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Abstract: In this paper, we propose a novel tabu search (NTS) algorithm that improves the efficiencies
of picking goods of automated guided vehicles (AGVs) in an automatic warehouse by solving the
conflicts that happen when multiple AGVs work at the same time. Relocation and exchanging
operations are designed for the neighborhood searching process based on each pickup-point’s location
in the warehouse, along with the initial solution generation and the termination condition in the
proposed algorithm. The experimental results show that the tabu search algorithm can effectively
optimize the order of pickup points, which could further reduce the total travel distance and improve
the efficiencies of AGVs in automatic warehouses.

Keywords: automated guided vehicles (AGV); automatic warehouses; path optimization; tabu search

1. Introduction

Traditional warehouse management applies error-prone manual technology or limited applications
of bar code technology. With the continuous development and application of Internet of Things (IOT)
technology and network technology, the traditional warehouse management system is moving in an
intelligent direction. The IOT recognizes and perceives objects through various smart sensors, and then
data are transmitted to the information processing center that is specified through the network so that
information can be automatically processed and exchanged throughout the world. When applied to
warehousing, the IOT can monitor multiple processes, make everything connected to each other, and
capture data that help to support decisions and improve overall performance [1]. With advantages such
as saving space, reducing labor intensity, and improving the level of automation, automatic warehouses
have been widely used in storage, inbound transportation, and outbound transportation processes in
modern logistics products [2]. As one of the pieces of fully automated unmanned transport equipment,
due to its high efficiency, flexibility, reliability, safety and system scalability [3], automated guided
vehicles (AGVs) have become commonly-used pieces of transportation equipment in warehouse
systems [4]. An AGV that is powered by batteries is usually guided by one or several combinations of
electromagnetic, optical and laser navigation technologies, moving along an arranged path and having
the function of avoiding collisions [5]. Order picking is the process of taking goods off a shelf according
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to a customer order and sending the goods out of the warehouse, either manually or mechanically [6–9]
and categorized into picker-to-part picking and parts-to-picker picking [10]. Picker-to-parts picking
means that the goods transportation equipment such as the AGV take the goods that correspond to
the order from the shelf to the warehouse outlet. Packet-to-picker utilizes rotating shelves, vending
machines, or conveyor belt systems to transport goods directly out of the warehouse or deliver the
goods to the stop point where the transportation equipment waits to transport to the exit. In this
study, we focused on the first problem. Researchers have found that the order picking process is
estimated comprise approximately 55% of total warehouse operating expenses [11], and transportation
time accounts for 50% of order picking time [12]. To increase competitiveness, globalized business
companies must minimize costs for warehouse operations, which has led to a growing interest in
warehouse management [13]. A reasonable access path of AGVs is conducive to the completion of
goods loading and unloading in less time, which could reduce the distance and improve the efficiency
of goods transportation. As a result, path optimization has been considered as one of the critical
problems in AGV routing problems.

The access route problem was first proposed by Dantzig et al. [14] and could be considered as
a routing problem arising from the sorting of goods on orders. In recent years, correlation research
has abstracted this problem into the traveling salesman (TSP): Given a series of cities and the distance
between each pair of cities, it will take different times for traveling salesmen to visit each city in
different orders, so one must find the shortest route for traveling salesmen to visit each city only once
and return to the starting city; this is an NP-hard (non-deterministic polynomial hard) problem in
the field of combinatorial optimization [15]. Kelly and Xu [16] proposed a method of set partition
to obtain high-quality path planning solutions. Fan et al. [17] used an ant colony algorithm to solve
this problem. Combined with the Hopfield network model, Tian et al. [18] used the hybrid genetic
algorithm to study the optimization of fixed shelf order-picking routing. Saska et al. [19] used particle
swarm optimization. Zheng et al. [20] proposed the regional control method, which divides maps
with multiple AGVs into several regions such that the driving regions of each AGV do not overlap.
Zhang et al. [21] added turn times and the forward direction to the model of the cost function of AGV
path optimization, and they improved the traditional A-Star (A*) algorithm that is an extension of
Dijkstra algorithm. Kim et al. [22] presented a guide containing illustration and comparison of the
A* algorithm and Dynamic A* (D*) Lite algorithm that is a simplified version of the D* algorithm
applicable to the changing external environment: The D* Lite algorithm usually plans shorter paths
faster than A* algorithm does in large areas and complex work environments, while the A* algorithm
might be more effective than the D* Lite algorithm in small areas and simple work environments.
Zhang et al. [23] selected the corresponding strategy for different collision classifications, summarizing
four collision classifications and proposing three solutions: selecting the candidate route, letting the
later AGV wait before staring, and modifying the routes of the later AGV.

In the AGV routing problem, there is a distance between two pickup points, so the algorithm
that is adopted to produce a large number of unreasonable orderings affects the performance of the
algorithm. The population-based intelligent optimization algorithm has randomness, which may
produce vast long-distance paths that are difficult to find and modify. Due to the ease of operation,
the neighborhood-based intelligent optimization algorithm can be easily improved by changing
its neighborhood structure according to the characteristics of the problem. Tabu search (TS) an
intelligence-optimized algorithm based on neighborhoods that was first proposed by Fred Glover [24]
and that is a search method that is used to find global optimal solutions. The algorithm is based on the
improvement of local search algorithms, and a tabu list is introduced to overcome the disadvantage
of falling into a local optimal during the search process, which results in a high possibility of global
search. To the best of our knowledge, there has been no research concerned with a TS algorithm for the
AGV routing problem.

Aiming at minimizing the total travel distance of an AGV, we propose a TS algorithm to optimize
the general path for multiple AGVs working in automatic warehouses in this paper. We first analyze
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the conflicts that occur while multiple AGVs work at the same time, and then we design a suitable
neighborhood search method to accelerate the convergence of the algorithm, all with the goal of path
optimization. Finally, the performances of our algorithm are evaluated by simulation experiments.

The rest of this paper is organized as follows. The mathematical formulation of the multi-AGV
routing optimization problem is given in Section 2, and the conflict types and solutions’ representation
are introduced in Section 3. Sections 4 and 5 are devoted to the design and analyses of our TS algorithm,
and, finally, this paper is concluded in Section 6.

2. Problem Formulation

2.1. Work Flow of Picking Up Goods

A plane diagram of a common-used automatic warehouse is illustrated by the grid method [25]
in Figure 1, which is divided into multiple rows and columns; each cell with the same size has been
identified by its index. In order to make full use of ground resources, only one row or one column was
designed for the transportation passageway, that is, the white areas in Figure 1 are the transportation
passageways, while the gray ones are the locations of goods. Before working, all the AGVs are
concentrated on the upper left corner (i.e., AGV1, AGV2 and AGV3 in Figure 1), and they then exit
from the lower right corner (i.e., cell 150) when they finish the tasks. During the working process, the
AGVs start from their initial locations, travel through the passageways to take the goods from shelves
according to the orders, and finally deliver these goods to the exit.
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Figure 1. Plane diagram of automatic warehouse. (Take three automated guided vehicles (AGVs) as
examples, and cells 1–3 are their respective entrances.).

2.2. Problem Description and Mathematical Formulation

To solve a multi-AGV routing problem in an automatic warehouse, one usually adopts two-step
process: (1) Determine the order of goods for each AGV, i.e., assign goods to different AGVs to sort
the goods; (2) according to the order of the goods, calculate the shortest transport path among the
pick-up points, entrances, and exit. It must be ensured that the AGVs can complete the given task,
and, moreover, that there is no conflict within any pair of two AGVs in the transportation network.

The problem is based on the following assumptions:

(1) One only focuses on the issue of taking out goods, while the time of taking out goods is not counted.
(2) The number of AGVs is fixed.
(3) Since one only considers the case that the goods volume or quality is small enough and will not

exceed the AGV capacity, the capacity limitations are ignored.
(4) One must consider each AGV as a particle with a constant velocity, regardless of turning time

and acceleration.
(5) The starting and ending points of each AGV pickup path are the entrance and exit, respectively.
(6) Each pickup point is processed only once.
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(7) The distance to the adjacent cell is 1, and the time taken to traverse that distance is 1.

The aim is to obtain the shortest transportation path to complete the order task. The path between
any two points is directly arranged as the shortest path, and AGVs should not conflict with other
AGVs in the process of driving.

The following notations are listed in Table 1 to describe the problem:

Table 1. Notations and meanings.

Notation Meaning

m The number of AGVs.
n The number of pickup points.
G A set of all cells. G = {1, . . . , g}, where g is the number of cells.
G’ A set of all goods which are waiting to be take out, G’ ⊆ G, |G’| = n.
dij Travel distance between pickup point (or entrance) i and pickup point (or exit) j.

ri
The line number of the pickup location for the pickup point i or the line number of
entrance and exit. ri ∈ [1, r], and there are r rows.

ci
The column number of the pickup location for the pickup point i or the column number of
entrance and exit. ci ∈ [1, c], and there are c columns.

xijk A binary variable that is 1 when AGV k travel from point i to point j; 0 otherwise.

Due to the layout characteristics of the automatic warehouse, the value of dij can be calculated as
follows, where (p1,p2) indicates the driving path from point p1 to point p2. Some examples are shown
in Figure 2.

Mathematics 2020, 8, 279 4 of 16 

 

(6) Each pickup point is processed only once. 
(7) The distance to the adjacent cell is 1, and the time taken to traverse that distance is 1. 

The aim is to obtain the shortest transportation path to complete the order task. The path 
between any two points is directly arranged as the shortest path, and AGVs should not conflict with 
other AGVs in the process of driving. 

The following notations are listed in Table 1 to describe the problem: 

Table 1. Notations and meanings. 

Notation Meaning 
m The number of AGVs. 
n The number of pickup points. 
G A set of all cells. G = {1,…,g}, where g is the number of cells. 
G’ A set of all goods which are waiting to be take out, G’ ⊆ G, |G’| = n. 
dij Travel distance between pickup point (or entrance) i and pickup point (or exit) j. 

ri 
The line number of the pickup location for the pickup point i or the line number of entrance and exit. ri∈ [1,r], 
and there are r rows. 

ci 
The column number of the pickup location for the pickup point i or the column number of entrance and exit. 
ci∈ [1,c], and there are c columns. 

xijk A binary variable that is 1 when AGV k travel from point i to point j; 0 otherwise. 

Due to the layout characteristics of the automatic warehouse, the value of dij can be calculated 
as follows, where (p1,p2) indicates the driving path from point p1 to point p2. Some examples are 
shown in Figure 2 

A

AGV1 AGV2

B

(2,B)

(B,C)(2)

(B,C)(1)

C

(C,Exit) Exit

(1,A)

 

Figure 2. Examples of calculation method for the travel distance between pickup point (or entrance) i 
and pickup point (or exit) j (dij). 

(1) The distance from the entrance i to the pickup point j: 

dij = (cj   c
i
)  +  (rj r

i
), ci  <  cj

ci   cj  + rj   r
i

, ci  >  cj
  

Path (1, A) and path (2, B) show the cases when ci  < cj. 
(2) The distance from the pickup point i to the pickup point j: 
If ci ≠ cj: 

dij = min{ cj c
i

 + rj 1 + r
i

1 , cj   c
i

 + c + c ri }, ci <  cj

min{ ci cj  + rj 1 + r
i

1 , ci cj  + c  rj + c  r
i

}, ci > cj

  

Otherwise: 

dij = rj   ri, ri < rj
ri   rj, ri ≥ rj

  

Figure 2. Examples of calculation method for the travel distance between pickup point (or entrance) i
and pickup point (or exit) j (dij).

(1) The distance from the entrance i to the pickup point j:
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Otherwise:

dij =

{
rj − ri, ri < rj

ri − rj, ri ≥ rj

Path (B, C) shows the case when ci < cj. The shortest path between the paths of two driving
directions (B, C) (1) and (B, C) (2) is chosen.

(3) The distance from the pickup point i to the entrance j:

dij =
(
rj − ri

)
+

(
cj − ci

)
Path (C, Exit) shows this case.
According to the above description, the mathematical programming model of the problem can be

obtained as follows:

Minimize Z =

g∑
i = 1

g∑
j = 1

m∑
k = 1

dijxijk +

g∑
i = 1

m∑
k = 1

dkixkik +

g∑
i = 1

m∑
k = 1

digxigk (i , j, i, j ∈ G′) (1)

Subject to:
xikk = 0,∀i ∈ G′, k = 1, 2, . . . , m (2)

xgik = 0,∀i ∈ G′, k = 1, 2, . . . , m (3)

xgkk = 0,∀k = 1, 2, . . . , m (4)

g∑
i = 1

m∑
k = 1

xiik = 0 (5)

g∑
i = 1

g∑
j = 1

m∑
k = 1

xijk = 1, j ∈ G′ (6)

m∑
k = 1

xkgk = 0 (7)

The objective is represented by Equation (1), which minimizes the total travel distance. Equations
(2)–(4), respectively, indicate that in the AGV pickup sequence, the AGV cannot return to the entrance
from the pickup point, go to any pickup point from the exit, or go to any entrance from the exit.
Equation (5) limits the AGV not to stay at a point after visiting it. Equation (6) restricts the route so
that each pickup point is visited only once. Equation (7) states that at least one pickup point should be
arranged for each AGV.

3. Conflict Types and Solving Approaches

According to the driving direction of an AGV when a conflict occurs in the path planning process,
the conflicts can be divided into two types.

3.1. Opposite Direction Conflict

The opposite direction conflict is the conflict between two AGVs that meet at the same location
while running in opposite directions, so they collide with each other. The solution is to swap the
subsequent pickup points when two AGVs collide. Figures 3 and 4 show an example. Suppose there
is an opposite direction conflict between path A1–A2–A3 and path B1–B2–B3 and the conflict point
is at the yellow cell where two AGVs arrive at the same time. Two pickup point sequences and
corresponding driving paths before and after eliminating conflicts are shown. The total distance is
reduced due to the reduction of overlapping sections.
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3.2. Uniform Direction Conflict

The uniform direction conflict is the conflict between two AGVs that meet at the same location
while running in same direction, so they collide with each other. The solution is that one AGV waits for
time 1, and the AGV that takes shorter time to pass the subsequent path is selected to wait. Figure 5
shows an example: Two AGVs go to right after meeting, and the conflict point is at the yellow cell.
Since the subsequent pickup points of each AGV are already arranged when the algorithm runs,
the AGV with the shortest time to run the subsequent path can be calculated, and its kept waiting time
is 1. For the sake of convenience, we also classified a further conflict that is caused by waiting after
solving uniform conflicts as such.
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4. Tabu Search Algorithm

4.1. Initial Solution Generation

The method of generating the initial solution is an improvement on the nearest neighbor method:

(1) First, arrange the first pickup point for each AGV as the one that is closest to the AGV’s entrance.
(2) Arrange the next nearest pickup point for the AGVs that takes shortest time to pick up all

arranged goods.
(3) Arrange exit after all pickup points have been arranged.

There may be more than one AGV waiting to be arranged in processes (1) and (2), so if some AGVs
want to select the same pickup point, the pickup point is assigned to the nearest AGV. In the above
process, conflicts need to be checked and dealt with every time a pickup point or exit is arranged.

4.2. Neighborhood Search

We propose a relocation operation and exchanging operation combined with the pickup location
of a pickup point. Before every iteration begins, the pickup point sequence of each AGV in the current
solution is grouped: Entrances and the exit are grouped separately, and consecutive pickup points that
are undertaken at same pickup passageway are divided into a group. Figure 6 shows an example of
the grouping results, where the column number of passageway is marked in blue and the warehouse is
designed to house 600 cells (20 rows and 30 columns).
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4.2.1. Relocation Operation

The relocation operation is to move a group of pickup points from one AGV to another AGV.
The group of pickup points can be spilt by drawing a line between two adjacent points, and then

one part can be inserted into another AGV sequence. Figure 7 shows all optional relocation sequences
for a group of pickup points.
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If another AGV has no group whose passageway number is same, the relocation sequence is
relocated into a proper location. Suppose the passageway column number of the relocation sequence
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is c, and the passageway column numbers of two adjacent groups in another AGV are c1 and c2.
The relocation location satisfies the following condition:

c ∈ [min {c1, c2}, max{c1, c2})

For example, group 3 in AGV 1 can be relocated to the location between groups 3 and 4 in AGV 2.
The split method and the order of relocating are similar.

4.2.2. Exchanging Operation

The exchanging operation is used to exchange a group of pickup points in two AGVs. Suppose
that there are three continuous groups at passageway column number c1, c2, c3 in AGV 1 and three
continuous groups at passageway column number c4, c5, c6 in AGV 2. If a group at passageway number
c2 in AGV 1 can be exchanged with group at passageway column number c5 in AGV 2 and there are
no groups at passageway column number c5 in AGV 1 and no groups at passageway number c2 in
AGV 2, the swapped locations should satisfy the following conditions:

c2 ∈ [min {c4, c6}, max{c4, c6})

c5 ∈ [min {c1, c3}, max{c1, c3})

For example, the group at passageway column number 11 in AGV 1 can be exchanged with the
group at passageway number 14 in AGV 2. Then two exchanged sequences are sorted and reversed to
be candidate solutions, which are similar to those designed in the relocation operation.

4.3. Tabu Object and Aspiration Criterion

The tabu object is the objective function value. If all candidate solutions are tabooed in one of the
iterations, the candidate solution with the best objective function value breaks the ban.

4.4. Flow Chart of our TS Algorithm

The tabu object is the objective function value. If all candidate solutions are tabooed in one of the
iterations, the candidate solution with the best objective function value breaks the ban.

The concrete procedures of the novel tabu search (NTS) algorithm are expressed as follows.
Step 1: Set parameters, such as tabu list length (TL) and maximum number of iterations (τmax).

The tabu list is set to be empty.
Step 2: Generate the initial solution by using an improved nearest neighbor method. Set the

generation as τ = 0.
Step 3: Use improved relocation and exchange operators to generate candidate solution sets. If all

candidates are tabooed, go to step 4; otherwise go to step 5.
Step 4: The best solution of candidate solution set breaks the ban and is selected as the current

solution. Then, go to step 6.
Step 5: Select the best solution in the candidate solution set that is not tabooed as the current

solution. Then, go to step 6.
Step 6: If τ < τmax, set τ = τ + 1, then return to Step 3. Otherwise, go to Step 7.
Step 7: Output the best solution and stop.
The flowchart of the NTS algorithm is shown in Figure 9.
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5. Computational Results

In the simulation experiment, the warehouse is divided into 600 cells (20 rows and 30 columns).
The relevant control parameters of the algorithm are measured by the orthogonal test design method:
a tabu list length of 7 and a maximum number of iterations of 100. The specific process of the orthogonal
experimental design of the NTS algorithm is shown in Appendix A. Nine combinations of n = 60, 100,
and 140 and m = 3, 5, and 8 were tested. Each combination tested 10 groups of random data and
recorded the final objective function value. All algorithms were coded in C++ programming language
and implemented on a PC with an Intel Core i5 CPU (1.6 GHz × 4) and 4 GB RAM.

As shown in Tables 2 and 3, the proposed algorithm (NTS) was compared with two algorithms.
Compared with the TS algorithm that used the classical relocation and exchange operators, the NTS
algorithm was superior in more than 90% of cases, which proves that the NTS algorithm design is
reasonable. Compared with the differential evolution algorithm with a local search strategy (HDDE),
from the average running time of each group of experiments, the NTS algorithm ran between 1.942
and 26.734 s, the TS algorithm ran between 3.363 and 37.424 s (and was always slower than the NTS
algorithm), while the HDDE algorithm could not get a solution in 60 s. The relative improvement
percentage GAP was employed to measure the performance of the NTS algorithm. The GAP can be
calculated by Equation (8):

GAP =
ZHDDE

− ZNTS

ZNTS
× 100%, (8)

where ZNTS denotes the average final objective value of the NTS algorithm and ZHDDE denotes the
average final objective value obtained by the HDDE algorithm. Figure 10 shows the trend of the
average GAP values.
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Table 2. Computational results of the NTS algorithm, tabu search (TS) algorithm, and differential
evolution algorithm with a local search strategy (HDDE) regarding the final objective value.

n = 60 n = 100 n = 140

NTS TS HDDE NTS TS HDDE NTS TS HDDE

m = 3

Trail 1 281 283 387 277 281 431 285 367 487
Trail 2 277 277 359 283 295 445 283 369 407
Trail 3 271 277 385 281 289 367 285 357 481
Trail 4 279 299 383 283 325 391 281 371 467
Trail 5 279 293 371 281 285 429 283 297 409
Trail 6 275 305 369 283 301 487 281 363 483
Trail 7 275 299 403 281 319 419 285 327 477
Trail 8 281 285 381 277 293 387 285 313 467
Trail 9 275 275 377 283 293 483 285 331 477

Trail 10 273 307 355 283 293 415 285 365 483
average 277 290 377 281 297 425 284 346 464

m = 5

Trail 1 332 332 488 328 382 576 336 408 600
Trail 2 328 340 466 334 454 556 334 418 612
Trail 3 324 334 428 330 370 546 336 360 632
Trail 4 330 326 488 334 438 582 332 380 612
Trail 5 330 332 506 332 370 572 334 380 614
Trail 6 332 344 466 332 340 554 332 388 638
Trail 7 326 402 508 332 376 628 336 344 632
Trail 8 328 344 446 330 410 514 336 384 624
Trail 9 326 348 444 332 362 574 336 370 620

Trail 10 324 344 462 334 382 552 336 400 648
average 328 345 470 332 388 565 335 383 623

m = 8

Trail 1 394 432 522 394 482 694 394 510 698
Trail 2 394 422 540 394 448 676 394 498 742
Trail 3 392 430 526 406 464 680 394 528 866
Trail 4 394 394 534 394 460 714 394 478 694
Trail 5 394 466 530 394 496 676 394 474 712
Trail 6 394 414 512 394 474 616 394 468 758
Trail 7 394 420 558 394 488 668 394 510 710
Trail 8 394 422 514 394 464 716 394 536 786
Trail 9 394 432 484 394 488 700 394 516 742

Trail 10 394 402 534 394 460 686 424 470 720
average 394 423 525 395 472 683 397 499 743

Table 3. Computational results of the NTS, TS and HDDE algorithms regarding running time(s).

n = 60 n = 100 n = 140

NTS TS HDDE NTS TS HDDE NTS TS HDDE

m = 3

Trail 1 1.951 3.079 500.397 3.715 8.128 10393.339 6.934 19.609 18,961.581
Trail 2 1.976 3.340 481.716 4.195 7.505 6626.229 6.913 19.374 15,427.298
Trail 3 1.939 3.246 575.057 3.926 8.440 3634.481 7.386 17.116 24,877.259
Trail 4 1.948 3.393 435.070 3.929 8.798 5256.536 6.945 19.320 19,682.740
Trail 5 1.945 2.994 727.229 4.019 7.853 3738.185 7.169 14.811 16,561.710
Trail 6 2.097 3.653 892.122 3.979 8.063 3964.789 6.895 18.527 22,405.243
Trail 7 1.920 3.544 472.420 3.963 8.769 3698.056 7.130 17.053 16,051.987
Trail 8 1.836 3.504 506.553 4.180 8.235 4511.152 6.800 15.419 17,810.505
Trail 9 1.921 3.619 526.601 3.937 8.293 5317.399 6.803 16.498 21,293.276

Trail 10 1.882 3.255 610.396 3.957 8.216 4840.318 6.902 16.684 19,258.136
average 1.942 3.363 572.756 3.980 8.230 5198.048 6.988 17.441 19,232.974
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Table 3. Cont.

n = 60 n = 100 n = 140

NTS TS HDDE NTS TS HDDE NTS TS HDDE

m = 5

Trail 1 3.943 5.118 1512.533 8.161 13.505 8391.081 13.857 25.214 23,283.422
Trail 2 3.744 5.729 1118.698 8.226 15.769 5361.342 14.364 25.011 25,869.500
Trail 3 4.162 5.285 1415.852 8.122 12.086 6211.561 13.974 22.084 19,439.788
Trail 4 3.847 5.137 1005.755 8.715 14.787 8971.270 13.817 23.234 19,355.222
Trail 5 3.943 5.283 1002.492 8.794 12.581 5422.703 14.377 23.769 32,212.212
Trail 6 4.175 5.018 1660.255 8.335 11.313 5428.650 13.936 23.018 27,777.053
Trail 7 3.781 6.661 1097.204 9.005 12.915 5506.001 14.149 20.961 18,425.203
Trail 8 3.926 5.121 747.236 9.171 13.433 7585.026 13.968 22.647 19,667.650
Trail 9 3.886 5.397 1090.556 8.063 13.870 6643.318 15.191 21.957 26,439.659

Trail 10 3.831 5.343 774.069 8.194 12.069 7663.535 15.621 24.568 36,381.835
average 3.924 5.409 1142.465 8.479 13.233 6718.449 14.325 23.246 24,885.154

m = 8

Trail 1 7.909 8.179 3591.557 15.968 21.845 21426.231 26.412 37.348 65,224.116
Trail 2 7.944 9.163 1993.240 16.141 20.724 16625.712 27.428 37.365 52,793.295
Trail 3 7.439 8.678 2572.098 16.060 21.320 12983.184 26.943 38.875 40,496.482
Trail 4 7.476 8.928 2486.247 16.141 20.554 15421.759 26.965 37.227 58,480.069
Trail 5 7.427 9.956 5021.107 15.853 22.104 21253.317 26.223 35.783 37,094.787
Trail 6 7.735 9.127 4354.038 16.463 21.325 18642.408 26.408 35.057 59,505.527
Trail 7 7.310 9.180 1994.660 16.198 20.710 16229.108 26.940 37.375 37,644.008
Trail 8 7.694 9.268 6158.387 16.981 19.987 12600.642 27.410 40.199 47,251.975
Trail 9 7.676 9.435 6523.730 15.497 21.908 10957.605 26.486 39.158 36,420.641

Trail 10 7.538 9.511 5716.876 15.832 20.071 16501.993 26.127 35.850 77,484.502
average 7.615 9.143 4041.194 16.113 21.055 16264.196 26.734 37.424 51,239.540
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Figure 10. The average GAP concerning nine combinations of n = 60, 100, and 140 and m = 3, 5, and 8.

The following can be observed from Figure 10. With the increase of the number of pickup points n,
the average GAP value always became larger and larger. Because of the growing scale of the problem,
the differences between the HDDE and NTS algorithms were clearer. With the rise of the number of
AGVs m, the average GAP value went up when n = 100 and 140, which was because the number
of possible order combinations of pickup points enlarged. When n = 60, the trend did not follow
the same pattern, probably due to instability of the NTS algorithm. The high effectiveness of the
NTS algorithm is indicated. By improving the neighborhood structure, our NTS algorithm operates
on one or more adjacent points and moves them to a reasonable position in a good order to avoid
increasing unnecessary path lengths. Thus, our NTS algorithm retains the advantages of the classic TS,
with better improvements. However, the classical TS algorithm only operates on one pickup point
in the neighborhood operator, which is less flexible than the NTS algorithm. The HDDE algorithm
hopes to obtain a better solution by introducing a local search strategy, and the local search operation
generates significant time consumption. Due to the randomness of the HDDE algorithm itself, a large
number of long paths are generated, and good results cannot be obtained even at the cost of time. Long
paths greatly affect the performance of good paths, so a good order cannot be preserved. Therefore,
we found that because of the distance between each pair of pickup points in the AGV path problem,
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the ability to sort the pickup point is key to the performance of the algorithm. The NTS algorithm
proposed in this paper solves this problem well and shows the advantage of an intelligent optimization
algorithm that is based on neighborhoods, while an intelligent optimization algorithm that is based on
population, like the HDDE, is not suitable for solving this problem.

6. Conclusions

Customer requirements are changing, and expectations are rising. Companies are also facing
challenges from global competitors that offer customers a wide range of choices via the internet.
Intelligent warehouses support enterprises in fierce market competition, overcoming challenges such
as demand fluctuation [26]. The normal operation of the warehouse process is the basis of logistics
supply chain improvement [27]. With the rapid development of warehouse logistics, the routing
optimization of AGVs is playing an important role in improving the efficiency of goods selection and
customer satisfaction, thus attracting much attention. An excellent AGV routing scheme can classify
and deliver the orders of consumers earlier, which can greatly improve the experience and satisfaction
of consumers [28]. The TS algorithm proposed in this article considers situations that may improve the
current feasible solutions for designing neighborhood structures, eliminating bad feasible solutions,
and accelerating the neighborhood search speeds. Finally, our numerical experiments indicated that
this algorithm can improve calculation accuracy when solving the AGV routing problems. Compared
with those employed in previous studies, our algorithm adopts conflict resolution methods that do
not sacrifice distance, ensure the shortest distance between two points, and try to compress feasible
regions to find excellent solutions faster. Therefore, we have found that for AGV path problems,
neighborhood-based intelligent optimization algorithms are often more efficient than population-based
intelligent optimization algorithms. The improved strategy used by the NTS algorithm that we have
proposed s is effective and has strong applicability to AGV path optimization problems in real-life
warehouse management.

The main limitation of the proposed algorithm is related to the assumptions that were made in its
design process. Some warehouses have a large volume or a high quality of goods, so one AGV may
not carry a lot during the actual warehousing process [29]. Once capacity constraints are taken into
account, the number of AGVs in and out of storage increases, and the resolution of conflicts becomes
more complex.

Due to the variability of such problems and the complexity of solving them, research on such
problems is still continuing, and further research will focus on two directions: (1) The solving of
multiple objectives optimization problems, such as reducing the maximum pickup time and the number
of AGV used, in order to offer a wide range of solutions that represent a balance between objectives
and Pareto-based strategies [30]; (2) the consideration of cases when the volume of goods exceeds the
AGV ‘s capacity to adapt to the picking processes of different sizes of goods.
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Appendix A

Parameters setting for the NTS algorithm:
The two factors that influence the performance of the NTS algorithm were tested. The levels

required to test for each factor are shown in Table A1, and the orthogonal experimental design table is
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shown in Table A2. Each group of experiment included 10 random tests, n = 60, and the improved
value of the algorithm was recorded. The Experimental Result column was the mean of 10 groups of
improved values. The improved value ZOS

− ZFS

ZFS × 100%, where ZOS denotes the objective value of the

initial solution and ZFS denotes the final objective value obtained by the NTS algorithm, was employed.

Table A1. Orthogonal factor level table of the NTS algorithm.

Factors Tabu List Length Maximum Number of Iterations

Level 1 3 100
Level 2 5 200
Level 3 7 300
Level 4 400
Level 5 500

Table A2. Orthogonal experimental design table of the NTS algorithm.

Factors Tabu List Length Maximum Number of
Iterations

Experimental
Result

Trail 1 3 100 40.85
Trail 2 3 200 32.14
Trail 3 3 300 30.39
Trail 4 3 400 40.19
Trail 5 3 500 34.39
Trail 6 5 100 39.31
Trail 7 5 200 37.40
Trail 8 5 300 38.71
Trail 9 5 400 31.89

Trail 10 5 500 32.15
Trail 11 7 100 41.57
Trail 12 7 200 32.07
Trail 13 7 300 39.07
Trail 14 7 400 34.74
Trail 15 7 500 35.37
Trail 16 5 100 35.31
Trail 17 5 200 37.67
Trail 18 5 300 37.05
Trail 19 5 400 36.64
Trail 20 5 500 34.07
Trail 21 5 100 36.28
Trail 22 5 200 34.41
Trail 23 5 300 41.39
Trail 24 5 400 37.01
Trail 25 5 500 36.66

Ki (Sum of experimental
results at level i)

K1 177.954 193.314 -
K2 545.947 173.679 -
K3 182.814 186.608 -
K4 - 180.475 -
K5 - 172.639 -

Ki (Mean of experimental
results at level i)

K1 35.591 38.663 -
K2 36.396 34.736 -
K3 36.563 37.322 -
K4 - 36.095 -
K5 - 34.528 -
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Table A3. Analysis of variance table of the NTS algorithm.

Sources of
Variation

Sum of Squares of
Deviations

Degree of
Freedom Mean Square F Value Significance

Tabu list length 2.975 2 1.488 - -
Maximum number

of iterations 61.255 4 15.314 - -

Error 175.544 18 9.752 - -
Total 239.774 24 - - -

Incorporate the Factor Tabu List Length into the Error Column and Recalculate

Sources of
Variation

Sum of Squares of
Deviations

Degree of
Freedom Mean Square F Value Significance

Tabu list length 2.975 2 1.488 - No influence
Maximum number

of iterations 61.255 4 15.314 1.716 No influence

Error 178.519 20 8.926 - -
Total 239.774 24 - - -

The variance analysis for the experimental results is shown in Table A3. According to the
experimental data, the level of each factor is determined as a tabu list length of 7 and a maximum
number of iterations of 100.

(The error columns did not participate in the calculation, so those are not shown in Table A3.)
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