Early Psychological Impact of the COVID-19 Pandemic in Brazil: A National Survey
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Sample
2.2. Procedures and Ethical Aspects
2.3. Measuring Instruments
2.4. Data Validity and Reliability Indicators
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brooks, S.K.; Webster, R.W.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Holmes, E.A.; O’Connor, R.C.; Perry, V.H.; Tracey, I.; Wessely, S.; Arseneault, L.; Ballard, C.; Christensen, H.; Cohen Silver, R.; Everall, I.; et al. Multidisciplinary research priorities for the COVID-19 pandemic: A call for action for mental health science. Lancet Psychiatry 2020, 7, 547–560. [Google Scholar] [CrossRef]
- Pfefferbaum, B.; North, C.S. Mental Health and the Covid-19 Pandemic. N. Engl. J. Med. 2020, 383, 510–512. [Google Scholar] [CrossRef]
- Rajkumar, R.P. COVID-19 and mental health: A review of the existing literature. Asian J. Psychatry 2020, 52, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Rubin, G.J.; Wessely, S. The psychological effects of quarantining a city. BMJ 2020, 368, m313. [Google Scholar] [CrossRef] [Green Version]
- Usher, K.; Durkin, J.; Bhullar, N. The COVID-19 pandemic and mental health impacts. Int. J. Ment. Health Nurs. 2020, 29, 315–318. [Google Scholar] [CrossRef] [Green Version]
- Wilder-Smith, A.; Freedman, M.D. Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J. Travel Med. 2020, 27, 1–4. [Google Scholar] [CrossRef]
- Bai, Y.; Lin, C.-C.; Lin, C.-Y.; Chen, J.-Y.; Chue, C.-M.P.C. Survey of stress reactions among health care workers involved with the SARS outbreak. Psychiatr. Serv. 2004, 55, 1055–1057. [Google Scholar] [CrossRef]
- Blendon, R.J.; Benson, J.M.; DesRoches, C.M.; Raleigh, E.; Taylor-Clark, K. The public’s response to severe acute respiratory syndrome in Toronto and the United States. Clin. Infect. Dis. 2004, 38, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Cava, M.A.; Fay, K.E.; Beanlands, H.J.; McCay, E.A.; Wignall, R. The experience of quarantine for individuals affected by SARS in Toronto. Public Health Nurs. 2005, 22, 398–406. [Google Scholar] [CrossRef]
- Lee, S.; Chan, L.Y.; Chau, A.M.; Kwok, K.P.; Kleinman, A. The experience of SARS-related stigma at Amoy Gardens. Soc. Sci. Med. 2005, 61, 2038–2046. [Google Scholar] [CrossRef] [PubMed]
- Wilken, J.A.; Pordell, P.; Goode, B.; Jarteh, R.; Miller, Z.; Saygar, B.G.; Maximore, L.; Borbor, W.M.; Carmue, M.; Walker, G.W.; et al. Knowledge, attitudes, and practices among members of households actively monitored or quarantined to prevent transmission of Ebola virus disease-Margibi County, Liberia: February–March 2015. Prehosp. Disaster Med. 2017, 32, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Caleo, G.; Duncombe, J.; Jephcott, F.; Lokuge, K.; Mills, C.; Looijen, E.; Theoharaki, F.; Kremer, R.; Kleijer, K.; Squire, J.; et al. The factors affecting household transmission dynamics and community compliance with Ebola control measures: A mixed-methods study in a rural village in Sierra Leone. BMC Public Health 2018, 18, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, B.; Zhao, G.; Cao, R.; He, X.; Fu, S. Is quarantine related to immediate negative psychological consequences during the 2009 H1N1 epidemic? Gen. Hosp. Psychiatry 2011, 33, 75–77. [Google Scholar] [CrossRef]
- Braunack-Mayer, A.; Tooher, R.; Collins, J.E.; Street, J.M.; Marshall, H. Understanding the school community’s response to school closures during the H1N1 2009 influenza pandemic. BMC Public Health 2013, 13, 344–359. [Google Scholar] [CrossRef] [Green Version]
- Sani, G.; Janiri, D.; Di Nicola, M.; Janiri, L.; Ferretti, S.; Chieffo, D. Mental health during and after the COVID-19 emergency in Italy. Psychiatry Clin. Neurosci. 2020, 74, 372. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Tang, W.; Li, H.; Huang, Y.X.; Xie, Y.L.; Zhou, Z.G. Clinical characteristics of 161 cases of corona virus disease 2019 (COVID-19) in Changsha. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3404–3410. [Google Scholar]
- Chen, Q.; Liang, M.; Li, Y.; Guo, J.; Fei, D.; Wang, L.; Sheng, C.; Cai, Y.; Li, X.; Wan, J.; et al. Mental health care for medical staff in China during COVID-19 outbreak. Lancet Psychiatry 2020, 7, 15–16. [Google Scholar] [CrossRef]
- Zhang, W.R.; Wang, K.; Yin, L.; Zhao, W.F.; Xue, Q.; Peng, M.; Min, B.Q.; Tian, Q.; Leng, H.X.; Du, J.L.; et al. Mental Health and Psychosocial Problems of Medical Health Workers during the COVID-19 Epidemic in China. Psychother. Psychosom. 2020, 89, 242–250. [Google Scholar] [CrossRef]
- Gao, J.; Zheng, P.; Jia, Y.; Chen, H.; Mao, Y.; Chen, S.; Wang, Y.; Fu, H.; Dai, J. Mental health problems and social media exposure during COVID-19 outbreak. PLoS ONE 2020, 15, e0231924. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [Green Version]
- Figueiras, A.; Stults-Kolehmainen, M. The relationship between behavioural and psychosocial factors among brazilians in quarantine due to COVID-19. Lancet Psychiatry 2020. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. BMJ Gen. Psychiatry 2020, 33, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Moccia, L.; Janiri, D.; Pepe, M.; Dattoli, L.; Molinaro, M.; Martin, V.; Chieffo, D.; Janiri, L.; Fiorillo, A.; Sani, G.; et al. Affective treatment, attachment style, and the psychological impact of the COVID-19 outbreak: An early report on the Italian general population. Brain Behav. Immun. 2020, 87, 75–79. [Google Scholar] [CrossRef]
- Palgi, Y.; Shrira, A.; Ring, L.; Bodner, E.; Avidor, S.; Bergman, Y.; Cohen-Fridel, S.; Keisari, S.; Hoffman, Y. The loneliness pandemic: Loneliness anther concomitants of depression, anxiety and their comorbidity during the COVID-19 outbreak. J. Affect. Disord. 2020, 275, 109–111. [Google Scholar] [CrossRef]
- Bruin, W.B. Age Differences in COVID-19 Risk Perceptions and Mental Health: Evidence From a National U.S. Survey Conducted in March 2020. J. Gerontol. Psychol. Sci. 2020, 1–6. [Google Scholar] [CrossRef]
- Pierce, M.; Hope, H.; Ford, T.; Hatch, S.; Hotopf, M.; John, A.; Kontopantelis, E.; Webb, R.; Wessely, S.; MacManus, S.; et al. Mental health before and during the COVID-19 pandemic: A longitudinal probability sample survey of the UK population. Lancet Psychiatry 2020, 21, 1–10. [Google Scholar]
- Salari, N.; Hosseinian-Far, A.; Jalali, R.; Vaisi-Raygani, A.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: A systematic review and meta-analysis. Glob. Health 2020, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Vignola, R.C.B.; Tucci, A.M. Adaptation and validation of the Depression, Anxiety and Stress Scale (DASS) to Brazilian Portuguese. J. Affect. Disord. 2014, 155, 104–109. [Google Scholar] [CrossRef]
- Martins, B.G.; Silva, W.R.; Maroco, J.; Campos, J.A.D.B. Escala de Depressão, Ansiedade e Estresse: Propriedades psicométricas e prevalência das afetividades. J. Bras. Psiquiatr. 2019, 68, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Caiuby, A.V.S.; Lacerda, S.S.; Quintana, M.I.; Torii, T.S.; Andreoli, S.B. Adaptação transcultural da versão brasileira da Escala do Impacto do Evento—Revisada (IES-R). Cad. Saúde Pública 2012, 28, 597–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovibond, S.H.; Lovibond, P.F. Manual for the Depression, Anxiety, Stress Scales. 1995. (update in 26 July 2018). Available online: http://www2.psy.unsw.edu.au/dass/ (accessed on 28 July 2020).
- Kline, R.B. Principles and Practice of Structural Equation Modeling; The Guilford Press: New York, NY, USA, 1998; p. 354. [Google Scholar]
- Cullen, W.; Gulati, G.; Kelly, B.D. Mental health in the Covid-19 pandemic. QJM Int. J. Med. 2020, 113, 311–312. [Google Scholar] [CrossRef]
- Almeida, D.M.; Kessler, R.C. Everyday stressors and gender differences in daily distress. J. Personal. Soc. Psychol. 1998, 75, 670–680. [Google Scholar] [CrossRef]
Instrument | Sample | n | Confirmatory Factor Analysis * | ||||
---|---|---|---|---|---|---|---|
λ | CFI | TLI | RMSEA (90% CI) | α | |||
DASS-21 | Brazil | 12,196 | 0.54–0.92 | 0.978 | 0.975 | 0.065 (0.064–0.066) | 0.892–0.947 |
Midwest | 1026 | 0.52–0.92 | 0.973 | 0.970 | 0.068 (0.064–0.072) | 0.879–0.944 | |
Northeast | 3804 | 0.53–0.91 | 0.977 | 0.974 | 0.066 (0.064–0.067) | 0.890–0.947 | |
North | 1191 | 0.52–0.91 | 0.974 | 0.971 | 0.070 (0.066–0.074) | 0.887–0.945 | |
Southeast | 4677 | 0.55–0.93 | 0.980 | 0.977 | 0.064 (0.062–0.066) | 0.896–0.949 | |
South | 1498 | 0.55–0.93 | 0.981 | 0.978 | 0.059 (0.056–0.063) | 0.892–0.941 | |
IES-R † | Brazil | 12,196 | 0.51–0.89 | 0.964 | 0.960 | 0.072 (0.071–0.073) | 0.879–0.927 |
Midwest | 1026 | 0.53–0.89 | 0.968 | 0.964 | 0.067 (0.063–0.071) | 0.883–0.928 | |
Northeast | 3804 | 0.52–0.89 | 0.965 | 0.961 | 0.072 (0.070–0.074) | 0.878–0.928 | |
North | 1191 | 0.53–0.88 | 0.965 | 0.960 | 0.069 (0.065–0.072) | 0.883–0.926 | |
Southeast | 4677 | 0.50–0.89 | 0.964 | 0.959 | 0.073 (0.071–0.075) | 0.877–0.926 | |
South | 1498 | 0.50–0.89 | 0.963 | 0.958 | 0.072 (0.069–0.075) | 0.871–0.924 |
Abbreviation, State, Region | N * | n | n’ | Mean (SD; min/max) | % | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age in Years | Number of People in the Residence | Women | COVID-19 Seriousness | Previous Mental Problem | Mental Symptom during Pandemic | Change in Mental Health during Pandemic | Know COVID-19 Positive People | Feeling Unsafe | News is Confusing | ||||
AC—Acre (North) | 881,935 | 41 | 46 | 37.7 (8.3; 18/60) | 3.0 (1.2; 1–6) | 50.0 | 97.8 | 20.0 | 93.5 | 67.4 | 95.7 | 91.3 | 32.6 |
AL—Alagoas (Northeast) | 3,337,357 | 155 | 199 | 35.6 (12.2; 18/70) | 3.3 (1.5; 1/13) | 60.6 | 100.0 | 24.0 | 88.4 | 66.8 | 91.0 | 89.4 | 30.7 |
AM—Amazonas (North) | 4,144,597 | 192 | 201 | 38.2 (13.1; 18/69) | 3.4 (1.7; 1/15) | 62.5 | 97.5 | 25.6 | 87.6 | 65.7 | 96.5 | 81.6 | 34.8 |
AP—Amapá (North) | 845,731 | 39 | 69 | 37.6 (11.5; 18/65) | 3.3 (1.7; 1/10) | 68.1 | 100.0 | 26.9 | 91.3 | 73.9 | 98.6 | 89.9 | 29.0 |
BA—Bahia (Northeast) | 14,873,064 | 689 | 723 | 36.8 (12.3; 18/80) | 3.0 (1.5; 1/15) | 70.7 | 99.0 | 31.6 | 90.7 | 66.5 | 73.6 | 86.3 | 34.6 |
CE—Ceará (Northeast) | 9,132,078 | 423 | 430 | 34.7 (12.3; 18/70) | 3.5 (1.5; 1/10) | 68.6 | 97.0 | 25.0 | 91.1 | 72.6 | 89.1 | 85.3 | 29.3 |
DF—Distrito Federal (Midwest) | 3,015,268 | 140 | 256 | 35.3 (13.1; 18/73) | 3.22 (1.3; 1/7) | 72.7 | 98.4 | 43.1 | 89.1 | 75.0 | 68.8 | 86.3 | 39.5 |
ES—Espírito Santo (Southeast) | 4,018,650 | 186 | 199 | 30.0 (10.5; 18/70) | 3.3 (1.4; 1/9) | 80.4 | 98.0 | 32.7 | 88.9 | 71.9 | 68.8 | 83.4 | 36.2 |
GO—Goiás (Midwest) | 7,018,354 | 325 | 374 | 33.8 (11.9; 18/66) | 3.3 (1.4; 1/10) | 77.3 | 96.5 | 35.3 | 89.0 | 67.9 | 57.8 | 84.0 | 46.5 |
MA—Maranhão (Northeast) | 7,075,181 | 328 | 1196 | 29.5 (10.4; 18/67) | 3.8 (1.7;1/10) | 65.4 | 98.2 | 24.3 | 89.7 | 68.5 | 94.1 | 84.1 | 36.4 |
MG—Minas Gerais (Southeast) | 21,168,791 | 980 | 1006 | 33.8 (12.5; 18/72) | 3.2 (1.3; 1/9) | 71.3 | 98.8 | 35.2 | 89.8 | 67.2 | 44.5 | 84.7 | 37.1 |
MS—Mato Grosso do Sul (Midwest) | 2,778,986 | 129 | 230 | 35.4 (11.2; 18/66) | 3.0 (1.3; 1/7) | 57.8 | 96.5 | 30.5 | 86.0 | 64.3 | 40.4 | 84.3 | 33.2 |
MT—Mato Grosso (Midwest) | 3,484,466 | 161 | 166 | 33.0 (11.1; 18/62) | 3.2 (1.5; 1/10) | 63.9 | 92.2 | 31.3 | 84.3 | 58.4 | 46.4 | 81.3 | 36.6 |
PA—Pará (North) | 8,602,865 | 398 | 442 | 35.3 (12.4; 18/94) | 3.5 (1.6; 1/11) | 67.6 | 98.2 | 23.7 | 93.4 | 71.7 | 97.7 | 86.0 | 37.8 |
PB—Paraíba (Northeast) | 4,018,127 | 186 | 186 | 38.3 (11.7; 18/70) | 3.2 (1.6; 1/11) | 65.6 | 98.4 | 24.9 | 89.8 | 67.7 | 86.6 | 81.2 | 34.9 |
PE—Pernambuco (Northeast) | 9,557,071 | 443 | 429 | 37.0 (12.1; 18/78) | 3.3 (1.6;1/15) | 63.9 | 98.6 | 24.6 | 90.1 | 64.3 | 88.6 | 85.8 | 34.3 |
PI—Piauí (Nordeste) | 3,273,227 | 152 | 222 | 35.7 (10.6; 18/66) | 3.6 (1.5; 1/8) | 68.0 | 99.5 | 30.6 | 89.6 | 68.9 | 82.9 | 88.3 | 29.9 |
PR—Paraná (South) | 11,433,957 | 530 | 536 | 39.3 (12.9; 18/72) | 3.0 (1.3; 1/10) | 71.5 | 95.9 | 36.7 | 88.8 | 64.4 | 50.6 | 81.5 | 35.0 |
RJ—Rio de Janeiro (Southeast) | 17,264,943 | 800 | 868 | 38.3 (13.5; 18/78) | 3.0 (1.4; 1/13) | 69.7 | 98.2 | 30.2 | 88.4 | 62.7 | 88.5 | 85.3 | 34.2 |
RN—Rio Grande do Norte (Northeast) | 3,506,853 | 162 | 167 | 29.0 (9.5; 18/64) | 3.8 (1.6; 1/9) | 66.5 | 98.2 | 29.9 | 95.2 | 70.1 | 74.9 | 80.8 | 31.1 |
RO—Rondônia (Norte) | 1,777,225 | 82 | 124 | 37.1 (11.7; 19/69) | 3.4 (1.8;1/10) | 71.0 | 98.4 | 24.6 | 81.5 | 58.1 | 82.3 | 88.7 | 38.7 |
RR—Roraima (North) | 605,761 | 28 | 239 | 28.3 (10.7; 18/68) | 3.9 (1.9; 1/15) | 67.8 | 97.9 | 30.6 | 89.5 | 74.9 | 81.2 | 87.0 | 36.8 |
RS—Rio Grande do Sul (South) | 11,377,239 | 527 | 582 | 38.5 (14.0; 18/72) | 2.8 (1.2; 1/8) | 75.6 | 97.8 | 35.2 | 87.6 | 65.8 | 41.4 | 80.8 | 30.2 |
SC—Santa Catarina (South) | 7,164,788 | 332 | 380 | 35.0 (12.8; 18/68) | 2.9 (1.3; 1/10) | 65.8 | 97.6 | 33.2 | 86.5 | 68.9 | 47.6 | 84.7 | 39.3 |
SE—Sergipe (Northeast) | 2,298,696 | 106 | 252 | 31.2 (10.4; 18/64) | 3.5 (1.6; 1/11) | 70.2 | 99.6 | 26.7 | 90.4 | 68.3 | 77.4 | 88.8 | 37.7 |
SP—São Paulo (Southeast) | 45,919,049 | 2127 | 2604 | 36.5 (14.8; 18/82) | 3.1 (1.4; 1/10) | 73.4 | 97.7 | 34.5 | 87.6 | 64.6 | 55.1 | 83.5 | 40.4 |
TO—Tocantins (North) | 1,572,866 | 73 | 70 | 38.2 (10.3; 20/64) | 3.0 (1.5; 1/8) | 67.1 | 95.7 | 38.6 | 84.3 | 71.4 | 61.4 | 81.4 | 41.4 |
Total | 210,147,125 | 9734 | 12,196 | 35.2 (13.0;18/94) | 3.2 (1.50; 1/15) | 69.8 | 97.9 | 31.2 | 88.9 | 66.8 | 68.8 | 84.4 | 36.5 |
Level (%) | |||||
---|---|---|---|---|---|
Instrument | Factor | Normal | Mild | Moderate | Severe or Extremely Severe |
DASS-21 | Depression | 38.7 | 14.5 | 21.8 | 25.0 |
Anxiety | 55.8 | 8.5 | 19.2 | 16.5 | |
Stress | 49.2 | 15.5 | 16.9 | 18.4 | |
IES-R | Psychological impact | 45.1 | 19.7 | 7.2 | 28.0 |
Avoidance | 40.2 | 18.0 | 10.9 | 30.9 | |
Intrusion | 53.2 | 14.3 | 7.1 | 25.3 | |
Hyperarousal | 49.9 | 12.4 | 10.0 | 27.7 |
Symptom OR (IC 95%) | |||||||
---|---|---|---|---|---|---|---|
Characteristic | Depression | Anxiety | Stress | Psychological Impact-General | Avoidance | Intrusion | Hyperarousal |
Sex Male/Female * | 1.10 (0.99–1.22) | 1.40 † (1.26–1.54) | 1.651 (1.49–1.83) | 1.50 † (1.36–1.66) | 1.57 † (1.43–1.72) | 1.35 † (1.22–1.49) | 1.40 † (1.26–1.55) |
Age (≥55 years *) < 24 | 2.98 † (2.38–3.74) | 1.78 † (1.42–2.23) | 3.58 † (2.82–4.53) | 2.52 † (2.02–3.14) | 1.75 † (1.43–2.14) | 1.58 † (1.27–1.97) | 3.03 † (2.40–3.81) |
24–33 | 2.05 † (1.72–2.45) | 1.47 † (1.21–1.78) | 2.56 † (2.10–3.12) | 1.76 † (1.47–2.10) | 1.27 † (1.08–1.49) | 1.41 † (1.18–1.70) | 2.18 † (1.80–2.64) |
33–43 | 1.49 † (1.26–1.76) | 1.21 (1.00–1.46) | 1.93 † (1.59–2.34) | 1.27 † (1.07–1.51) | 1.00 (0.86–1.17) | 1.06 (0.89–1.27) | 1.54 † (1.28–1.85) |
43–55 | 1.13 (0.95–1.35) | 1.09 (0.90–1.33) | 1.29 † (1.05–1.58) | 1.12 (0.94–1.35) | 0.92 (0.78–1.07) | 0.99 (0.82–1.19) | 1.24 (1.01–1.50) |
N people in the residence | 0.96 (0.92–0.99) | 1.06 (1.03–1.10) | 1.02 (0.98–1.05) | 1.02 (0.99–1.05) | 1.01 (0.98–1.04) | 1.00 (0.97–1.03) | 1.04 (1.01–1.08) |
Economic level ‡ (>2154.00 USD *) < 240.00 USD | 1.68 † (1.34–2.90) | 2.69 † (2.20–3.28) | 1.18 (0.96–1.46) | 1.92 † (1.56–2.37) | 1.38 † (1.14–1.67) | 1.82 † (1.49–2.22) | 1.91 † (1.55–2.36) |
Between 240.00 USD and 383.00 USD | 1.70 † (1.40–2.06) | 2.47 † (2.07–2.95) | 1.25 (1.03–1.50) | 1.66 † (1.39–1.99) | 1.55 † (1.31–1.84) | 1.44 † (1.21–1.71) | 1.60 † (1.33–1.92) |
Between 384.00 USD and 1652.00 USD | 1.37 † (1.20–1.55) | 1.72 † (1.52–1.96) | 1.08 (0.95–1.23) | 1.42 † (1.26–1.61) | 1.29 † (1.15–1.45) | 1.26 † (1.12–1.43) | 1.28 † (1.12–1.45) |
Between 1653.00 USD and 2153.00 USD | 1.13 (0.98–1.29) | 1.31 † (1.13–1.51) | 1.12 (0.97–1.30) | 1.17 † (1.01–1.34) | 1.22 † (1.07–1.38) | 1.09 (0.94–1.25) | 1.17 (1.01–1.36) |
Education (completed graduate studies *) Up to Completed High School | 1.55 † (1.30–1.84) | 1.12 (0.96–1.32) | 1.15 (0.97–1.36) | 1.12 (0.95–1.32) | 1.04 (0.89–1.21) | 1.29 † (1.09–1.51) | 1.13 (0.95–1.33) |
Completed Higher Education | 1.17 † (1.03–1.34) | 1.02 (0.90–1.16) | 0.99 (0.86–1.13) | 1.02 (0.90–1.16) | 1.01 (0.90–1.14) | 1.05 (0.93–1.19) | 1.00 (0.88–1.14) |
Feel Unsafe/Safe * | 2.52 † (2.22–2.87) | 2.16 † (1.87–2.50) | 2.70 † (2.33–3.13) | 2.48 † (2.17–2.84) | 1.75 † (1.56–1.97) | 2.92 † (2.52–3.38) | 2.67 † (2.31–3.09) |
Health problems Yes/No * | 1.17 † (1.05–1.30) | 1.51 † (1.36–1.67) | 1.31 † (1.18–1.47) | 1.34 † (1.21–1.49) | 1.08 (0.98–1.19) | 1.42 † (1.28–1.57) | 1.44 † (1.30–1.61) |
Socialization Lower/equal or higher than usual * | 1.14 (1.00–1.29) | 1.08 (0.96–1.23) | 0.99 (0.87–1.12) | 1.03 (0.91–1.17) | 0.99 (0.89–.11) | 1.03 (0.91–1.17) | 1.02 (0.90–1.16) |
Previous mental disorder Yes/No * | 2.38 † (2.14–2.65) | 2.64 † (2.39–2.91) | 2.58 † (2.32–2.87) | 2.41 † (2.18–2.67) | 1.72 † (1.56–1.89) | 2.42 † (2.19–2.66) | 2.57 † (2.32–2.85) |
Mental health change due to pandemic Yes/No * | 4.99 † (4.52–5.50) | 5.19 † (4.65–5.80) | 9.07 † (8.10–10.15) | 5.06 † (4.58–5.59) | 2.53 † (2.31–2.78) | 5.09 † (4.58–5.66) | 6.55 † (5.87–7.29) |
Know people positive for COVID-19 (Yes/No *) | 1.14 † (1.03–1.26) | 0.95 (0.87–1.05) | 0.97 (0.88–1.08) | 0.86 (0.78–0.95) | 0.93 (0.85–1.02) | 0.90 (0.82–0.99) | 0.88 (0.80–0.97) |
Time spent with news (<60 min *) 60–90 | 1.11 (0.97–1.27) | 0.97 (0.85–1.11) | 1.01 (0.88–1.17) | 0.88 (0.77–1.01) | 0.80 † (0.71–0.91) | 1.09 (0.96–1.25) | 1.08 (0.94–1.24) |
90–150 | 1.33 † (1.15–1.53) | 1.09 (0.94–1.25) | 1.05 (0.90–1.22) | 1.04 (0.90–1.20) | 0.74 † (0.65–0.84) | 1.48 † (1.28–1.70) | 1.42 † (1.23–1.64) |
≥150 | 1.67 † (1.44–1.93) | 1.41 † (1.23–1.63) | 1.45 † (1.25–1.69) | 1.19 † (1.04–1.37) | 0.66 † (0.58–0.75) | 2.18 † (1.90–2.51) | 1.83 † (1.59–2.12) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, J.A.D.B.; Martins, B.G.; Campos, L.A.; Marôco, J.; Saadiq, R.A.; Ruano, R. Early Psychological Impact of the COVID-19 Pandemic in Brazil: A National Survey. J. Clin. Med. 2020, 9, 2976. https://doi.org/10.3390/jcm9092976
Campos JADB, Martins BG, Campos LA, Marôco J, Saadiq RA, Ruano R. Early Psychological Impact of the COVID-19 Pandemic in Brazil: A National Survey. Journal of Clinical Medicine. 2020; 9(9):2976. https://doi.org/10.3390/jcm9092976
Chicago/Turabian StyleCampos, Juliana Alvares Duarte Bonini, Bianca Gonzalez Martins, Lucas Arrais Campos, João Marôco, Rayya Ahmed Saadiq, and Rodrigo Ruano. 2020. "Early Psychological Impact of the COVID-19 Pandemic in Brazil: A National Survey" Journal of Clinical Medicine 9, no. 9: 2976. https://doi.org/10.3390/jcm9092976
APA StyleCampos, J. A. D. B., Martins, B. G., Campos, L. A., Marôco, J., Saadiq, R. A., & Ruano, R. (2020). Early Psychological Impact of the COVID-19 Pandemic in Brazil: A National Survey. Journal of Clinical Medicine, 9(9), 2976. https://doi.org/10.3390/jcm9092976