Effect of Orthopedic Treatment for Class III Malocclusion on Upper Airways: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
1.1. Background
1.2. Objective
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources and Search
2.4. Study Selection
2.5. Data Collection Process and Items
2.6. Risk of Bias of Individual Studies
2.7. Data Synthesis and Summary Measures
2.8. Additional Analyses and Risk of Bias across Studies
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias within Studies
3.4. Results of Individual Studies and Data Synthesis
3.4.1. Maxillary Protraction with Facemask/Reverse Headgear
3.4.2. Mandibular Restraint with Chin-Cup
3.5. Additional Analyses, Risk of Bias across Studies, and Quality of Evidence
3.6. Sensitivity Analysis
4. Discussion
4.1. Evidence in Context
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jayaratne, Y.S.N.; Zwahlen, R.A. The oropharyngeal airway in young adults with skeletal Class II and Class III deformities: A 3-D morphometric analysis. PLoS ONE 2016, 11, e0148086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El, H.; Palomo, J.M. Airway volume for different dentofacial skeletal patterns. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e511–e521. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, T.; Suga, H.; Yanagisawa-Minami, A.; Sato, H.; Sato-Hashiguchi, M.; Shirazawa, Y.; Tsujii, T.; Yamamoto, Y.; Kanomi, R.; Yamasaki, Y. Relationships among tongue volume, hyoid position, airway volume and maxillofacial form in paediatric patients with Class-I, Class-II and Class-III malocclusions. Orthod. Craniofacial Res. 2018, 22, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, M.C.T.; Fiorott, B.S.; Finck, N.S.; De Araújo, M.T.M. Craniofacial changes and symptoms of sleep-disordered breathing in healthy children. Dent. Press J. Orthod. 2015, 20, 80–87. [Google Scholar] [CrossRef]
- Dantas, J.; Neto, J.; De Carvalho, S.; Martins, I.; De Souza, R.; Sarmento, V.A. Satisfaction of skeletal class III patients treated with different types of orthognathic surgery. Int. J. Oral Maxillofac. Surg. 2015, 44, 195–202. [Google Scholar] [CrossRef]
- Havron, A.G.; Aronovich, S.; Shelgikar, A.V.; Kim, H.L.; Conley, R.S. 3D airway changes using CBCT in patients following mandibular setback surgery ± maxillary advancement. Orthod. Craniofacial Res. 2019, 22, 30–35. [Google Scholar] [CrossRef]
- Hiyama, S.; Suda, N.; Ishii-Suzuki, M.; Tsuiki, S.; Ogawa, M.; Suzuki, S.; Kuroda, T. Effects of maxillary protraction on craniofacial structures and upper-airway dimension. Angle Orthod. 2002, 72, 43–47. [Google Scholar]
- Lanteri, V.; Farronato, M.; Ugolini, A.; Cossellu, G.; Gaffuri, F.; Parisi, F.M.R.; Cavagnetto, D.; Abate, A.; Maspero, C. Volumetric changes in the upper airways after rapid and slow maxillary expansion in Growing patients: A case-control study. Materials 2020, 13, 2239. [Google Scholar] [CrossRef]
- Tuncer, B.B.; Kaygisiz, E.; Tuncer, C.; Yüksel, S. Pharyngeal airway dimensions after chin cup treatment in Class III malocclusion subjects. J. Oral Rehabil. 2009, 36, 110–117. [Google Scholar] [CrossRef]
- Maspero, C.; Farronato, M.; Bellincioni, F.; Annibale, A.; Machetti, J.; Abate, A.; Cavagnetto, D.; Maspero, C. Three-dimensional evaluation of maxillary sinus changes in growing subjects: A retrospective cross-sectional study. Materials 2020, 13, 1007. [Google Scholar] [CrossRef] [Green Version]
- Mucedero, M.; Baccetti, T.; Franchi, L.; Cozza, P. Effects of maxillary protraction with or without expansion on the sagittal pharyngeal dimensions in Class III subjects. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Baccetti, T.; Franchi, L.; Mucedero, M.; Cozza, P. Treatment and post-treatment effects of facemask therapy on the sagittal pharyngeal dimensions in Class III subjects. Eur. J. Orthod. 2010, 32, 346–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ming, Y.; Hu, Y.; Li, Y.; Yu, J.; He, H.; Zheng, L. Effects of maxillary protraction appliances on airway dimensions in growing class III maxillary retrognathic patients: A systematic review and meta-analysis. Int. J. Pediatr. Otorhinolaryngol. 2018, 105, 138–145. [Google Scholar] [CrossRef]
- Sideri, S.; Papageorgiou, S.N.; Eliades, T. Registration in the international prospective register of systematic reviews (PROSPERO) of systematic review protocols was associated with increased review quality. J. Clin. Epidemiol. 2018, 100, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, S.N. Meta-analysis for orthodontists: Part II—Is all that glitters gold? J. Orthod. 2014, 41, 327–336. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Schünemann, H.; Tugwell, P.; Knottnerus, A. GRADE guidelines: A new series of articles in the Journal of Clinical Epidemiology. J. Clin. Epidemiol. 2011, 64, 380–382. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0; The Cochrane Collaboration: London, UK, 2011. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.J.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, S.N. Meta-analysis for orthodontists: Part I—How to choose effect measure and statistical model. J. Orthod. 2014, 41, 317–326. [Google Scholar] [CrossRef]
- Langan, D.; Higgins, J.P.T.; Jackson, D.; Bowden, J.; Veroniki, A.A.; Kontopantelis, E.; Viechtbauer, W.; Simmonds, M. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res. Synth. Methods 2018, 10, 83–98. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IntHout, J.; Ioannidis, J.P.A.; Rovers, M.M.; Goeman, J.J. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schünemann, H.J.; Cuello-Garcia, C.A.; A Akl, E.; A Mustafa, R.; Meerpohl, J.J.; Thayer, K.A.; Morgan, R.L.; Gartlehner, G.; Kunz, R.; Katikireddi, S.V.; et al. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J. Clin. Epidemiol. 2018, 111, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco-Labra, A.; Brignardello-Petersen, R.; Santesso, N.; Neumann, I.; A Mustafa, R.; Mbuagbaw, L.; Etxeandia-Ikobaltzeta, I.; De Stio, C.; Mccullagh, L.J.; Alonso-Coello, P.; et al. Improving GRADE evidence tables part 1: A randomized trial shows improved understanding of content in summary of findings tables with a new format. J. Clin. Epidemiol. 2016, 74, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Havakeshian, G.; Koretsi, V.; Eliades, T.; Papageorgiou, S.N. Effect of Orthopedic Treatment for Class III Malocclusion on Upper Airways: A Systematic Review and Meta-Analysis [Dataset]. Available online: https://zenodo.org/record/3988960 (accessed on 18 August 2020). [CrossRef]
- Ioannidis, J.P.A. Interpretation of tests of heterogeneity and bias in meta-analysis. J. Eval. Clin. Pract. 2008, 14, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Akin, M.; Ucar, F.; Chousein, C.; Sari, Z. Effects of chincup or facemask therapies on the orofacial airway and hyoid position in Class III subjects. J. Orofac. Orthop. 2015, 76, 520–530. [Google Scholar] [CrossRef]
- Tuncer, B.B.; Ulusoy, Ç.; Tuncer, C.; Türköz, Ç.; Varlik, S.K. Effects of reverse headgear on pharyngeal airway in patients with different vertical craniofacial features. Braz. Oral Res. 2015, 29, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Danaei, S.M.; Ajami, S.; Etemadi, H.; Azadeh, N. Assessment of the effect of maxillary protraction appliance on pharyngeal airway dimensions in relation to changes in tongue posture. Dent. Res. J. 2018, 15, 208–214. [Google Scholar] [CrossRef]
- Kilinc, A.S.; Arslan, S.G.; Kama, J.D.; Ozer, T.; Dari, O. Effects on the sagittal pharyngeal dimensions of protraction and rapid palatal expansion in Class III malocclusion subjects. Eur. J. Orthod. 2008, 30, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, E.; Franchi, L.; Lione, R.; Chiavaroli, A.; Cozza, P.; Pavoni, C. Evaluation of sagittal airway dimensions after face mask therapy with rapid maxillary expansion in Class III growing patients. Int. J. Pediatr. Otorhinolaryngol. 2020, 130, 109794. [Google Scholar] [CrossRef]
- Menendez-Diaz, I.; Muriel, J.; Cobo, J.L.; Alvarez, C.; Cobo, T. Early treatment of Class III malocclusion with facemask therapy. Clin. Exp. Dent. Res. 2018, 4, 279–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagci, A.; Uysal, T.; Usumez, S.; Orhan, M. Effects of modified and conventional facemask therapies with expansion on dynamic measurement of natural head position in Class III patients. Am. J. Orthod. Dentofac. Orthop. 2011, 140, e223–e231. [Google Scholar] [CrossRef] [PubMed]
- Schwab, R.J.; Gupta, K.B.; Gefter, W.B.; Metzger, L.J.; Hoffman, E.A.; Pack, A.I. Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Significance of the lateral pharyngeal walls. Am. J. Respir. Crit. Care Med. 1995, 152, 1673–1689. [Google Scholar] [CrossRef] [PubMed]
- Schwab, R.J.; Gefter, W.B.; Hoffman, E.A.; Gupta, K.B.; Pack, A.I. Dynamic upper airway imaging during awake respiration in normal subjects and patients with sleep disordered breathing. Am. Rev. Respir. Dis. 1993, 148, 1385–1400. [Google Scholar] [CrossRef]
- Poole, M.N.; Engel, G.A.; Chaconas, S.J. Nasopharyngeal cephalometrics. Oral Surg. Oral Med. Oral Pathol. 1980, 49, 266–271. [Google Scholar] [CrossRef]
- Mandall, N.; Cousley, R.; DiBiase, A.; Dyer, F.; Littlewood, S.; Mattick, R.; Nute, S.J.; Doherty, B.; Stivaros, N.; McDowall, R.; et al. Early class III protraction facemask treatment reduces the need for orthognathic surgery: A multi-centre, two-arm parallel randomized, controlled trial. J. Orthod. 2016, 43, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Ucar, F.I.; Uysal, T. Orofacial airway dimensions in subjects with Class I malocclusion and different growth patterns. Angle Orthod. 2011, 81, 460–468. [Google Scholar] [CrossRef]
- Linder-Aronson, S.; Leighton, B.C. A longitudinal study of the development of the posterior nasopharyngeal wall between 3 and 16 years of age. Eur. J. Orthod. 1983, 5, 47–58. [Google Scholar] [CrossRef]
- Preston, C.; Tobias, P.V.; Salem, O.H. Skeletal age and growth of the nasopharynx in the sagittal plane: A cephalometric study. Semin. Orthod. 2004, 10, 16–38. [Google Scholar] [CrossRef]
- Buck, L.M.; Dalci, O.; Darendeliler, M.A.; Papageorgiou, S.N.; Papadopoulou, A.K. Volumetric upper airway changes after rapid maxillary expansion: A systematic review and meta-analysis. Eur. J. Orthod. 2016, 39, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Almuzian, M.; McConnell, E.; Darendeliler, M.A.; Alharbi, F.; Mohammed, H. The effectiveness of alternating rapid maxillary expansion and constriction combined with maxillary protraction in the treatment of patients with a class III malocclusion: A systematic review and meta-analysis. J. Orthod. 2018, 45, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Zurfluh, M.A.; Kloukos, D.; Patcas, R.; Eliades, T. Effect of chin-cup treatment on the temporomandibular joint: A systematic review. Eur. J. Orthod. 2014, 37, 314–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rongo, R.; D’Antò, V.; Bucci, R.; Polito, I.; Martina, R.; Michelotti, A. Skeletal and dental effects of Class III orthopaedic treatment: A systematic review and meta-analysis. J. Oral Rehabil. 2017, 44, 545–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papageorgiou, S.N.; Cobourne, M.T. Data sharing in orthodontic research. J. Orthod. 2018, 45, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, S.N.; Xavier, G.M.; Cobourne, M.T. Basic study design influences the results of orthodontic clinical investigations. J. Clin. Epidemiol. 2015, 68, 1512–1522. [Google Scholar] [CrossRef]
- Papageorgiou, S.N.; Koretsi, V.; Jäger, A. Bias from historical control groups used in orthodontic research: A meta-epidemiological study. Eur. J. Orthod. 2016, 39, 98–105. [Google Scholar] [CrossRef]
- Cappelleri, J.C.; Loannidis, J.P.A.; Schmid, C.H.; De Ferranti, S.D.; Aubert, M.; Chalmers, T.C.; Lau, J. Large Trials vs. Meta-analysis of Smaller Trials. JAMA 1996, 276, 1332–1338. [Google Scholar] [CrossRef]
- Aboudara, C.; Nielsen, I.; Huang, J.C.; Maki, K.; Miller, A.J.; Hatcher, D. Comparison of airway space with conventional lateral headfilms and 3-dimensional reconstruction from cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 468–479. [Google Scholar] [CrossRef]
Study | Design; Setting; Country * | Patients (M/F); Age † | Inclusion Criteria | Appliance (Active Duration) | FU | Imaging Modality |
---|---|---|---|---|---|---|
Akin [28] | rNRS; Uni; TR | EG1: 25 (10/15); 10.3 EG2: 25 (9/16); 9.8 CG: 17 (8/9); 10.1 | EG1-2/CG: −5° ≤ ANB ≤ 0°; Cl. III MoRel; edge-to-edge or aCB InRel; flat/mildly concave profile; successful Tx | EG1: FM + RME (NR) EG2: CC (NR) CG: (6.0 mos) | - | LC |
Tuncer [9] | rNRS; Uni TR | EG: 20 (10/10); 10.3 CG: 18 (10/8); 9.9 | EG/CG: mandibular prognathism without shift; neutral SN-ML | EG: CC + BP (9.8 mos) CG: (11.1) | - | LC |
Tuncer [29] | rNRS; Uni TR | EG1: 17 (9/8); 11.3 EG2: 17 (10/7); 11.5 CG: 11(8/3); 9.1 | EG1-2/CG: ANB < 0°; SNA < 82°; aCB InRel; HWR between PP2 and MP3cap; neutral (EG1)/high SN-ML (EG2); | EG1: FM + BP (9.7 mos) EG2: FM + BP (10.6 mos) CG: (12.0 mos) | - | LC |
Danaei [30] | rNRS; Uni; IR | EG: 19 (6/13); 7.9 CG: 15 (4/11); 7.5 | EG/CG: SNA < 77°, 76° ≤ SNB ≤ 80°, ANB < 1°; aCB InRel; Cl. III MoRel; no shift | EG: FM (10.5 mos) CG: (10.5 mos) | - | LC |
Kilinc [31] | rNRS; Uni TR | EG: 18 (7/11); 10.5 CG: 17 (8/9); 10.9 | EG/CG: maxillary skeletal retrusion; aCB InRel; Cl. III MoRel; HWR between PP2 and MP3cap | EG: FM + RME (6.9 mos) CG: (9.8 mos) | - | LC |
Lombardo [32] | rNRS; Uni; IT | EG: 47 (22/25); 7.8 CG: 18 (9/9); 8.9 | EG/CG: edge-to-edge or aCB InRel; Cl. III MoRel; WITS ≤ −2 mm; no shift; CVM stage 1–3 | EG: FM + RME + BP (24.0 mos) CG: (25.2 mos) | 5.4 yrs | LC |
Menendez-Diaz [33] | rNRS; Uni ES | EG: 64 (10/34); 8.1 CG: 14 (8/6); 8.2 | EG/CG: Cl. III; no shift | EG: FM + RME (18.0 mos) CG: (23.2 mos) | - | LC |
Mucedero [11]; Baccetti [12] | rNRS; Uni; IT | EG1: 22 (10/12); 8.9 EG2: 17 (10/7); 7.1 CG: 20 (8/12); 8.1 | EG1-2/CG: WITS ≤ −2 mm; edge-to-edge or aCB InRel; Cl. III MoRel | EG1: FM + BP (19.2 mos) EG2: FM + RME (25.2 mos) CG: (22.8 mos) | 2.1 yrs | LC |
Yagci [34] | pNRS; Uni; TR | EG1: 15 (7/8); 9.6 EG2: 15 (8/7); 9.5 CG: 15 (8/7); 9.8 | EG/CG: Cl. III MoRel; edge-to-edge or aCB InRel; ANB ≤ 0°; N-Aperp ≤ −2 mm | EG1: FM1 + RME (13.4 mos) EG2: FM2 + RME (14.9 mos) CG: (11.64) | - | LC |
Reference | Akin [28] | Tuncer [9] | Tuncer [29] | Danaei [30] | Kilinc [31] | Lombardo [32] | Menendez-Diaz [33] | Mucedero [11]; Baccetti [12] | Yagci [34] |
---|---|---|---|---|---|---|---|---|---|
Was the study prospective? | N | N | N | N | N | N | N | N | Y |
Was selection of patients based on any factor that could influence airways post treatment (age, sex, skeletal configuration, compliance, breakages)? | Y | PY | Y | Y | PY | PN | PY | PY | Y |
Were treated/untreated groups clearly defined? | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Was the observation period similar for treated/untreated patients? | NI | Y | PN | PY | PN | Y | PN | PN | PY |
Were treated/untreated patients similar in terms of baseline age? | Y | PY | PN | Y | Y | PY | Y | PY | Y |
Were treated/untreated patients similar in terms of baseline sex? | Y | PY | PN | Y | N | PY | N | N | Y |
Were treated/untreated patients similar in terms of dental/skeletal malocclusion? | Y | PY | N | NI | Y | PY | Y | Y | Y |
Were treated/untreated patients similar in terms of baseline airways? | PN | PN | Y | Y | Y | PY | Y | Y | N |
Was the use of any other appliances/adjuncts the same among treated/untreated patients? | NA | NA | NI | NI | NA | NA | NI | NA | NA |
Was outcome measurement similar for treated/untreated patients? | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Was outcome measurement done blindly for both treated/untreated patients? | N | N | N | N | N | N | N | N | N |
Were treated/untreated patients treated/observed at the same place/time? | NI | NI | N | NI | N | N | N | N | Y |
Outcome | n | Effect (95% CI) | p | I2 (95% CI) | tau2 (95% CI) | 95% Prediction |
---|---|---|---|---|---|---|
Post-treatment | ||||||
Total nasopharyngeal area (mm2) | 4 | SMD = 1.62 (1.20, 2.04) | <0.001 | 23% (0%, 91%) | 0.04 (0, 1.42) | 0.34, 2.90 |
Adenoidal nasopharyngeal area (mm2) | 2 | MD = 0.34 (−0.10, 0.77) | 0.13 | 0% (0%, 99%) | 0 (0, 7.60) | - |
Aerial nasopharyngeal area (mm2) | 2 | MD = 1.29 (0.80, 1.77) | <0.001 | 0% (0%, 99%) | 0 (0, 14.38) | - |
Oropharyngeal area (mm2) | 2 | MD = −0.18 (−1.65, 1.29) | 0.81 | 89% (24%, 100%) | 1.00 (0.04, 141.23) | - |
Upper adenoid size (AD2-H; mm) | 3 | MD = 0.59 (−0.52, 1.70) | 0.30 | 57% (0%, 98%) | 0.55 (0, 24.22) | −11.24, 12.42 |
Lower adenoid size (AD1-Ba; mm) | 3 | MD = 0.12 (−2.20, 2.44) | 0.92 | 76% (0%, 99%) | 3.11 (0, 76.33) | −26.88, 27.12 |
Upper airway dimension (PNS-AD2; mm) | 6 | MD = 2.45 (0.97, 3.92) | 0.001 | 87% (64%, 97%) | 2.83 (0.74, 15.17) | −2.67, 7.57 |
Lower airway dimension (PNS-AD1; mm) | 6 | MD = 2.10 (1.50, 2.70) | <0.001 | 5% (0%, 87%) | 0.04 (0, 4.83) | 1.11, 3.09 |
McNamara’s upper pharynx dimension (mm) | 6 | MD = 1.59 (0.57, 2.62) | 0.002 | 73% (15%, 95%) | 1.08 (0.07, 7.56) | −1.63, 4.82 |
McNamara’s lower pharynx dimension (mm) | 6 | MD = 1.02 (0.17, 1.88) | 0.02 | 70% (16%, 94%) | 0.69 (0.06, 4.90) | −1.58, 3.63 |
Postretention | ||||||
Upper adenoid size (AD2-H; mm) | 2 | MD = −1.13 (−4.25, 2.00) | 0.48 | 72% (0%, 100%) | 3.70 (0, 641.91) | - |
Lower adenoid size (AD1-Ba; mm) | 2 | MD = −2.67 (−4.63, −0.70) | 0.008 | 14% (0%, 99%) | 0.31 (0, 275.16) | - |
Upper airway dimension (PNS-AD2; mm) | 2 | MD = 3.71 (0.80, 6.62) | 0.01 | 65% (0%, 100%) | 2.91 (0, 563.83) | - |
Lower airway dimension (PNS-AD1; mm) | 2 | MD = 3.59 (1.75, 5.44) | <0.001 | 0% (0%, 98%) | 0 (0, 132.16) | - |
McNamara’s upper pharynx dimension (mm) | 2 | MD = 2.27 (0.80, 3.74) | 0.003 | 0% (0%, 98%) | 0 (0, 89.15) | - |
McNamara’s lower pharynx dimension (mm) | 2 | MD = 1.84 (−2.08, 5.75) | 0.36 | 85% (NC) | 6.80 (NC) | - |
Outcome | Age | Male% | Baseline Airway | RME | Tx Duration |
---|---|---|---|---|---|
Upper airway dimension (PNS-AD2; mm) | 0.45 | 0.65 | 0.69 | 0.29 | 0.27 |
Lower airway dimension (PNS-AD1; mm) | 0.98 | 0.15 | 0.37 | 0.65 | 0.26 |
McNamara’s upper pharynx dimension (mm) | 0.46 | 0.23 | 0.46 | 0.81 | 0.33 |
McNamara’s lower pharynx dimension (mm) | 0.13 | 0.65 | 0.45 | 0.70 | 0.67 |
Anticipated Absolute Effects (95% CI) | ||||
---|---|---|---|---|
Outcome Studies (Patients) | Control (Growth) | Maxillary Protraction | Quality of the Evidence (GRADE) b | What Happens with Maxillary Protraction |
Total airway area 35 patients (1 study) | −38.4 mm 2 | 223 mm2 greater (14.0 to 431.7 mm2 greater) | ○○○○ very low c,d due to bias, imprecision | Might be associated with greater airway area |
Upper airway dimensions 316 patients (6 studies) | 0.3 mm a | 2.5 mm greater (1.0 to 3.9 mm greater) | ○○○○ very low c due to bias | Might be associated with greater upper airway dimensions |
Lower airway dimensions 316 patients (6 studies) | 0.5 mm a | 2.1 mm greater (1.5 to 2.7 mm greater) | ○○○○ very low c due to bias | Might be associated with greater lower airway dimensions |
Upper pharynx dimensions (McNamara’s) 323 patients (6 studies) | 0.6 mm a | 1.6 mm greater (0.6 to 2.6 mm greater) | ○○○○ very low c due to bias | Might be associated with greater upper pharynx dimensions |
Lower pharynx dimensions (McNamara’s) 323 patients (6 studies) | 0.1 mm a | 1.0 mm greater (0.2 to 13.9 mm greater) | ○○○○ very low c due to bias | Might be associated with greater lower pharynx dimensions |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havakeshian, G.; Koretsi, V.; Eliades, T.; Papageorgiou, S.N. Effect of Orthopedic Treatment for Class III Malocclusion on Upper Airways: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 3015. https://doi.org/10.3390/jcm9093015
Havakeshian G, Koretsi V, Eliades T, Papageorgiou SN. Effect of Orthopedic Treatment for Class III Malocclusion on Upper Airways: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2020; 9(9):3015. https://doi.org/10.3390/jcm9093015
Chicago/Turabian StyleHavakeshian, Golnar, Vasiliki Koretsi, Theodore Eliades, and Spyridon N. Papageorgiou. 2020. "Effect of Orthopedic Treatment for Class III Malocclusion on Upper Airways: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 9, no. 9: 3015. https://doi.org/10.3390/jcm9093015
APA StyleHavakeshian, G., Koretsi, V., Eliades, T., & Papageorgiou, S. N. (2020). Effect of Orthopedic Treatment for Class III Malocclusion on Upper Airways: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 9(9), 3015. https://doi.org/10.3390/jcm9093015