Herbicide Uptake and Regrowth Ability of Tall Fescue and Orchardgrass in S-Metolachlor-Contaminated Leachates from Sand Pot Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. SMR Residues (HPLC)
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effects on Plants and ECs Determination
3.2. SMR Residues in Plant Growth Water Mediums
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Congreve, M. Pre-Emergent Herbicides Fact Sheet. GRDC Update Paper, Australia. 2015. Available online: https://grdc.com.au/__data/assets/pdf_file/0025/126475/grdc_fs_pre-emergent-herbicides-pdf.pdf.pdf (accessed on 12 July 2020).
- Pannacci, E.; Onofri, A. Alternatives to terbuthylazine for chemical weed control in maize. Commun. Biometry Crop Sci. 2016, 11, 51–63. [Google Scholar]
- Beckie, H.J.; Ashworth, M.B.; Flower, K.C. Herbicide resistance management: Recent developments and trends. Plants 2019, 8, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gage, K.L.; Krausz, R.F.; Walters, S.A. Emerging challenges for weed management in herbicide-resistant crops. Agriculture 2019, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Del Buono, D.; Ioli, G.; Nasini, L.; Proietti, P. Comparative study on the interference of two herbicides in wheat and Italian ryegrass and on their antioxidant activities and detoxification rates. J. Agric. Food Chem. 2011, 59, 12109–12115. [Google Scholar] [CrossRef] [PubMed]
- Gikas, G.D.; Vryzas, Z.; Tsihrintzis, V.A. S-metolachlor herbicide removal in pilot-scale horizontal subsurface flow constructed wetlands. Chem. Eng. J. 2018, 339, 108–116. [Google Scholar] [CrossRef]
- Pannacci, E.; Graziani, F.; Covarelli, G. Use of herbicide mixtures for pre and post-emergence weed control in sunflower (Helianthus annuus). Crop Prot. 2007, 26, 1150–1157. [Google Scholar] [CrossRef]
- Zemolin, C.R.; Avila, L.A.; Cassol, G.V.; Massey, J.H.; Camargo, E.R. Environmental fate of S-Metolachlor: A review. Planta Daninha 2014, 32, 655–664. [Google Scholar] [CrossRef] [Green Version]
- PPDB (Pesticide Properties Data Base). S-metolachlor, General Information. University of Hertfordshire, UK. 2020. Available online: https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/1027.htm (accessed on 17 June 2020).
- Liu, H.; Xiong, M. Comparative toxicity of racemic metolachlor and S-MET to Chlorella pyrenoidosa. Aquat. Toxicol. 2009, 93, 100–106. [Google Scholar] [CrossRef]
- Mathias, F.T.; Romano, R.M.; Sleiman, H.K.; de Oliverira, C.A.; Romano, M.A. Herbicide metolachlor causes changes in reproductive endocrinology of male wistar rats. ISRN Toxicol. 2012, 2012, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Joly, P.; Misson, B.; Perrière, F.; Bonnemoy, F.; Joly, M.; Donnadieu-Bernard, F.; Aguer, J.P.; Bohatier, J.; Mallet, C. Soil surface colonization by phototrophic indigenous organisms, in two contrasted soils treated by formulated maize herbicide mixtures. Ecotoxicology 2014, 23, 1648–1658. [Google Scholar] [CrossRef]
- Pilon-Smits, E. Phytoremediation. Ann. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Vianello, M.; Vischetti, C.; Scarponi, L.; Zanin, G. Herbicide losses in runoff events from a field with a low slope: Role of a vegetative filter strip. Chemosphere 2005, 61, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Milan, M.; Vidotto, F.; Piano, S.; Negre, M.; Ferrero, A. Buffer strip effect on terbuthylazine, desethyl-terbuthylazine and S-metolachlor runoff from maize fields in Northern Italy. Environ. Technol. 2013, 34, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Carretta, L.; Cardinali, A.; Zanin, G.; Masin, R. Effect of vegetative buffer strips on herbicide runoff from a nontilled soil. Soil Sci. 2017, 182, 285–291. [Google Scholar] [CrossRef]
- Borin, M.; Passoni, M.; Thiene, M.; Tempesta, T. Multiple functions of buffer strips in farming areas. Eur. J. Agron. 2010, 32, 103–111. [Google Scholar] [CrossRef]
- Pätzold, S.; Klein, C.; Brummer, G.W. Run-off transport of herbicides during natural and simulated rainfall and its reduction by vegetated filter strips. Soil Use Manag. 2007, 23, 294–305. [Google Scholar] [CrossRef]
- Del Buono, D.; Pannacci, E.; Bartucca, M.L.; Nasini, L.; Primo Proietti, P.; Tei, F. Use of two grasses for the phytoremediation of aqueous solutions polluted with terbuthylazine. Int. J. Phytoremediat. 2016, 18, 885–891. [Google Scholar] [CrossRef]
- Chekol, T.; Vough, L.R. Assessing the phytoremediation potential of tall fescue and sericea lespedeza for organic contaminants in soil. Remediat. J. 2002, 12, 117–128. [Google Scholar] [CrossRef]
- Kim, Y.B.; Park, K.Y.; Chung, Y.; Oh, K.C.; Buchanan, B.B. Phytoremediation of anthracene contaminated soils by different plant species. J. Plant Biol. 2004, 47, 174–178. [Google Scholar] [CrossRef]
- Mimmo, T.; Del Buono, D.; Terzano, R.; Tomasi, N.; Vigani, G.; Crecchio, C.; Pinton, P.; Zocchi, G.; Cesco, S. Rhizospheric organic compounds in the soil-microorganism-plant system: Their role in iron availability. Eur. J. Soil Sci. 2014, 65, 629–642. [Google Scholar] [CrossRef]
- Streibig, J.C.; Rudemo, M.; Jensen, J.E. Dose-response curves and statistical models. In Herbicide Bioassay; Streibig, J.C., Kudsk, P., Eds.; CRC Press: Boca Raton, FL, USA, 1993; pp. 29–55. [Google Scholar]
- Copping, L.G.; Hewitt, H.G.; Rowe, R.R. Evaluation of a new herbicide. In Weed Control Handbook: Principles, 8th ed.; Hance, R.J., Holly, K., Eds.; Blackwell Scientific Publication: Oxford, UK, 1990; pp. 261–299. [Google Scholar]
- Ritz, C.; Streibig, J.C. Bioassay Analysis Using R. J. Stat. Softw. 2005, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Onofri, A.; Pannacci, E. Spreadsheet tools for biometry classes in crop science programmes. Commun. Biometry Crop Sci. 2014, 9, 3–13. [Google Scholar]
- Böger, P.; Matthes, B. Inhibitors of Biosynthesis of Very-Long-Chain Fatty Acids. In Herbicide Classes in Development; Böger, P., Wakabayashi, K., Hirai, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 117–137. [Google Scholar]
- Panfili, I.; Bartucca, M.L.; Marrollo, G.; Povero, G.; Del Buono, D. Application of a plant biostimulant to improve maize (Zea mays) tolerance to metolachlor. J. Agric. Food Chem. 2019, 67, 12164–12171. [Google Scholar] [CrossRef] [PubMed]
- Otto, S.; Cardinali, A.; Marotta, E.; Paradisi, C.; Zanin, G. Effect of vegetative filter strips on herbicide runoff under various types of rainfall. Chemosphere 2012, 88, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Otto, S.; Vianello, M.; Infantino, A.; Zanin, G.; Di Guardo, A. Effect of a full-grown vegetative filter strip on herbicide runoff: Maintaining of filter capacity over time. Chemosphere 2008, 71, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Wang, X.; Liu, F.; Zhao, E.; Han, L. Dissipation and residue of S-metolachlor in maize and soil. Bull. Environ. Contam. Toxicol. 2008, 80, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Shaner, D.L.; Henry, W.B. Field history and dissipation of atrazine and metolachlor in Colorado. J. Environ. Qual. 2007, 36, 128–134. [Google Scholar] [CrossRef]
- O’Connell, P.J.; Harms, C.T.; Allen, J.R.F. Metolachlor, S-metolachlor and their role within sustainable weed management. Crop Prot. 1998, 17, 207–212. [Google Scholar] [CrossRef]
Species | EC10 | EC30 | EC50 | EC90 |
---|---|---|---|---|
F. arundinacea | 0.21 (0.030) | 0.45 (0.039) | 0.74 (0.044) | 2.63 (0.291) |
D. glomerata | 0.38 (0.205) | 0.74 (0.209) | 1.13 (0.201) | 3.37 (1.583) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pannacci, E.; Del Buono, D.; Bartucca, M.L.; Nasini, L.; Proietti, P.; Tei, F. Herbicide Uptake and Regrowth Ability of Tall Fescue and Orchardgrass in S-Metolachlor-Contaminated Leachates from Sand Pot Experiment. Agriculture 2020, 10, 487. https://doi.org/10.3390/agriculture10100487
Pannacci E, Del Buono D, Bartucca ML, Nasini L, Proietti P, Tei F. Herbicide Uptake and Regrowth Ability of Tall Fescue and Orchardgrass in S-Metolachlor-Contaminated Leachates from Sand Pot Experiment. Agriculture. 2020; 10(10):487. https://doi.org/10.3390/agriculture10100487
Chicago/Turabian StylePannacci, Euro, Daniele Del Buono, Maria Luce Bartucca, Luigi Nasini, Primo Proietti, and Francesco Tei. 2020. "Herbicide Uptake and Regrowth Ability of Tall Fescue and Orchardgrass in S-Metolachlor-Contaminated Leachates from Sand Pot Experiment" Agriculture 10, no. 10: 487. https://doi.org/10.3390/agriculture10100487
APA StylePannacci, E., Del Buono, D., Bartucca, M. L., Nasini, L., Proietti, P., & Tei, F. (2020). Herbicide Uptake and Regrowth Ability of Tall Fescue and Orchardgrass in S-Metolachlor-Contaminated Leachates from Sand Pot Experiment. Agriculture, 10(10), 487. https://doi.org/10.3390/agriculture10100487