# The Tower Press for Obtaining Olive Oil: Analysis through Computer-Aided Engineering

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Operation of the Tower Press

#### 2.2. Computer-Aided Engineering (CAE)

#### 2.2.1. Pre-Processing

#### 2.2.2. Assignment of Materials

^{3}, and an elastic limit of 758 MPa. For its part, polished granite has a Young’s modulus of 55,000 MPa, a Poisson’s ratio of 0.25, a density of 2700 kg/m

^{3}, and an elastic limit of 39 MPa.

^{3}and an elastic limit of 41 MPa in the direction parallel to the grain.

#### 2.2.3. Boundary Conditions

#### 2.2.4. Forces Applied

^{2}in the negative direction of the z axis has been taken.

^{2}, so the pressure that will support the charge of baskets is 780,522 Pa, which is more than enough to extract the oily must from the previously-ground olives.

#### 2.2.5. Meshing

## 3. Results and Discussion

_{1}, σ

_{2}and σ

_{3}are the principal stresses.

#### 3.1. Modal Analysis

#### 3.2. Static Analysis

#### 3.2.1. Von Mises Stresses

#### 3.2.2. Safety Coefficient

#### 3.2.3. Displacements

#### 3.2.4. Equivalent Deformations

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Tempesta, T.; Vecchiato, D. Analysis of the factor that influence olive oil demand in the Veneto region (Italy). Agriculture
**2019**, 9, 154. [Google Scholar] [CrossRef] [Green Version] - Lia, F.; Zammit-Mangion, M.; Farrugia, C. A first description of the phenolic profile of EVOOs from the Maltese Islands using SPE and HPLC: Pedo-climatic conditions modulate genetic factors. Agriculture
**2019**, 9, 107. [Google Scholar] [CrossRef] [Green Version] - Castellano, S.; Di Palma, A.; Germinara, G.S.; Lippolis, M.; Starace, G.; Scarascia-Mugnozza, G. Experimental nets for a protection system against the vectors of xylella fastidiosa well et al. Agriculture
**2019**, 9, 32. [Google Scholar] [CrossRef] [Green Version] - Niavis, S.; Tamvakis, N.; Manos, B.; Vlontzos, G. Assessing and explaining the efficiency of extensive olive oil farmers: The case of Pelion peninsula in Greece. Agriculture
**2018**, 8, 25. [Google Scholar] [CrossRef] [Green Version] - Cabanas, C.G.L.; Ruano_Rosa, D.; Legarda, G.; Pizarro-Tobias, P.; Valverde-Corredor, A.; Trivino, J.C.; Roca, A.; Mercado-Blanco, J. Bacillales members from the olive rhizosphere are effective biological control agents against the defoliating pathotype of verticillium dahliae. Agriculture
**2018**, 8, 90. [Google Scholar] [CrossRef] [Green Version] - Zambon, I.; Serra, P.; Salvia, R.; Salvati, L. Fallow land, recession and socio-demographic local contexts: Recent dynamics in a Mediterranean urban fringe. Agriculture
**2018**, 8, 159. [Google Scholar] [CrossRef] [Green Version] - Rodnick, D. Old olive oil mills and presses on island of Corfu, Greece–Essay on industrial archaeology and etnography of agricultural implements–Sordina, A. Am. Anthropol.
**1972**, 74, 1519. [Google Scholar] [CrossRef] - Rojas-Sola, J.I. A review of the historical procedures for obtaining the oil olive in the oil mills from the engineering graphics. In The Olive Grove and Its Oil; Fundación del Olivar: Jaén, Spain, 2013; pp. 67–96. (In Spanish) [Google Scholar]
- Pequeño y Muñoz-Repiso, D. Elaboración del Aceite de Olivas; Imprenta de la Sociedad Tipográfica: Madrid, Spain, 1879. (In Spanish) [Google Scholar]
- Berges-Roldán, L.; López-Pérez, M. Caserías de Jaén. Arquitectura del Olivar; Estudio Tría: Jaén, Spain, 1973. (In Spanish) [Google Scholar]
- Vehbi, B.O.; Yuceer, H.; Hurol, Y. New uses for traditional buildings: The olive oil mills of the Karpas Peninsula, Cyprus. Hist. Environ. Policy Prac.
**2019**, 10, 58–82. [Google Scholar] [CrossRef] - Yuceer, H.; Vehbi, B.O.; Hurol, Y. The conservation of traditional olive oil mills in Cyprus. J. Archit. Conserv.
**2018**, 24, 105–133. [Google Scholar] [CrossRef] - Mazzotti, M. Enlightened mills–Mechanizing olive oil production in Mediterranean Europe. Technol. Cult.
**2004**, 45, 277–304. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I. Ancient technology and computer-aided design: Olive-oil production in Southern Spain. Interdiscip. Sci. Rev.
**2005**, 30, 59–67. [Google Scholar] [CrossRef] - Rojas-Sola, J.I.; De la Morena-de la Fuente, E. The conical stones olive oil mil: Analysis through Computer-Aided Engineering. Agriculture
**2020**, 10, 255. [Google Scholar] [CrossRef] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Agustin de Betancourt’s double-acting steam engine: Analysis through computer-aided engineering. Appl. Sci.
**2018**, 8, 2309. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Agustin de Betancourt’s mechanical dredger in the port of Kronstadt: Analysis through computer-aided engineering. Appl. Sci.
**2018**, 8, 1338. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. The Hay inclined plane in Coalbrookdale (Shropshire, England): Analysis through computer-aided engineering. Appl. Sci.
**2019**, 9, 3385. [Google Scholar] [CrossRef] [Green Version] - Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. Finite Element Method: Its Basis and Fundamentals; Elsevier: Oxford, UK, 2013. [Google Scholar]
- Khoei, A.R. Extended Finite Element Method: Theory and Applications; Wiley: Chichester, UK, 2015. [Google Scholar]
- Song, C. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Shih, R.H. Parametric Modeling with Autodesk Inventor 2016; SDC Publications: Mission, KS, USA, 2015. [Google Scholar]
- Gross, D.; Ehlers, W.; Wriggers, P.; Schröder, J.; Müller, R. Mechanics of Materials-Formulas and Problems: Engineering Mechanics 2, 1st ed.; Springer: New York, NY, USA, 2016. [Google Scholar]

**Figure 3.**(

**a**) Position 1: Tower supported on the pillars and (

**b**) Position 2: Tower supported on the basket load.

**Figure 22.**Location of the lowest value of the safety coefficient: (

**a**) Position 1 and (

**b**) Position 2.

F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | |
---|---|---|---|---|---|---|---|---|

Position 1 | 1.34 Hz | 1.55 Hz | 3.88 Hz | 4.23 Hz | 4.53 Hz | 6.57 Hz | 7.08 Hz | 8.24 Hz |

Position 2 | 0.78 Hz | 1.13 Hz | 2.15 Hz | 4.14 Hz | 4.26 Hz | 4.41 Hz | 4.52 Hz | 7.07 Hz |

Position 1 | Position 2 | |
---|---|---|

Maximum von Mises stress | 22.7 MPa | 508.3 MPa |

Minimum safety coefficient | 11.16 | 1.49 |

Maximum displacement | 0.1235 mm | 0.1315 mm |

Maximum equivalent deformation | 0.02696% | 0.3854% |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rojas-Sola, J.I.; De la Morena-De la Fuente, E.; Hermoso-Orzáez, M.J.; Hernández-Díaz, D.
The Tower Press for Obtaining Olive Oil: Analysis through Computer-Aided Engineering. *Agriculture* **2020**, *10*, 554.
https://doi.org/10.3390/agriculture10110554

**AMA Style**

Rojas-Sola JI, De la Morena-De la Fuente E, Hermoso-Orzáez MJ, Hernández-Díaz D.
The Tower Press for Obtaining Olive Oil: Analysis through Computer-Aided Engineering. *Agriculture*. 2020; 10(11):554.
https://doi.org/10.3390/agriculture10110554

**Chicago/Turabian Style**

Rojas-Sola, José Ignacio, Eduardo De la Morena-De la Fuente, Manuel Jesús Hermoso-Orzáez, and David Hernández-Díaz.
2020. "The Tower Press for Obtaining Olive Oil: Analysis through Computer-Aided Engineering" *Agriculture* 10, no. 11: 554.
https://doi.org/10.3390/agriculture10110554