The Usefulness of Quantitative Analysis of Blood-Brain Barrier Disruption Measured Using Contrast-Enhanced Magnetic Resonance Imaging to Predict Neurological Prognosis in Out-of-Hospital Cardiac Arrest Survivors: A Preliminary Study
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design and Patients
2.2. Target Temperature Management Protocol
2.3. Data Collection and Primary Outcome
2.4. QA measurement
2.5. Qualitative and Quantitative Analyses of BBB Disruption Using CE-MRI
2.6. Using CE-MRI to Analyse the Relationship between QA and BBB Disruption
2.7. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. A Comparison of pBD and sBD Using CE-MRI to Predict Neurological Outcome
3.3. A Comparison of the Relationship between the QA and sBD and their Ability to Predict Neurological Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BBB | blood-brain barrier |
CE-MRI | contrast-enhanced magnetic resonance imaging |
OHCA | out-of-hospital cardiac arrest |
pBD | presence of blood-brain barrier disruption |
sBD | blood-brain barrier disruption score |
AUC | area under the curve |
CI | confidence interval |
CA | cardiac arrest |
ROSC | return of spontaneous circulation |
CT | computed tomography |
CPR | cardiopulmonary resuscitation |
CSF | cerebrospinal fluid |
QA | albumin quotient |
TTM | target temperature management |
ECMO | extracorporeal membrane oxygenation |
CPC | cerebral performance category |
FLAIR | fluid attenuated inversion recovery |
ROC | receiver operating characteristic |
AUROC | area under the ROC |
MRI | magnetic resonance imaging |
DWI | diffusion-weighted image |
HARM | hyperintense acute perfusion marker |
References
- Hayman, E.G.; Patel, A.P.; Kimberly, W.T.; Sheth, K.N.; Simard, J.M. Cerebral Edema after Cardiopulmonary Resuscitation: A Therapeutic Target Following Cardiac Arrest? Neurocrit. Care 2018, 28, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Starodub, R.; Abella, B.S.; Grossestreuer, A.V.; Shofer, F.S.; Perman, S.M.; Leary, M.; Gaieski, D.F. Association of serum lactate and survival outcomes in patients undergoing therapeutic hypothermia after cardiac arrest. Resuscitation 2013, 84, 1078–1082. [Google Scholar] [CrossRef]
- Xiao, F. Bench to bedside: Brain edema and cerebral resuscitation: The present and future. Acad. Emerg. Med. 2002, 9, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Sandroni, C.; Cariou, A.; Cavallaro, F.; Cronberg, T.; Friberg, H.; Hoedemaekers, C.; Horn, J.; Nolan, J.P.; Rossetti, A.O.; Soar, J. Prognostication in comatose survivors of cardiac arrest: An advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation 2014, 85, 1779–1789. [Google Scholar] [CrossRef]
- Sandroni, C.; D’Arrigo, S.; Nolan, J.P. Prognostication after cardiac arrest. Crit. Care 2018, 22, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, C.H.; Park, J.S.; Lee, J.H.; Kim, H.; Kim, S.C.; Park, K.H.; Yi, K.S.; Kim, S.M.; Youn, C.S.; Kim, Y.M.; et al. Comparison of brain computed tomography and diffusion-weighted magnetic resonance imaging to predict early neurologic outcome before target temperature management comatose cardiac arrest survivors. Resuscitation 2017, 118, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; In, Y.N.; You, Y.H.; Min, J.H.; Ahn, H.J.; Yoo, I.S.; Kim, S.W.; Lee, J.W.; Ryu, S.; Jeong, W.J.; et al. Ultra-early neurologic outcome prediction of out-of-hospital cardiac arrest survivors using combined diffusion-weighted imaging findings and quantitative analysis of apparent diffusion coefficient. Resuscitation 2020, 148, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Son, S.H.; Lee, I.H.; Park, J.S.; Yoo, I.S.; Kim, S.W.; Lee, J.W.; Ryu, S.; You, Y.; Min, J.H.; Cho, Y.C.; et al. Does Combining Biomarkers and Brain Images Provide Improved Prognostic Predictive Performance for Out-Of-Hospital Cardiac Arrest Survivors before Target Temperature Management? J. Clin. Med. 2020, 9, 744. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; You, Y.; Min, J.H.; Yoo, I.; Jeong, W.; Cho, Y.; Ryu, S.; Lee, J.; Kimm, S.W.; Cho, S.U. Study on the timing of severe blood-brain barrier disruption using cerebrospinal fluid-serum albumin quotient in post cardiac arrest patients treated with targeted temperature management. Resuscitation 2019, 135, 118–123. [Google Scholar] [CrossRef]
- Takahashi, M.; Macdonald, R.L. Vascular aspects of neuroprotection. Neurol. Res. 2004, 26, 862–869. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Yuan, W.; Wu, J.; Li, J.; Li, Z.; Zhao, Y. Mild hypothermia alleviates brain oedema and blood-brain barrier disruption by attenuating tight junction and adherens junction breakdown in a swine model of cardiopulmonary resuscitation. PLoS ONE 2017, 12, e0174596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiber, H.; Peter, J.B. Cerebrospinal fluid analysis: Disease-related data patterns and evaluation programs. J. Neurol. Sci. 2001, 184, 101–122. [Google Scholar] [CrossRef]
- Hansen, M.B.; Tietze, A.; Kalpathy-Cramer, J.; Gerstner, E.R.; Batchelor, T.T.; Ostergaard, L.; Mouridsen, K. Reliable estimation of microvascular flow patterns in patients with disrupted blood-brain barrier using dynamic susceptibility contrast MRI. J. Magn. Reson. Imaging 2017, 46, 537–549. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Park, J.S.; Min, J.; Yoo, I.; Ahn, H.J.; Cho, Y.; Ryu, S.; Lee, J.; Kim, S.; Cho, S.; et al. The usefulness of neuron-specific enolase in cerebrospinal fluid to predict neurological prognosis in cardiac arrest survivors who underwent target temperature management: A prospective observational study. Resuscitation 2019, 145, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, S.; Siesjö, B.K. Reperfusion damage following focal ischemia: Pathophysiology and therapeutic windows. Clin. Neurosci. 1997, 4, 199–212. [Google Scholar] [PubMed]
- Pan, J.; Konstas, A.A.; Bateman, B.; Ortolano, G.A.; Pile-Spellman, J. Reperfusion injury following cerebral ischemia: Pathophysiology, MR imaging, and potential therapies. Neuroradiology 2007, 49, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Warach, S.; Latour, L.L. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke 2004, 35 (Suppl. 1), 2659–2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Kim, J.; Simpson, D.; Aagaard-Kienitz, B.; Niemann, D.; Esene, I.N.; Ahmed, A. Difference in imaging biomarkers between transient and permanent neurological deficits after endovascular treatment of cerebrovascular aneurysms. J. Neurosurg. 2020, 1, 1–10. [Google Scholar]
- Förster, A.; Wenz, H.; Groden, C. Hyperintense Acute Reperfusion Marker on FLAIR in a Patient with Transient Ischemic Attack. Case Rep. Radiol. 2016, 2016, 9829823. [Google Scholar] [CrossRef] [Green Version]
- Ogami, R.; Nakahara, T.; Hamasaki, O.; Araki, H.; Kurisu, K. Cerebrospinal fluid enhancement on fluid attenuated inversion recovery images after carotid artery stenting with neuroprotective balloon occlusions: Hemodynamic instability and blood-brain barrier disruption. Cardiovasc. Interv. Radiol. 2011, 34, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Bang, O.Y.; Saver, J.L.; Alger, J.R.; Shah, S.H.; Buck, B.H.; Starkman, S.; Ovbiagele, B.; Liebeskind, D.S. UCLA MRI Permeability Investigators. Patterns and predictors of blood-brain barrier permeability derangements in acute ischemic stroke. Stroke 2009, 40, 454–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eide, P.K.; Ringstad, G. MRI with intrathecal MRI gadolinium contrast medium administration: A possible method to assess glymphatic function in human brain. Acta Radiol. Open 2015, 4, 2058460115609635. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Wu, X. Review: Modifications of human serum albumin and their binding effect. Curr. Pharm. Des. 2015, 21, 1862–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Cohort (n = 27) | Good Outcome (n = 12) | Poor Outcome (n = 15) | p-Value |
---|---|---|---|---|
Age, years, median (IQR) | 60.0 (40.0–70.0) | 60.5 (46.5–69.5) | 60 (40.0–74.0) | 0.764 |
Sex, male, n (%) | 21 (77.8) | 11 (91.7) | 10 (66.7) | 0.182 |
Arrest characteristics | ||||
Witness arrest, n (%) | 18 (66.7) | 11 (91.7) | 7 (46.7) | 0.014 |
Bystander CPR, n (%) | 17 (63.0) | 11 (91.7) | 6 (40.0) | 0.006 |
Shockable rhythm, n (%) | 4 (14.8) | 4 (33.3) | 0 (0.0) | 0.015 |
Cardiac aetiology, n (%) | 11 (40.7) | 7 (58.3) | 4 (26.7) | 0.096 |
No flow time, min (IQR) | 3.5 (0.0–25.5) | 0 (0.0–2.5) | 21 (7.8–36.3) | 0.005 |
Low flow time, min (IQR) | 23.0 (9.0–31.0) | 15 (6.5–23.5) | 30 (20.0–39.0) | 0.017 |
ROSC to first MRI time, hr (IQR) | 2.62 (1.87–3.86), 22 * | 2.15 (1.63–3.44), 10 * | 2.75 (2.21–5.41), 12 * | 0.129 |
ROSC to second MRI time, hr (IQR) | 76.72 (75.19–76.72), 24 * | 75.67 (74.47–77.87), 11 * | 77.18 (75.97–81.37), 13 * | 0.111 |
Case Number | QA | pBD | sBD | |||
---|---|---|---|---|---|---|
First | Second | First | Second | First | Second | |
Patient 1 | 0.0132 | 0.0161 | Absence | Presence | 0 | 4 |
Patient 2 | 0.0094 | Absence | Absence | 0 | 0 | |
Patient 3 | 0.0083 | 0.0091 | Presence | Presence | 1 | 1 |
Patient 4 | 0.0065 | Presence | 4 | |||
Patient 5 | Presence | Absence | 5 | 6 | ||
Patient 6 | 0.0176 | Absence | Presence | 0 | 4 | |
Patient 7 | 0.0054 | Absence | 0 | |||
Patient 8 | 0.0083 | 0.0593 | Presence | Presence | 5 | 5 |
Patient 9 | 0.0345 | Presence | Presence | 4 | 4 | |
Patient 10 | 0.0097 | Presence | Absence | 4 | 6 | |
Patient 11 | 0.0500 | 0.1188 | Presence | Presence | 2 | 5 |
Patient 12 | 0.0100 | 0.0133 | Absence | Absence | 0 | 0 |
Patient 13 | Presence | Presence | 4 | 3 | ||
Patient 14 | 0.0242 | 0.1000 | Presence | Presence | 5 | 5 |
Patient 15 | 0.0091 | 0.0057 | Absence | Absence | 0 | 0 |
Patient 16 | 0.0050 | 0.0061 | Absence | Absence | 0 | 0 |
Patient 17 | 0.0049 | Absence | 0 | |||
Patient 18 | 0.0071 | Presence | 4 | |||
Patient 19 | 0.0161 | 0.0615 | Presence | Presence | 5 | 5 |
Patient 20 | 0.0083 | 0.0029 | Presence | Absence | 3 | 0 |
Patient 21 | 0.0103 | Presence | 5 | |||
Patient 22 | Absence | Presence | 0 | 2 | ||
Patient 23 | 0.0056 | 0.0200 | Presence | Presence | 5 | 5 |
Patient 24 | 0.0167 | Presence | 5 | |||
Patient 25 | 0.0621 | Presence | 2 | |||
Patient 26 | 0.0250 | Presence | 5 | |||
Patient 27 | 0.0053 | 0.0029 | Absence | Absence | 0 | 0 |
Score | Number | Location of BBB Disruption |
---|---|---|
0 | 16 | None |
1 | 2 | Parietal lobe, n = 2 |
2 | 3 | Frontal lobe + Parietal lobe, n = 1 Temporal lobe + Occipital lobe, n = 2 |
3 | 2 | Frontal lobe + Parietal lobe + Temporal lobe, n = 1 Parietal lobe + Temporal lobe + Occipital lobe, n = 1 |
4 | 8 | Frontal lobe + Parietal lobe + Temporal lobe + Occipital lobe, n = 8 |
5 | 13 | Frontal lobe + Parietal lobe + Temporal lobe + Occipital lobe + Cerebellum, n = 13 |
6 | 2 | No internal carotid artery flow, n = 2 |
Characteristics | AUR (95% CI) | Cut-off | Sensitivity | Specificity | PPV | NPV | p-Value for AUC Comparison |
---|---|---|---|---|---|---|---|
sBD | 0.95 (0.84–0.99) | >1 | 96.0 | 81.0 | 80.0 | 93.7 | Reference |
pBD | 0.80 (0.65–0.90) | Presence | 88.0 | 71.4 | 78.6 | 83.3 | 0.015 |
QA | 0.87 (0.72–0.96) | >0.0133 | 66,7 | 100.0 | 100.0 | 68.2 | 0.013 |
Characteristics | Good Neurological Outcome (n = 19) | Poor Neurological Outcome (n = 17) | p-value |
---|---|---|---|
Total cohort, median (IQR) | 0.0083 (0.0053–0.0131) | 0.02 (0.009–0.0546) | 0.003 |
More than mild BBB disruption, n (%) | 11 (57.9%) | 15 (88.2%) | 0.065 |
More than moderate disruption, n (%) | 5 (26.3%) | 12 (70.6%) | 0.018 |
Severe BBB disruption, n (%) | 1 (5.3%) | 8 (47.1%) | 0.006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.I.; Lee, I.H.; Park, J.S.; Kim, D.M.; You, Y.; Min, J.H.; Cho, Y.C.; Jeong, W.J.; Ahn, H.J.; Kang, C.; et al. The Usefulness of Quantitative Analysis of Blood-Brain Barrier Disruption Measured Using Contrast-Enhanced Magnetic Resonance Imaging to Predict Neurological Prognosis in Out-of-Hospital Cardiac Arrest Survivors: A Preliminary Study. J. Clin. Med. 2020, 9, 3013. https://doi.org/10.3390/jcm9093013
Kim HI, Lee IH, Park JS, Kim DM, You Y, Min JH, Cho YC, Jeong WJ, Ahn HJ, Kang C, et al. The Usefulness of Quantitative Analysis of Blood-Brain Barrier Disruption Measured Using Contrast-Enhanced Magnetic Resonance Imaging to Predict Neurological Prognosis in Out-of-Hospital Cardiac Arrest Survivors: A Preliminary Study. Journal of Clinical Medicine. 2020; 9(9):3013. https://doi.org/10.3390/jcm9093013
Chicago/Turabian StyleKim, Ho Il, In Ho Lee, Jung Soo Park, Da Mi Kim, Yeonho You, Jin Hong Min, Yong Chul Cho, Won Joon Jeong, Hong Joon Ahn, Changshin Kang, and et al. 2020. "The Usefulness of Quantitative Analysis of Blood-Brain Barrier Disruption Measured Using Contrast-Enhanced Magnetic Resonance Imaging to Predict Neurological Prognosis in Out-of-Hospital Cardiac Arrest Survivors: A Preliminary Study" Journal of Clinical Medicine 9, no. 9: 3013. https://doi.org/10.3390/jcm9093013
APA StyleKim, H. I., Lee, I. H., Park, J. S., Kim, D. M., You, Y., Min, J. H., Cho, Y. C., Jeong, W. J., Ahn, H. J., Kang, C., & Lee, B. K. (2020). The Usefulness of Quantitative Analysis of Blood-Brain Barrier Disruption Measured Using Contrast-Enhanced Magnetic Resonance Imaging to Predict Neurological Prognosis in Out-of-Hospital Cardiac Arrest Survivors: A Preliminary Study. Journal of Clinical Medicine, 9(9), 3013. https://doi.org/10.3390/jcm9093013