Advanced Computational Methods for Agriculture Machinery Movement Optimization with Applications in Sugarcane Production
Abstract
:1. Introduction
2. Materials and Methods
- Identifying publications in scientific databases by key words: “route planning”, “path planning” and “sugarcane production”.
- Analysis of the results and selection of relevant publications of journals focused on agriculture and technology using the “Analyze Results” tool (WoS).
- Downloading all selected relevant publications in the analyzed period and extracting their bibliometric data (authors, title, year of issue, key words, additional key words, publishing house) using the “Export to Excel” (WoS) and “Extract” (SD) tools.
- Processing of bibliometric data using spreadsheet software, MS Excel 2019 (sorting according to required criteria, identification of articles from the same authors, key words analysis for further search).
- Detailed qualitative analysis of the content of selected publications in terms of:
- investigated problem/topic,
- area of application,
- used type of method/algorithm,
- achieved results and their relevance to the solution of the investigated problem.
3. Agricultural Routing Problem (ARP)
4. Metaheuristic Algorithms for Agricultural Applications
4.1. Genetic Algorithm (GA)
4.2. Ant Colony Algorithm (ACO)
4.3. Simulated Annealing (SA)
4.4. Harmony Search (HS)
4.5. Particle Swarm Optimization (PSO)
4.6. Tabu Search (TS)
5. Benefits of the Agriculture Machinery Movement Optimization
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Day, W.; Pajares, G.; Ribeiro, A. Engineering advances for input reduction and systems management to meet the challenges of global food and farming futures: A new route operator for optimal coverage path planning for a fleet in an agricultural environment. J. Agric. Sci. 2011, 149, 55–61. [Google Scholar] [CrossRef]
- Bochtis, D.; Sørensen, C.A.G.; Kateris, D. Operations Management in Agriculture, 1st ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Bochtis, D.; Sørensen, C.A.G.; Busato, P. Advances in agricultural machinery management: A review. Biosyst. Eng. 2014, 126, 69–81. [Google Scholar] [CrossRef]
- Witney, B. Choosing and Using Farm Machines, 1st ed.; Longman Scientific & Technical: Madison, WI, USA, 1988. [Google Scholar]
- Bochtis, D.; Griepentrog, H.W.; Vougioukas, S.; Busato, P.; Berruto, R.; Zhou, K. Route planning for orchard operations. Comput. Electron. Agric. 2015, 113, 51–60. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.G.; Vougioukas, S.G. Path planning for in-field navigation-aiding of service units. Comput. Electron. Agric. 2010, 74, 80–90. [Google Scholar] [CrossRef]
- Seyyedhasani, H.; Dvorak, J.S. Dynamic rerouting of a fleet of vehicles in agricultural operations through a Dynamic Multiple Depot Vehicle Routing Problem representation. Biosyst. Eng. 2018, 171, 63–77. [Google Scholar] [CrossRef]
- Jensen, M.F.; Nørremark, M.; Busato, P.; Sørensen, C.G.; Bochtis, D. Coverage planning for capacitated field operations, Part I: Task decomposition. Biosyst. Eng. 2015, 139, 136–148. [Google Scholar] [CrossRef]
- Goldemberg, J.; Coelho, S.T.; Guardabassi, P. The sustainability of ethanol production from sugarcane. Energy Policy 2008, 36, 2086–2097. [Google Scholar] [CrossRef]
- Anselmi, R. Sistematização correta reduz custo das operações no campo. JornalCana 2008, 171, 36. [Google Scholar]
- Aires, M. Talhão Sistematizá-lo Pode Aumetar o Rendimento Operacional. Available online: http://www.jornalparana.com.br/materia/ver_edição.php?id=1944andtipo=96 (accessed on 24 July 2019).
- Salvi, J.V.; Oliveira, M.P.; Fioranvente Filho, S.R.; Santos, J.A. Análise do desempenho operacional e econômico da colheita mecanizada em um sistema de produção de cana-de-açúcar. In Congressi da Sociedade Brasileira de Economia Administracao e Sociologia Rural, 48th ed.; Federal University of Mato Grosso do Sul: Balneário Camboriú, Brazil, 2010; pp. 1–18. [Google Scholar]
- ASABE S495. Uniform Terminology for Agricultural Machinery Management; ASABE: St. Joseph, MI, USA, 2005. [Google Scholar]
- Hunt, D. Farm Power and Machinery Management, 10th ed.; Iowa State Press: Iowa City, IA, USA, 2001. [Google Scholar]
- Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276. [Google Scholar] [CrossRef] [Green Version]
- Utamima, A.; Reiners, T.; Ansaripoor, A.; Seyyedhasani, H. Contemporary Approaches and Strategies For Applied Logistics. In The Agricultural Routing Planning in Field Logistics; Wood, L.C., Ed.; IGI Global: Hershey, PA, USA, 2018; pp. 261–283. [Google Scholar] [CrossRef]
- Utamima, A.; Reiners, T.; Ansaripoor, A.H. Optimisation of agricultural routing planning in field logistics with Evolutionary Hybrid Neighbourhood Search. Biosyst. Eng. 2019, 184, 166–180. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Vougioukas, S.G. Minimising the non-working distance travelled by machines operating in a headland field pattern. Biosyst. Eng. 2008, 101, 1–12. [Google Scholar] [CrossRef]
- Spekken, M.; de Bruin, S. Optimized routing on agricultural fields by minimizing maneuvering and servicing time. Precis. Agric. 2013, 14, 224–244. [Google Scholar] [CrossRef]
- Jin, J.; Tang, L. Optimal Coverage Path Planning for Arable Farming on 2D Surfaces. Trans. Asabe 2010, 53, 283–295. [Google Scholar] [CrossRef]
- Cariou, C.; Lenain, R.; Thuilot, B.; Humbert, T.; Berducat, M. Maneuvers automation for agricultural vehicle in headland. In Proceedings of the International Conference on Agricultural Engineering, Clermont-Ferrand, France, 6–8 September 2010. [Google Scholar]
- Spekken, M.; Molin, J.P.; Romanelli, T.L. Cost of boundary manoeuvres in sugarcane production. Biosyst. Eng. 2015, 129, 112–126. [Google Scholar] [CrossRef]
- Goldbarg, M.C. Otimização Combinatória e Meta-Heurísticas: Algoritmos e Aplicações; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Optimizing Convolutional Neural Network Hyperparameters by Enhanced Swarm Intelligence Metaheuristics. Algorithms 2020, 13, 67. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Sayers, W.; Zhang, S.; Han, Z.; Ren, L.; Chizari, H. Review and Classification of Bio-inspired Algorithms and Their Applications. J. Bionic Eng. 2020, 17, 611–631. [Google Scholar] [CrossRef]
- Darwish, A.; Hassanien, A.E.; Das, S. A survey of swarm and evolutionary computing approaches for deep learning. Artif. Intell. Rev. 2020, 53, 1767–1812. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv. Eng. Softw. 2017, 114, 48–70. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [Google Scholar] [CrossRef]
- Aladeemy, M.; Adwan, L.; Booth, A.; Khasawneh, M.T.; Poranki, S. New feature selection methods based on opposition-based learning and self-adaptive cohort intelligence for predicting patient no-shows. Appl. Soft Comput. 2020, 86, 105866. [Google Scholar] [CrossRef]
- Elshaer, R.; Awad, H. A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Comput. Ind. Eng. 2020, 140, 106242. [Google Scholar] [CrossRef]
- De Leon-Aldaco, S.E.; Calleja, H.; Aguayo Alquicira, J. Metaheuristic Optimization Methods Applied to Power Converters: A Review. IEEE Trans. Power Electron. 2015, 30, 6791–6803. [Google Scholar] [CrossRef]
- Francik, S.; Knapczyk, A.; Wójcik, A.; Ślipek, Z. Optimisation Methods. In Renewable Energy Sources Systems—Current Research Trends; Springer: Cham, Switzerland, 2020; pp. 841–852. [Google Scholar] [CrossRef]
- Hegazy, E.; Makhlouf, M.A.; El-Tawel, G.S. Dimensionality Reduction Using an Improved Whale Optimization Algorithm for Data Classification. Int. J. Mod. Educ. Comput. Sci. 2018, 10, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, Y.; Inoue, M. An Evacuation Route Planning for Safety Route Guidance System after Natural Disaster Using Multi-objective Genetic Algorithm. Procedia Comput. Sci. 2016, 96, 1323–1331. [Google Scholar] [CrossRef] [Green Version]
- Kurnia, H.; Gustri Wahyuni, E.; Cergas Pembrani, E.; Gardini, S.T.; Kurnia Aditya, S. Vehicle Routing Problem Using Genetic Algorithm with Multi Compartment on Vegetable Distribution. IOP Conf. Ser. Mater. Sci. Eng. 2018, 325, 012012. [Google Scholar] [CrossRef]
- Elhoseny, M.; Tharwat, A.; Hassanien, A.E. Bezier Curve Based Path Planning in a Dynamic Field using Modified Genetic Algorithm. J. Comput. Sci. 2018, 25, 339–350. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Abd Ghani, M.K.; Hamed, R.I.; Mostafa, S.A.; Ahmad, M.S.; Ibrahim, D.A. Solving vehicle routing problem by using improved genetic algorithm for optimal solution. J. Comput. Sci. 2017, 21, 255–262. [Google Scholar] [CrossRef]
- Ngoc, T.A.; Hiramatsu, K.; Harada, M. Optimizing the rule curves of multi-use reservoir operation using a genetic algorithm with a penalty strategy. Paddy Water Environ. 2014, 12, 125–137. [Google Scholar] [CrossRef]
- Lamini, C.; Benhlima, S.; Elbekri, A. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning. Procedia Comput. Sci. 2018, 127, 180–189. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Shin, H.; Chae, J. Path Planning for Mobile Agents Using a Genetic Algorithm with a Direction Guided Factor. Electronics 2018, 7, 212. [Google Scholar] [CrossRef] [Green Version]
- Koca, G.O.; Dogan, S.; Yilmaz, H. A multi-objective route planning model based on Genetic Algorithm for cuboid surfaces. Automatika 2018, 59, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, Ł.; Ignaciuk, P. Continuous genetic algorithms as Intelligent Assistance for Resource Distribution in Logistic Systems. Data 2018, 3, 68. [Google Scholar] [CrossRef] [Green Version]
- Gracia, C.; Diezma-Iglesias, B.; Barreiro, P.; Gardini, S.T.; Aditya, S.K. A hybrid Genetic Algorithm for route optimization in the bale collecting problem. Span. J. Agric. Res. 2013, 11, 603–614. [Google Scholar] [CrossRef]
- Sales, L.P.A.; Pitombeira-Neto, A.R.; Prata, B.A. A Genetic Algorithm Integrated with Monte Carlo Simulation for the Field Layout Design Problem. Oil Gas Sci. Technol. 2018, 73, 24. [Google Scholar] [CrossRef] [Green Version]
- Neungmatcha, W.; Sethanan, K.; Gen, M.; Theerakulpisut, S. Adaptive Genetic Algorithm for solving sugarcane loading stations with multi-facility services problem. Comput. Electron. Agric. 2013, 98, 85–99. [Google Scholar] [CrossRef]
- Tong, J.; Wu, C.; Jiang, H.; Yu, Y.; Rao, X. Optimizing the path of seedling low-density transplanting by using greedy Genetic Algorithm. Comput. Electron. Agric. 2017, 142, 356–368. [Google Scholar] [CrossRef]
- Gracia, C.; Velázquez-Martí, B.; Estornell, J. An application of the vehicle routing problem to biomass transportation. Biosyst. Eng. 2014, 124, 40–52. [Google Scholar] [CrossRef]
- Joo, H.; Lim, Y. Ant Colony Optimized Routing Strategy for Electric Vehicles. J. Adv. Transp. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Pu, X.; Xiong, C.; Ji, L.; Zhao, L. 3D path planning for a robot based on improved ant colony algorithm. Evolutionary Intelligence; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Feng, Z. Constructing rural e-commerce logistics model based on ant colony algorithm and artificial intelligence method. Soft Comput. 2020, 24, 7937–7946. [Google Scholar] [CrossRef]
- Pamosoaji, A.K.; Setyohadi, D.B. Novel graph model for solving collision-free multiple-vehicle traveling salesman problem using ant colony optimization. Algorithms 2020, 13, 153. [Google Scholar] [CrossRef]
- Bakhtiari, A.; Navid, H.; Mehri, J.; Berruto, R.; Bochtis, D.D. Operations planning for agricultural harvesters using ant colony optimization. Span. J. Agric. Res. 2013, 11, 652–660. [Google Scholar] [CrossRef]
- Sethanan, K.; Neungmatcha, W. Multi-objective Particle Swarm Optimization for mechanical harvester route planning of sugarcane field operations. Eur. J. Oper. Res. 2016, 252, 969–984. [Google Scholar] [CrossRef]
- Mavrovouniotis, M.; Ellinas, G.; Polycarpou, M. Ant Colony Optimization for the Electric Vehicle Routing Problem. In Proceedings of the 8th IEEE Symposium Series on Computational Intelligence (IEEE SSCI), Bengaluru, India, 18–21 November 2018; pp. 1234–1241. [Google Scholar]
- Alaiso, S.; Backman, J.; Visala, A. Ant Colony Optimization for Scheduling of Agricultural Contracting Work. Ifac Proc. Vol. 2013, 46, 133–137. [Google Scholar] [CrossRef]
- Mutar, M.L.; Burhanuddin, M.A.; Hameed, A.S.; Yusof, N.; Mutashar, H.J. An efficient improvement of ant colony system algorithm for handling capacity vehicle routing problem. Int. J. Ind. Eng. Comput. 2020, 11, 549–564. [Google Scholar] [CrossRef]
- Donati, A.V.; Krause, J.; Thiel, C.; White, B.; Hill, N. An Ant Colony Algorithm for Improving Energy Efficiency of Road Vehicles. Energies 2020, 13, 2850. [Google Scholar] [CrossRef]
- Ali, H.; Gong, D.; Wang, M.; Dai, X. Path Planning of Mobile Robot With Improved Ant Colony Algorithm and MDP to Produce Smooth Trajectory in Grid-Based Environment. Front. Neurorobot. 2020, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Path planning for unmanned wheeled robot based on improved ant colony optimization. Meas. Control 2020, 53, 1014–1021. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, W.; Zhang, X.; Cao, T. Path planning of lunar robot based on dynamic adaptive ant colony algorithm and obstacle avoidance. Int. J. Adv. Robot. Syst. 2020, 17, 172988141989897. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, W.S.; Li, M.; Zheng, L.; Ritenour, M.A. Non-destructive recognition and classification of citrus fruit blemishes based on ant colony optimized spectral information. Postharvest Biol. Technol. 2018, 143, 119–128. [Google Scholar] [CrossRef]
- Aydemir, E.; Karagul, K. Solving a Periodic Capacitated Vehicle Routing Problem Using Simulated Annealing Algorithm for a Manufacturing Company. Braz. J. Oper. Prod. Manag. 2020, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mohiuddin, M.A.; Khan, S.A.; Engelbrecht, A.P. Simulated evolution and Simulated Annealing algorithms for solving multi-objective open shortest path first weight setting problém. Appl. Intell. 2014, 41, 348–365. [Google Scholar] [CrossRef] [Green Version]
- Grabusts, P.; Musatovs, J.; Golenkov, V. The application of Simulated Annealing method for optimal route detection between objects. Procedia Comput. Sci. 2019, 149, 95–101. [Google Scholar] [CrossRef]
- Vahdanjoo, M.; Madsen, C.T.; Sørensen, C.G. Novel Route Planning System for Machinery Selection. Case: Slurry Application. AgriEngineering 2020, 2, 408–429. [Google Scholar] [CrossRef]
- Cerdeira-Pena, A.; Carpente, L.; Amiama, C. Optimised forage harvester routes as solutions to a traveling salesman problem with clusters and time windows. Biosyst. Eng. 2017, 164, 110–123. [Google Scholar] [CrossRef]
- Moriguchi, K. Acceleration and enhancement of reliability of Simulated Annealing for optimizing thinning schedule of a forest stand. Comput. Electron. Agric. 2020, 177, 105691. [Google Scholar] [CrossRef]
- Behnck, L.P.; Doering, D.; Pereira, C.E.; Rettberg, A. A Modified Simulated Annealing Algorithm for SUAVs Path Planning. Ifac-Papersonline 2015, 48, 63–68. [Google Scholar] [CrossRef]
- Leitold, D.; Vathy-Fogarassy, A.; Abonyi, J. Network Distance-Based Simulated Annealing and Fuzzy Clustering for Sensor Placement Ensuring Observability and Minimal Relative Degree. Sensors 2018, 18, 3096. [Google Scholar] [CrossRef] [Green Version]
- Conesa-Muñoz, J.; Pajares, G.; Ribeiro, A. Mix-opt: A new route operator for optimal coverage path planning for a fleet in an agricultural environment. Expert Syst. Appl. 2016, 54, 364–378. [Google Scholar] [CrossRef]
- Liu, L.; Huo, J.; Xue, F.; Dai, Y. Harmony search method with global sharing factor based on natural number coding for vehicle routing problém. Information 2020, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Valente, J.; Del Cerro, J.; Barrientos, A.; Sanz, D. Aerial coverage optimization in precision agriculture management: A musical harmony inspired approach. Comput. Electron. Agric. 2013, 99, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Mahaleh, M.B.B.; Mirroshandel, S.A. Harmony search path detection for vision based automated guided vehicle. Robot. Auton. Syst. 2018, 107, 156–166. [Google Scholar] [CrossRef]
- Utamima, A.; Reiners, T.; Ansaripoor, A.H. Evolutionary Estimation of Distribution Algorithm for Agricultural Routing Planning in Field Logistics. Procedia Comput. Sci. 2019, 161, 560–567. [Google Scholar] [CrossRef]
- Barrientos, A.; Colorado, J.; Cerro, J.; Martinez, A.; Rossi, C.; Sanz, D.; Valente, J. Aerial remote sensing in agriculture: A practical approach to area coverage and path planning for fleets of mini aerial robots. J. Field Robot. 2011, 28, 667–689. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Das, P.K.; Jena, P.K. Multi-robot path planning using improved Particle Swarm Optimization algorithm through novel evolutionary operators. Appl. Soft Comput. J. 2020, 92, 106312. [Google Scholar] [CrossRef]
- Li, X.; Wu, D.; He, J.; Bashir, M.; Liping, M. An Improved Method of Particle Swarm Optimization for Path Planning of Mobile Robot. J. Control Sci. Eng. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Wang, Z.; Wen, J.; Li, J.; Lu, J. A two-stage dynamic capacity planning approach for agricultural machinery maintenance service with demand uncertainty. Biosyst. Eng. 2020, 190, 201–217. [Google Scholar] [CrossRef]
- Mukherjee, A.; Misra, S.; Sukrutha, A.; Raghuwanshi, N.S. Distributed aerial processing for IoT-based edge UAV swarms in smart farming. Comput. Netw. 2020, 167, 107038. [Google Scholar] [CrossRef]
- Bannur, P.; Gujarathi, P.; Jain, K.; Kulkarni, A.J. Application of Swarm Robotic System in a Dynamic Environment Using Cohort Intelligence. Soft Comput. Lett. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Glover, F. Tabu Search—Part, I. ORSA J. Comput. 1989, 1, 190–206. [Google Scholar] [CrossRef]
- Seyyedhasani, H.; Dvorak, J.S. Using the Vehicle Routing Problem to reduce field completion times with multiple machines. Comput. Electron. Agric. 2017, 134, 142–150. [Google Scholar] [CrossRef]
- Soto, M.; Sevaux, M.; Rossi, A.; Reinholz, A. Multiple neighborhood search, tabu search and ejection chains for the multi-depot open vehicle routing problem. Comput. Ind. Eng. 2017, 107, 211–222. [Google Scholar] [CrossRef]
- He, P.; Li, J.; Qin, H.; He, Z.; He, R. Fields distinguished by edges and middles visited by heterogeneous vehicles to minimize non-working distances. Comput. Electron. Agric. 2020, 170, 105273. [Google Scholar] [CrossRef]
- Xing, L.; Liu, Y.; Li, H.; Wu, C.-C.; Lin, W.-C.; Chen, X. A Novel Tabu Search Algorithm for Multi-AGV Routing Problem. Mathematics 2020, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Moon, I.; Lee, S.; Shin, M.; Ryu, K. Evolutionary resource assignment for workload-based production scheduling. J. Intell. Manuf. 2016, 27, 375–388. [Google Scholar] [CrossRef]
- He, P.; Li, J.; Qin, H.; He, Y.; Cao, G. Using hybrid algorithm to reduce non-working distance in intra- and inter-field logistics simultaneously for heterogeneous harvesters. Comput. Electron. Agric. 2019, 167, 105065. [Google Scholar] [CrossRef]
- Seyyedhasani, H.; Dvorak, J.S.; Roemmele, E. Routing algorithm selection for field coverage planning based on field shape and fleet size. Comput. Electron. Agric. 2019, 156, 523–529. [Google Scholar] [CrossRef]
- Sethanan, K.; Theerakulpisut, S.; Taechasook, P.; Neungmatcha, W.; Bureerat, S. Sugarcane Harvest Scheduling for Maximizing Total Sugar Yield. Adv. Sci. Lett. 2013, 19, 3122–3125. [Google Scholar] [CrossRef]
- He, P.; Li, J.; Wang, X. Wheat harvest schedule model for agricultural machinery cooperatives considering fragmental farmlands. Comput. Electron. Agric. 2018, 145, 226–234. [Google Scholar] [CrossRef]
- Kong, Q.; Kuriyan, K.; Shah, N.; Guo, M. Development of a responsive optimisation framework for decision-making in precision agriculture. Comput. Chem. Eng. 2019, 131, 106585. [Google Scholar] [CrossRef]
- Edwards, G.; Sørensen, C.G.; Bochtis, D.D.; Munkholm, L.J. Optimised schedules for sequential agricultural operations using a Tabu Search method. Comput. Electron. Agric. 2015, 117, 102–113. [Google Scholar] [CrossRef]
- Belardo, B.G.; Ripoli, T.C.C. Avaliação da colhedora mecanizada: Desempenho de colhedoras de cana-de-açúcar. In Processos Agrícolas e Mecanização da Cana-de-Açúcar; SBEA: Wichita, KS, USA, 2015; pp. 357–362. [Google Scholar]
- Santos, G.R. Produtividade na agroindústria brasileira. Radar IPEA 2015, 39, 49–57. [Google Scholar]
- Díaz, J.A.; Perez, H.G. Simulation and optimization of sugar cane transportation in harvest season. In Proceedings of the Winter Simulation Conference, Orlando, FL, USA, 10–13 December 2000. [Google Scholar] [CrossRef]
- Paula, V.R.; Molin, J.P. Assessing Damage Caused by Accidental Vehicle Traffic on Sugarcane Ratoon. Appl. Eng. Agric. 2013, 29, 161–169. [Google Scholar] [CrossRef]
- Guimarães, R.V. Application for Geoprocessing for Increase the Way Efficient on the Agricultural Machines Operations on Sugarcane. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2004. [Google Scholar]
- Benedini, M.S.; Conde, A.J. Sistematização de Área Para Colheita Mecanizada da Cana-Deaçúcar; Revista Coplana: Guariba, Brazil, 2008. [Google Scholar]
- Cervi, R.G. Modelagem Matemática Para Maximização da Produção da Cana-de-Açúcar (Saccharum spp.) e Impactos Sobre o Custo de Operações Mecanizadas de Corte e Carregamento. Ph.D. Thesis, São Paulo State University, São Paulo, Brazil, 2013. [Google Scholar]
- Doriguel, F. Mathematical Modeling Optimization in Sugarcane Overflow Maneuvering Process. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2019. [Google Scholar]
- Taix, M.; Souères, P.; Frayssinet, H.; Cordesses, L. Path Planning for Complete Coverage with Agricultural Machines. Springer Tracts. Adv. 2006, 24, 549–558. [Google Scholar] [CrossRef]
- Spekken, M. Optimizing path planning by avoiding short corner tracks. In Proceedings of the 11th International Conference on Precision Agriculture, Indianapolis, Indiana 15–18 July 2012. [Google Scholar]
- Baio, F.H.R. Evaluation of an auto-guidance system operating on a sugar cane harvester. Precis. Agric. 2012, 13, 141–147. [Google Scholar] [CrossRef]
- Masieiro, F.C. Produtividade e Compactação do Solo em Diferentes Ciclos Anuais da Cultura de Cana-de-Açúcar. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2013. [Google Scholar]
- Ramos, R. Planejamento do Plantio e da Colheita de Cana-de-Açúcar Utilizando Técnicas Matemáticas de Otimização. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2014. [Google Scholar]
- Baio, F.H.R.; Antuniassi, U.R.; Balastreire, L.A.; Caixeta Filho, J.V. Modelo de programação linear para seleção de pulverizadores agrícolas de barras. Eng. Agric. 2004, 24, 355–363. [Google Scholar] [CrossRef]
- Klaver, P.P.C.; Garcia, R.F.; Vasconcelos Júnior, J.F.S.; Corrêa Junior, D.; Vale, W.G. Programa computacional para calcular a potência requerida de máquinas e implementos agrícolas. Rev. Ceres 2013, 60, 890–895. [Google Scholar] [CrossRef] [Green Version]
- Søgaard, H.T.; Sørensen, C.G. A Model for Optimal Selection of Machinery Sizes within the Farm Machinery System. Biosyst. Eng. 2004, 89, 13–28. [Google Scholar] [CrossRef]
- Sørensen, C.G.; Jacobsen, B.H.; Sommer, S.G. An Assessment Tool applied to Manure Management Systems using Innovative Technologies. Biosyst. Eng. 2003, 86, 315–325. [Google Scholar] [CrossRef]
- Magalhães, P.S.; Baldo, R.F.G.; Cerri, D.G.P. System of synchronism between sugar cane harvest machine and infield wagon. Eng. Agric. 2008, 28, 274–282. [Google Scholar]
- Taylor, R.K.; Schrock, M.D.; Staggenborg, S.A. Extracting Machinery Management Information from GPS Data. In ASAE Annual International Meeting; ASAE Hyatt Regency Chicago: Chicago, IL, USA, 2002. [Google Scholar]
- Hansen, A.C.; Zhang, Q.; Wilcox, T.A.; Hornbaker, R.H. Modeling and Analysis Of Row Crop Harvesting Patterns By Combines. In Proceedings of the Transactions of the ASABE, Tampa, FL, USA, 17–20 July 2005. [Google Scholar] [CrossRef]
- Martins, M.B. Operational and Economic Performance of the Strip Deep Tillage System and Mechanized Planting of Sugarcane. Ph.D. Thesis, University of São Paulo, São Paulo, Brazil, 2018. [Google Scholar]
- Bochtis, D.D.; Sørensen, C.G.; Green, O. A DSS for planning of soil-sensitive field operations. Decis. Support Syst. 2012, 53, 66–75. [Google Scholar] [CrossRef]
- Hameed, I.A.; Bochtis, D.D.; Sørensen, C.G.; Jensen, A.L.; Larsen, R. Optimized driving direction based on a three-dimensional field representation. Comput. Electron. Agric. 2013, 91, 145–153. [Google Scholar] [CrossRef]
- Oksanen, T.; Visala, A. Coverage path planning algorithms for agricultural field machines. J. Field Robot. 2009, 26, 651–668. [Google Scholar] [CrossRef]
- Palmer, R.J.; Wild, D.; Runtz, K. Improving the Efficiency of Field Operations. Biosyst. Eng. 2003, 84, 283–288. [Google Scholar] [CrossRef]
Method Name Abbreviation | Method Name |
---|---|
GA | Genetic Algorithm |
ACO | Ant Colony Algorithm |
SA | Simulated Annealing |
HS | Harmony Search |
PSO | Particle Swarm Optimization |
TS | Tabu Search |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filip, M.; Zoubek, T.; Bumbalek, R.; Cerny, P.; Batista, C.E.; Olsan, P.; Bartos, P.; Kriz, P.; Xiao, M.; Dolan, A.; et al. Advanced Computational Methods for Agriculture Machinery Movement Optimization with Applications in Sugarcane Production. Agriculture 2020, 10, 434. https://doi.org/10.3390/agriculture10100434
Filip M, Zoubek T, Bumbalek R, Cerny P, Batista CE, Olsan P, Bartos P, Kriz P, Xiao M, Dolan A, et al. Advanced Computational Methods for Agriculture Machinery Movement Optimization with Applications in Sugarcane Production. Agriculture. 2020; 10(10):434. https://doi.org/10.3390/agriculture10100434
Chicago/Turabian StyleFilip, Martin, Tomas Zoubek, Roman Bumbalek, Pavel Cerny, Carlos E. Batista, Pavel Olsan, Petr Bartos, Pavel Kriz, Maohua Xiao, Antonin Dolan, and et al. 2020. "Advanced Computational Methods for Agriculture Machinery Movement Optimization with Applications in Sugarcane Production" Agriculture 10, no. 10: 434. https://doi.org/10.3390/agriculture10100434
APA StyleFilip, M., Zoubek, T., Bumbalek, R., Cerny, P., Batista, C. E., Olsan, P., Bartos, P., Kriz, P., Xiao, M., Dolan, A., & Findura, P. (2020). Advanced Computational Methods for Agriculture Machinery Movement Optimization with Applications in Sugarcane Production. Agriculture, 10(10), 434. https://doi.org/10.3390/agriculture10100434