60 | 60 | 100 | 100 | 100 | 0 |
17 | 100 | 65 | 60 | 100 | 100 | 100 | 0 |
18 | 30 | 35 | 45 | 100 | 100 | 100 | 0 |
19 | 95 | 65 | 40 | 98 | 100 | 100 | 0 |
20 | 100 | 50 | 70 | 100 | 100 | 100 | 0 |
21 | 20 | 55 | 55 | 100 | 100 | 100 | 0 |
22 | 20 | 55 | 55 | 95 | 100 | 100 | 0 |
23 | 40 | 50 | 60 | 98 | 100 | 100 | 0 |
24 | 50 | 60 | 60 | 100 | 100 | 100 | 0 |
25 | 20 | 50 | 50 | 100 | 100 | 100 | 0 |
26 | 100 | 100 | 100 | 100 | 100 | 100 | 0 |
27 | 15 | 30 | 40 | 95 | 100 | 100 | 0 |
28 | 25 | 60 | 60 | 100 | 100 | 100 | 0 |
29 | 40 | 40 | 65 | 100 | 100 | 100 | 0 |
30 | 30 | 55 | 65 | 95 | 100 | 100 | 0 |
31 | 25 | 45 | 55 | 98 | 100 | 100 | 0 |
32 | 100 | 50 | 70 | 100 | 100 | 100 | 0 |
33 | 100 | 100 | 100 | 100 | 100 | 100 | 0 |
Paraquat | Glyphosate | Chlorimuron | ||||
---|---|---|---|---|---|---|
Biotype | C50 | GR50 | C50 | GR50 | C50 | GR50 |
g ha−1 | ||||||
Susceptible (site 33) | 49.65 | 52.46 | 87.85 | 126.10 | 1.25 | 2.26 |
Resistant (site 27) | 337.19 | 205.94 | 1082.36 | 523.35 | 14.16 | 24.78 |
RF | 6.79 | 3.92 | 12.32 | 4.15 | 11.32 | 10.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albrecht, A.J.P.; Thomazini, G.; Albrecht, L.P.; Pires, A.; Lorenzetti, J.B.; Danilussi, M.T.Y.; Silva, A.F.M.; Adegas, F.S. Conyza sumatrensis Resistant to Paraquat, Glyphosate and Chlorimuron: Confirmation and Monitoring the First Case of Multiple Resistance in Paraguay. Agriculture 2020, 10, 582. https://doi.org/10.3390/agriculture10120582
Albrecht AJP, Thomazini G, Albrecht LP, Pires A, Lorenzetti JB, Danilussi MTY, Silva AFM, Adegas FS. Conyza sumatrensis Resistant to Paraquat, Glyphosate and Chlorimuron: Confirmation and Monitoring the First Case of Multiple Resistance in Paraguay. Agriculture. 2020; 10(12):582. https://doi.org/10.3390/agriculture10120582
Chicago/Turabian StyleAlbrecht, Alfredo Junior Paiola, Guilherme Thomazini, Leandro Paiola Albrecht, Afonso Pires, Juliano Bortoluzzi Lorenzetti, Maikon Tiago Yamada Danilussi, André Felipe Moreira Silva, and Fernando Storniolo Adegas. 2020. "Conyza sumatrensis Resistant to Paraquat, Glyphosate and Chlorimuron: Confirmation and Monitoring the First Case of Multiple Resistance in Paraguay" Agriculture 10, no. 12: 582. https://doi.org/10.3390/agriculture10120582
APA StyleAlbrecht, A. J. P., Thomazini, G., Albrecht, L. P., Pires, A., Lorenzetti, J. B., Danilussi, M. T. Y., Silva, A. F. M., & Adegas, F. S. (2020). Conyza sumatrensis Resistant to Paraquat, Glyphosate and Chlorimuron: Confirmation and Monitoring the First Case of Multiple Resistance in Paraguay. Agriculture, 10(12), 582. https://doi.org/10.3390/agriculture10120582