Efficiency of Mineral Nitrogen Fertilization in Winter Wheat under Pannonian Climate Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Climatic Conditions
2.2. Experimental Design and Management
2.3. Plant and Soil Sampling and Measurements
2.4. Calculations
2.5. Statistical Analysis
3. Results
3.1. Crop Yields and Yield Components
3.2. N Concentration, N Yield and N Harvest Index
3.3. N Surplus, N Balance, Soil Mineral Nitrate and Apparent N Loss
3.4. Nitrogen Efficiency
4. Discussion
4.1. Crop Yields, Nitrogen Concentrations and Yields
4.2. N Surplus, N Balance, Soil Mineral Nitrate and Apparent N Loss
4.3. Nitrogen Efficiency
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Sun, K.; Liu, W.; Gao, T.; Li, G.; Han, H.; Li, Z.; Ning, T. Responses of soil carbon, nitrogen, and wheat and maize productivity to 10 years of decreased nitrogen fertilizer under contrasting tillage systems. Soil Tillage Res. 2020, 196. [Google Scholar] [CrossRef]
- Barraclough, P.B.; Howarth, J.R.; Jones, J.; Lopez-Bellido, R.; Parmar, S.; Shepherd, C.E.; Hawkesford, M.J. Nitrogen efficiency of wheat: Genotypic and environmental variation and prospects for improvement. Eur. J. Agron. 2010, 33, 1–11. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Ding, Y.; Yin, X.; Raza, S.; Tong, Y. Optimising nitrogen fertilisation: A key to improving nitrogen-use efficiency and minimising nitrate leaching losses in an intensive wheat/maize rotation (2008–2014). Field Crop. Res. 2017, 206, 1–10. [Google Scholar] [CrossRef]
- Santillano-Cázares, J.; Núñez-Ramírez, F.; Ruíz-Alvarado, C.; Cárdenas-Castañeda, M.E.; Ortiz-Monasterio, I. Assessment of fertilizer management strategies aiming to increase nitrogen use efficiency of wheat grown under conservation agriculture. Agronomy 2018, 8, 304. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Dachler, M.; Köchl, A. Der Einfluss von Fruchtfolge, Vorfrucht, Stickstoffdüngung und Einarbeitung der Ernterückstände auf Ertrag und Rohproteingehalt von Winterweizen und nachfolgender Sommergerste. Die Bodenkult J. Land Manag. Food Environ. 2003, 54, 23–34. [Google Scholar]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.-P.; Wagentristl, H. Energy efficiency of winter wheat in a long-term tillage experiment under Pannonian climate conditions. Eur. J. Agron. 2019, 103, 24–31. [Google Scholar] [CrossRef]
- Moitzi, G.; Thünauer, G.; Robier, J.; Gronauer, A. Energieeinsatz und Energieeffizienz in der Körnermaisproduktion bei unterschiedlicher Stickstoffdüngung in der Südsteiermark. Die Bodenkult J. Land Manag. Food Environ. 2015, 66, 25–37. [Google Scholar]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Fischer, R.A. Optimizing the use of water and nitrogen through breeding of crops. Plant Soil 1981, 58, 249–278. [Google Scholar] [CrossRef]
- Prey, L.; Kipp, S.; Hu, Y.; Schmidhalter, U. Nitrogen use efficiency and carbon traits of high-yielding European hybrid vs. line winter wheat cultivars: Potentials and limitations. Front. Plant Sci. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Liu, X.; Gu, S.; Yu, J.; Zhang, L.; Zhang, W.; Jiang, D.; Cao, W.; Dai, T. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat. J. Integr. Agric. 2018, 17, 2648–2661. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Dai, X.; He, M. Delayed sowing improves nitrogen utilization efficiency in winter wheat without impacting yield. Field Crop. Res. 2018, 221, 90–97. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, F.; Liu, Y.; Yang, J.; Zhen, X.; Li, X.; Li, Y.; Zhao, J.; Li, J.; Qian, B.; et al. Timing and splitting of nitrogen fertilizer supply to increase crop yield and efficiency of nitrogen utilization in a wheat–peanut relay intercropping system in China. Crop J. 2019, 7, 101–112. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, F.; Römheld, V.; Horlacher, D.; Schulz, R.; Böning-Zilkens, M.; Wang, P.; Claupein, W. Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutr. Cycl. Agroecosyst. 2006, 74, 91–98. [Google Scholar] [CrossRef]
- Schulz, R.; Makary, T.; Hubert, S.; Hartung, K.; Gruber, S.; Donath, S.; Döhler, J.; Weiß, K.; Ehrhart, E.; Claupein, W.; et al. Is it necessary to split nitrogen fertilization for winter wheat? On-farm research on Luvisols in South-West Germany. J. Agric. Sci. 2015, 153, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Fischbeck, G.; Dennert, J.; Müller, R. N-Dynamik des Bodens, Ertragsbildung und Stickstoffentzug von Winterweizen bei unterschiedlicher Höhe und Verteilung der mineralischen N-Düngung. J. Agron. Crop Sci. 1990, 164, 297–311. [Google Scholar] [CrossRef]
- Maidl, F.X.; Panse, A.; Dennert, J.; Ruser, R.; Fischbeck, G. Effect of varied N rates and N timings on yield, N uptake and fertilizer N use efficiency of a six-row and a two-row winter barley. Eur. J. Agron. 1996, 5, 247–257. [Google Scholar] [CrossRef]
- Rossmann, A.; Pitann, B.; Mühling, K.-H. Splitting nitrogen applications improves wheat storage protein composition under low N supply. J. Plant Nutr. Soil Sci. 2019, 182, 347–355. [Google Scholar] [CrossRef]
- Müller, S.; Ansorge, H.; Weigert, I. Einfluss der Stickstoffdüngung auf Ertrag, Ertragsstruktur und N-Verwertung von Winterweizen—Möglichkeiten und Grenzen der Bestandesführung. Zeitschrift für Pflanzenernährung und Bodenkunde 1991, 154, 115–119. [Google Scholar] [CrossRef]
- Hartman, M.D.; Nyborg, M. Effect of early growing season moisture stress on barley utilization of broadcastincorporated and deep-banded urea. Can. J. Soil Sci. 1989, 69, 381–389. [Google Scholar] [CrossRef]
- WRB. World reference base for soil resources. In World Soil Resources Reports 2006; No. 103; FAO: Rome, Italy, 2006; ISSN 0532-0488. [Google Scholar]
- ZAMG. Klimaübersichten. Zentralanstalt für Meterologie und Geodynamik (ZAMG). ZAMG Online Database. 2019. Available online: http://www.zamg.ac.at/cms/de/klima/klimauebersichten/jahrbuch (accessed on 14 October 2019).
- Harty, M.A.; Forrestal, P.J.; Watson, C.J.; McGeough, K.L.; Carolan, R.; Elliot, C.; Krol, D.; Laughlin, R.J.; Richards, K.G.; Lanigan, G.J. Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations. Sci. Total Environ. 2016, 563–564, 576–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witzenberger, A.; Hack, H.; van den Boom, T. Erläuterungen zum BBCH-Dezimal-Code für die Entwicklungsstadien des Getreides—Mit Abbildungen. Gesunde Pflanz. 1989, 41, 384–388. [Google Scholar]
- ÖNORM L 1091. Chemische Bodenuntersuchungen: Bestimmung von Mineralischem Stickstoff-Nmin-Methode; Österreichisches Normungsinstitut: Wien, Austria, 2012. [Google Scholar]
- Winkler, R.; Botterbrodt, S.; Rabe, E.; Lindhauer, M.G. Stickstoff-/Proteinbestimmung mit der Dumas-Methode in Getreide und Getreideprodukten. Getreide Mehl und Brot 2000, 54, 86–91. [Google Scholar]
- Hartmann, T.E.; Yue, S.; Schulz, S.; Chen, X.; Zhang, F.; Müller, T. Nitrogen dynamics, apparent mineralization and balance calculations in a maize—Wheat double cropping system of the North China Plain. Field Crops Res. 2014, 160, 22–30. [Google Scholar] [CrossRef]
- Cui, Z.L.; Zhang, F.S.; Chen, X.P.; Miao, Y.X.; Li, J.L.; Shi, L.W.; Xu, L.W.; Ye, Y.L.; Liu, C.S.; Yang, Z.P.; et al. On-farm estimation of indigenous nitrogen supply for site specific nitrogen management in the North China Plain. Nutr. Cycl. Agroecosyst. 2008, 81, 37–47. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Kaul, H.-P. Sowing ratio and N fertilization affect yield and yield components of oat and pea in intercrops. Field Crops Res. 2014, 155, 159–163. [Google Scholar] [CrossRef]
- Lu, D.; Lu, F.; Pan, J.; Cui, Z.; Zou, C.; Chen, X.; He, M.; Wang, Z. The effects of cultivar and nitrogen management on wheat yield and nitrogen use efficiency in the North China Plain. Field Crops Res. 2015, 171, 157–164. [Google Scholar] [CrossRef]
- Heyland, K.-U.; Triebel, U. Gezielte Stickstoffdüngung zur gesteuerten Ertragsbildung von Winterweizen unter Berücksichtigung verschiedener anbautechnischer Maßnahmen. Die Bodenkult J. Land Manag. Food Environ. 1986, 37, 133–148. [Google Scholar]
- Aufhammer, W.; Kübler, E. Zur Leistungsfähigkeit von Gerste in Abhängigkeit von Form und Sorte sowie von Standort und Produktionstechnik—II. Die Ertragsrelevanz produktionstechnischer Maßnahmen bei verschiedenen Gerstenformen unter differenzierten Aufwuchsbedingungen. Die Bodenkult J. Land Manag. Food Environ. 1988, 39, 1–13. [Google Scholar]
- Aufhammer, W.; Kübler, E. Zur Leistungsfähigkeit von Gerste in Abhängigkeit von Form und Sorte sowie von Standort und Produktionstechnik—III. Die Relevanz produktionstechnischer Maßnahmen für die Kornqualität verschiedenen Gerstenformen unter differenzierten Aufwuchsbedingungen. Die Bodenkult J. Land Manag. Food Environ. 1989, 40, 47–59. [Google Scholar]
- Neugschwandtner, R.W.; Wichmann, S.; Gimplinger, D.M.; Wagentristl, H.; Kaul, H.-P. Chickpea performance compared to pea, barley and oat in Central Europe: Growth analysis and yield. Turk. J. Field Crops 2013, 18, 179–184. [Google Scholar]
- Neugschwandtner, R.W.; Wagentristl, H.; Kaul, H.-P. Nitrogen concentrations and nitrogen yields of above-ground dry matter of chickpea during crop growth compared to pea, barley and oat in Central Europe. Turk. J. Field Crop. 2014, 19, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Neugschwandtner, R.W.; Wagentristl, H.; Kaul, H.-P. Nitrogen yield and nitrogen use of chickpea compared to pea, barley and oat in Central Europe. Intern. J. Plant Prod. 2015, 9, 291–304. [Google Scholar]
- Aufhammer, W.; Kübler, E.; Kaul, H.-P. Untersuchungen zur Anpassung des Stickstoff-Angebots aus unterschiedlichen N-Quellen an den Verlauf der N-Aufnahme von Maisbeständen. Z. Pflanz. Bodenkund. 1996, 159, 471–478. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Kaul, H.-P. Concentrations and uptake of macronutrients by oat and pea in intercrops in response to N fertilization and sowing ratio. Arch. Agron. Soil Sci. 2016, 62, 1236–1249. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Kaul, H.-P. Concentrations and uptake of micronutrients by oat and pea in intercrops in response to N fertilization and sowing ratio. Die Bodenkult. J. Land Manag. Food Environ. 2016, 67, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease inhibitor NBPT on ammonia volatilisation and crop productivity: A meta-analysis. Agron. J. 2017, 109, 1–13. [Google Scholar] [CrossRef]
- Nayak, D.; Saetnan, E.; Cheng, K.; Wang, W.; Koslowski, F.; Cheng, Y.F.; Zhu, W.Y.; Wang, J.K.; Liu, J.X.; Moran, D.; et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agric. Ecosyst. Environ. 2015, 209, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Wallace, A.J.; Armstrong, R.D.; Grace, P.R.; Scheer, C.; Partington, D.L. Nitrogen use efficiency of 15N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutr. Cycl. Agroecosyst. 2020, 116, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Jing, Q.; Cai, J.; Jiang, D.; Cao, W.; Dai, T. The fates of 15N fertilizer in relation to root distributions of winter wheat under different N splits. Eur. J. Agron. 2012, 40, 86–93. [Google Scholar] [CrossRef]
- Sieling, K.; Kage, H. N balance as an indicator of N leaching in an oilseed rape—Winter wheat—Winter barley rotation. Agric. Ecosyst. Environ. 2006, 115, 261–269. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Kaul, H.-P. Nitrogen uptake, use and utilization efficiency by oat-pea intercrops. Field Crop. Res. 2015, 179, 113–119. [Google Scholar] [CrossRef]
- Kirda, C.; Topcu, S.; Kaman, H.; Ulger, A.C.; Yazici, A.; Cetin, M.; Derici, M.R. Grain yield response and N-fertiliser recovery of maize under deficit irrigation. Field Crop. Res. 2005, 93, 132–141. [Google Scholar] [CrossRef]
- Robertson, G.P.; Bruulsema, T.W.; Gehl, R.J.; Kanter, D.; Mauzerall, D.L.; Rotz, C.A.; Williams, C.O. Nitrogen–climate interactions in US agriculture. Biogeochemistry 2013, 114, 41–70. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; Turner, N.C.; Keating, B.A. Analysis of water- and nitrogen-use efficiency of wheat in a Mediterranean climate. Plant Soil 2001, 233, 127–143. [Google Scholar] [CrossRef]
- Schulte auf´m Erley, G.; Kaul, H.-P.; Kruse, M.; Aufhammer, W. Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. Eur. J. Agron. 2005, 22, 95–100. [Google Scholar] [CrossRef]
- Moitzi, G.; Spiegel, H.; Sandén, T.; Vuolo, F.; Essl, L.; Neugschwandtner, R.W.; Wagentristl, H. Energieeinsatz und Energieeffizienz von Winterweizen bei unterschiedlicher mineralischer Stickstoffdüngung im Marchfeld. Die Bodenkult J. Land Manag. Food Environ. 2020, 71, 55–67. [Google Scholar] [CrossRef]
- Hawkesford, M.J. Genetic Variation in Traits for Nitrogen Use Efficiency in Wheat. J. Exp. Bot. 2017, 68, 2627–2632. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
Temperature (°C) | Precipitation (mm) | |||||
---|---|---|---|---|---|---|
1994–2018 | 2017 | 2018 | 1994–2018 | 2017 1 | 2018 | |
October | 10.4 | −0.8 | +1.7 | 39 | +25 | +13 |
November | 5.8 | −1.0 | +0.4 | 33 | +3 | −2 |
December | 1.2 | −0.4 | +1.7 | 30 | −17 | −3 |
January | 0.3 | −4.1 | +3.6 | 27 | −15 | +7 |
February | 2.0 | +0.9 | −2.9 | 22 | +1 | −3 |
March | 5.7 | +3.2 | −2.4 | 35 | −6 | +5 |
April | 11.2 | −1.2 | +4.1 | 41 | +14 | −28 |
May | 16.0 | +0.5 | +2.5 | 63 | −18 | +18 |
June | 19.5 | +2.5 | +1.6 | 71 | −35 | +3 |
Type of N Fertilizer | Percentage of N in the Fertilizer | Fertilization Schedule | Dose of Fertilizer in the Plant Development Stage (kg N ha−1) | ||
---|---|---|---|---|---|
Splits | First split 5 | Second split 6 | Third split 7 | ||
Growth stage | Tillering (BBCH 22/23) | Stem elongation BBCH 31/32) | Ear emergence (BBCH 52) | ||
Control (N0) | - | 0:0:0 | 0 | 0 | 0 |
CAN 1 | 27 | 50:50:60 | 50 | 50 | 60 |
CAN | 27 | 100:60:0 | 100 | 60 | 0 |
Urea | 46 | 50:50:60 | 50 | 50 | 60 |
Urea | 46 | 100:60:0 | 100 | 60 | 0 |
Ureastab 2 | 46 | 50:50:60 | 50 | 50 | 60 |
Ureastab | 46 | 100:60:0 | 100 | 60 | 0 |
Ureastab | 46 | 160:0:0 | 160 | 0 | 0 |
Ureaincorp 3 | 46 | 100:60:0 | 100 (Ureaincorp) | 60 | 0 |
CAN+UANliquid 4 | 27/32 | 50:50:60 | 50 (CAN) | 50 (CAN) | 60 (UANliquid) |
N Fertilizer | N Splitting | YAGB | GY | SY | HI | ED | Grains | TKW | GD | SEY |
---|---|---|---|---|---|---|---|---|---|---|
(kg ha−1) | (kg ha−1) | (kg ha−1) | (%) | (m−2) | (ear−1) | (g) | (m−2) | (g) | ||
Control | 10,236 a 6 | 4604 a | 5632 | 44.7 | 380 | 36.3 | 35.9 | 13,013 a | 1.27 | |
CAN 1 | 50:50:60 | 12,900 b | 5855 ab | 7045 | 45.0 | 431 | 39.0 | 35.8 | 16,711 b | 1.37 |
CAN | 100:60:0 | 12,267 b | 5354 ab | 6913 | 44.0 | 428 | 36.8 | 35.9 | 15,586 b | 1.26 |
Urea | 50:50:60 | 12,518 b | 6052 b | 6466 | 48.1 | 424 | 39.0 | 38.1 | 16,325 b | 1.43 |
Urea | 100:60:0 | 12,762 b | 5786 ab | 6976 | 45.0 | 439 | 38.0 | 35.8 | 16,777 b | 1.32 |
Ureastab 2 | 50:50:60 | 12,713 b | 6236 b | 6476 | 49.4 | 425 | 41.8 | 36.0 | 17,858 b | 1.47 |
Ureastab | 100:60:0 | 12,516 b | 5971 b | 6545 | 48.0 | 452 | 38.5 | 35.2 | 17,355 b | 1.33 |
Ureastab | 160:0:0 | 12,846 b | 5375 ab | 7471 | 45.0 | 432 | 34.0 | 37.0 | 14,972 ab | 1.22 |
Ureaincorp 3 | 100:60:0 | 12,516 b | 5699 ab | 6817 | 45.6 | 430 | 38.8 | 34.9 | 16,818 b | 1.32 |
CAN + UANliquid 4 | 50:50:60 | 13,761 b | 5897 ab | 7864 | 42.5 | 449 | 38.3 | 35.6 | 17,051 b | 1.32 |
Year | ||||||||||
2017 | 14,194 b | 6818 b | 7376 b | 48.3 b | 430 | 49.0 b | 32.6 a | 20,948 b | 1.59 b | |
2018 | 10,813 a | 4547 a | 6265 a | 42.4 a | 428 | 27.1 a | 39.5 b | 11,545 a | 1.07 a | |
ANOVA 5 | ||||||||||
N treatment (N) | * | * | n.s. | n.s. | n.s. | n.s. | n.s. | *** | n.s. | |
Year (Y) | *** | *** | *** | *** | n.s. | *** | *** | *** | *** | |
N × Y | n.s. 7 | n.s. | n.s. | * | n.s. | n.s. | n.s. | n.s. | * |
N Fertilizer | N Splitting | HI | SEY | NYGRAIN | NHI | N Surplus | NUE | NUtE | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (g) | (kg ha−1) | (%) | (kg ha−1) | (kg grain kg−1 NSUPP) | (kg grain kg−1 NYAGB) | |||||||||
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | ||
Control | 54.7 c 6 | 34.4 a | 1.78 c | 0.77 a | 63.8 a | 41.5 a | 91.3 b | 71.5 a | 63.8 a | −41.5 a | 74.7 b | 40.9 c | 86.7 d | 56.0 d | |
CAN 1 | 50:50:60 | 48.3 abc | 41.7 abc | 1.66 abc | 1.07 bcd | 166.6 de | 126.2 cd | 87.0 ab | 82.3 cd | −6.6 bc | 33.8 bc | 28.2 a | 19.9 ab | 36.7 abc | 30.7 abc |
CAN | 100:60:0 | 42.3 a | 44.3 bbcd | 1.48 ab | 1.04 bcd | 131.2 b | 124.4 cd | 84.0 a | 79.0 bc | 28.8 d | 35.6 bc | 24.7 a | 19.6 ab | 39.7 abc | 29.1 a |
Urea | 50:50:60 | 50.7 bc | 46.0 bcd | 1.69 bc | 1.18 cd | 163.4 cde | 126.6 cd | 89.3 ab | 84.9 cd | −3.4 c | 33.4 bc | 28.7 a | 21.6 ab | 39.1 abc | 33.4 abc |
Urea | 100:60:0 | 51.3 bc | 38.3 ab | 1.59 abc | 1.04 bcd | 147.9 bcd | 109.9 c | 88.0 ab | 73.1 ab | 12.1 cd | 50.1 c | 28.8 a | 19.2 ab | 42.8 bc | 29.5 ab |
Ureastab 2 | 50:50:60 | 48.0 abc | 50.7 d | 1.67 abc | 1.27 d | 172.5 e | 135.5 d | 87.7 ab | 86.5 e | −12.5 bc | 24.5 b | 28.5a | 21.3 ab | 37.4 abc | 32.9 abc |
Ureastab | 100:60:0 | 46.0 ab | 50.0 d | 1.49 ab | 1.16 bcd | 140.4 b | 125.7 cd | 87.0 ab | 85.3 e | 19.6 d | 34.3 bc | 26.5 a | 22.9 b | 41.2 abc | 36.5 bc |
Ureastab | 160:0:0 | 47.0 abc | 35.0 a | 1.50 ab | 0.94 ab | 138.8 b | 82.6 b | 86.0 ab | 71.0 a | 21.2 d | 77.4 e | 29.2 a | 15.0 a | 43.3 c | 32.2 abc |
Ureaincorp 3 | 100:60:0 | 44.7 ab | 47.0 cd | 1.44 a | 1.20 cd | 146.1 bc | 107.9 c | 82.7 a | 80.9 bcd | 13.9 cd | 52.1 c | 23.7 a | 21.0 ab | 35.9 ab | 38.0 c |
CAN + UANliquid 4 | 50:50:60 | 48.3 abc | 36.3 a | 1.64 abc | 1.00 abc | 183.5 e | 119.4 cd | 84.7 a | 75.5 ab | −23.5 b | 40.6 bc | 28.9 a | 18.7 ab | 34.3 a | 27.5 a |
LSD 5 | 7.8 | 0.23 | 20.2 | 6.0 | 20.2 | 6.6 | 7.3 |
N Treatment | N Splitting | N Concentration | N Yield | NHI | |||
---|---|---|---|---|---|---|---|
GNC | SNC | NYGRAIN | NYSTRAW | NYAGB | |||
(%) | (kg ha−1) | (%) | |||||
Control | 1.37 a 6 | 0.23 a | 52.6 a | 11.7 a | 64.3 a | 81.4 | |
CAN 1 | 50:50:60 | 2.94 cd | 0.44 b | 146.4 cd | 26.1 b | 172.5 cd | 84.7 |
CAN | 100:60:0 | 2.85 cd | 0.52 b | 127.8 bc | 29.7 b | 157.5 bcd | 81.5 |
Urea | 50:50:60 | 2.82 cd | 0.39 b | 145.0 cd | 21.4 ab | 166.4 bcd | 87.1 |
Urea | 100:60:0 | 2.67 bcd | 0.50 b | 128.9 bc | 30.5 b | 159.4 bcd | 80.6 |
Ureastab 2 | 50:50:60 | 2.91 cd | 0.42 b | 154.0 d | 22.4 ab | 176.4 cd | 87.1 |
Ureastab | 100:60:0 | 2.61 bc | 0.39 b | 133.1 bcd | 21.5 ab | 154.6 bc | 86.2 |
Ureastab | 160:0:0 | 2.44 b | 0.45 b | 110.7 b | 28.2 b | 138.9 b | 78.5 |
Ureaincorp 3 | 100:60:0 | 2.61 bc | 0.48 b | 127.0 bc | 28.6 b | 155.6 bc | 81.8 |
CAN + UANliquid 4 | 50:50:60 | 3.03 d | 0.53 b | 151.4 cd | 35.7 b | 187.1 d | 80.1 |
Year | |||||||
2017 | 2.47 a | 0.35 a | 145.4 b | 23.0 a | 168.5 b | 86.7 b | |
2018 | 2.78 b | 0.52 b | 110.0 a | 28.1 b | 138.1 a | 79.0 a | |
ANOVA 5 | |||||||
N treatment (N) | *** | *** | *** | *** | *** | n.s. | |
Year (Y) | *** | *** | *** | *** | *** | *** | |
N × Y | n.s. 7 | n.s. | * | n.s. | n.s. | ** |
N Treatment | N Splitting | N Surplus | N Balance | Soil NO3-N | ANL | ||||
---|---|---|---|---|---|---|---|---|---|
Initial (0–90 cm) | At Harvest (0–30 cm) | At Harvest (30–60 cm) | At Harvest (60–90 cm) | At Harvest (0–90 cm) | |||||
(kg ha−1) | (kg ha−1) | (kg ha−1) | (kg ha−1) | ||||||
Control | −52.6 a 6 | −64.3 a | 49.7 | 8.6 a | 3.9 a | 3.0 a | 15.6 a | - | |
CAN 1 | 50:50:60 | 13.6 bc | −12.6 bc | 52.2 | 33.1 c | 5.6 ab | 3.9 ab | 42.6 b | −27.3 cd |
CAN | 100:60:0 | 32.2 cd | 2.5 cd | 53.1 | 22.4 abc | 6.5 ab | 4.4 ab | 33.3 ab | −52.7 abcd |
Urea | 50:50:60 | 15.0 bc | −6.4 bcd | 49.6 | 22.9 abc | 5.7 ab | 4.2 ab | 32.9 ab | −40.6 bcd |
Urea | 100:60:0 | 31.1 cd | 0.7 bcd | 48.6 | 17.9 abc | 6.0 ab | 3.9 ab | 27.8 ab | −51.8 abcd |
Ureastab 2 | 50:50:60 | 6.0 b | −16.4 bc | 59.4 | 26.6 bc | 5.2 ab | 3.5 ab | 35.2 b | −38.0 bcd |
Ureastab | 100:60:0 | 26.9 bcd | 5.5 cd | 52.2 | 18.1 abc | 5.5 ab | 5.0 b | 28.6 ab | −59.3 abc |
Ureastab | 160:0:0 | 49.3 d | 21.1 d | 55.7 | 14.2 ab | 5.6 ab | 4.1 ab | 23.8 ab | −83.3 a |
Ureaincorp 3 | 100:60:0 | 33.0 cd | 4.5 cd | 65.0 | 18.1 abc | 8.4 b | 5.3 b | 31.6 ab | −68.1 ab |
CAN + UANliquid 4 | 50:50:60 | 8.6 bc | −27.1 b | 54.3 | 32.7 c | 6.4 ab | 4.3 ab | 43.5 b | −14.0 d |
Year | |||||||||
2017 | −1.4 a | −24.5 a | 75.0 b | 23.7 | 5.5 | 3.3 a | 32.5 | −49.6 b | |
2018 | 34.0 b | +5.9 b | 33.0 a | 19.2 | 6.3 | 5.0 b | 30.5 | −86.6 a | |
ANOVA 5 | |||||||||
N treatment (N) | *** | *** | n.s. | ** | * | * | * | *** | |
Year (Y) | *** | *** | *** | n.s. | n.s. | * | n.s. | *** | |
N × Y | * | n.s. 7 | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
N Fertilizer | N Splitting | NUE | NUpE | ANE | ANRE | NUtE |
---|---|---|---|---|---|---|
(kg grain kg−1 NSUPP) | (%) | (kg grain kg−1 NFERT) | (%) | (kg grain kg−1 NYAGB) | ||
Control | 57.8 b 6 | 81.1 b | 71.3 b | |||
CAN 1 | 50:50:60 | 24.0 a | 70.9 ab | 6.86 | 67.6 bc | 33.7 a |
CAN | 100:60:0 | 22.1 a | 65.1 ab | 4.12 | 58.2 abc | 34.4 a |
Urea | 50:50:60 | 25.1 a | 69.3 ab | 7.94 | 63.8 abc | 36.2 a |
Urea | 100:60:0 | 24.0 a | 66.7 ab | 6.48 | 59.4 abc | 36.1 a |
Ureastab 2 | 50:50:60 | 24.9 a | 70.4 ab | 8.95 | 70.1 bc | 35.2 a |
Ureastab | 100:60:0 | 24.7 a | 63.8 ab | 7.50 | 56.4 ab | 38.8 a |
Ureastab | 160:0:0 | 22.1 a | 56.9 a | 4.23 | 46.6 a | 37.8 a |
Ureaincorp 3 | 100:60:0 | 22.4 a | 60.8 ab | 6.00 | 57.0 ab | 37.0 a |
CAN + UANliquid 4 | 50:50:60 | 23.8 a | 76.0 b | 7.09 | 76.7 c | 30.9 a |
Year | ||||||
2017 | 32.2 b | 72.7 b | 4.77 a | 68.4 b | 43.7 b | |
2018 | 22.0 a | 63.5 a | 8.38 b | 55.1 a | 34.6 a | |
ANOVA 5 | ||||||
N treatment (N) | *** | ** | n.s. | * | *** | |
Year (Y) | *** | *** | * | *** | *** | |
N × Y | *** | n.s. 7 | n.s. | n.s. | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.-P.; Wagentristl, H. Efficiency of Mineral Nitrogen Fertilization in Winter Wheat under Pannonian Climate Conditions. Agriculture 2020, 10, 541. https://doi.org/10.3390/agriculture10110541
Moitzi G, Neugschwandtner RW, Kaul H-P, Wagentristl H. Efficiency of Mineral Nitrogen Fertilization in Winter Wheat under Pannonian Climate Conditions. Agriculture. 2020; 10(11):541. https://doi.org/10.3390/agriculture10110541
Chicago/Turabian StyleMoitzi, Gerhard, Reinhard W. Neugschwandtner, Hans-Peter Kaul, and Helmut Wagentristl. 2020. "Efficiency of Mineral Nitrogen Fertilization in Winter Wheat under Pannonian Climate Conditions" Agriculture 10, no. 11: 541. https://doi.org/10.3390/agriculture10110541