Effect of Angle Opening Parameters on Corneal Endothelial Cell Density and Intraocular Pressure after Posterior Chamber Phakic Intraocular Lens Implantation
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Lens Size Selection and Power Calculation
2.3. Surgical Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ICL | implantable collamer lens |
IOP | intraocular pressure |
AS-OCT | anterior segment optical coherence tomography |
UBM | ultrasound biomicroscopy |
ECD | endothelial cell density |
D | diopter |
SD | standard deviation |
logMAR | logarithm of the minimum angle of resolution |
AOD500 | angle open distance at 500 µm |
TISA500 | trabecular-iris space area at 500 µm |
TIA500 | trabecular iris angle at 500 µm |
ANOVA | analysis of variance |
References
- Sanders, D.R.; Doney, K.; Poco, M. United States Food and Drug Administration clinical trial of the Implantable Collamer Lens (ICL) for moderate to high myopia. Ophthalmology 2004, 111, 1683–1692. [Google Scholar] [PubMed]
- Kamiya, K.; Shimizu, K.; Igarashi, A.; Hikita, F.; Komatsu, M. Four-Year Follow-up of Posterior Chamber Phakic Intraocular Lens Implantation for Moderate to High Myopia. Arch. Ophthalmol. 2009, 127, 845–850. [Google Scholar] [PubMed] [Green Version]
- Alfonso, J.F.; Baamonde, B.; Fernandez-Vega, L.; Fernandes, P.; González-Méijome, J.M.; Montés-Micó, R. Posterior chamber collagen copolymer phakic intraocular lenses to correct myopia: Five-year follow-up. J. Cataract. Refract. Surg. 2011, 37, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, A.; Shimizu, K.; Kamiya, K. Eight-year follow-up of posterior chamber phakic intraocular lens plantation for moderate to high myopia. Am. J. Ophthalmol. 2014, 157, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yu, M.; Ye, C.; Lam, D.S.C.; Leung, C.K. Anterior Chamber Angle Imaging with Swept-Source Optical Coherence Tomography: An Investigation on Variability of Angle Measurement. Investig. Opthalmol. Vis. Sci. 2011, 52, 8598–8603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, K.; Kamiya, K.; Igarashi, A.; Shiratani, T. Early clinical outcomes of implantation of posterior chamber phakic intraocular lens with a central hole (Hole ICL) for moderate to high myopia. Br. J. Ophthalmol. 2011, 96, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamiya, K.; Shimizu, K.; Igarashi, A.; Kitazawa, Y.; Kojima, T.; Nakamura, T.; Ichikawa, K. Posterior Chamber Phakic Intraocular Lens Implantation in Eyes with an Anterior Chamber Depth of Less Than 3 mm: A Multicenter Study. Sci. Rep. 2018, 8, 13322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, T.-Y.; Lee, M.O.; Park, S.C.; Ahn, K.; Chung, E.-S. Changes in iridocorneal angle structure and trabecular pigmentation with STAAR implantable collamer lens during 2 years. J. Refract. Surg. 2009, 25, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-N.; Zheng, G.-Y.; Wang, S.-T.; Wang, J.; Zhao, J.; Guo, H.-L.; Zhao, L.-J. Quantitative observation on changes of anterior segment by ultrasound biomicroscopy after posterior chamber phakic intraocular lens implantation. Zhonghua Yan Ke Za Zhi 2011, 47, 815–819. (In Chinese) [Google Scholar] [PubMed]
- Cao, X.-F.; Wang, Y.; Shen, Y.; Tong, J.-P.; Xia, J.-H.; Zhou, T.-A.; Ye, B. Selection of the posterior chamber phakic intraocular lens length. Zhonghua Yan Ke Za Zhi 2013, 49, 235–241. (In Chinese) [Google Scholar] [PubMed]
- Lim, D.H.; Lee, M.G.; Chung, E.-S.; Chung, T.-Y. Clinical Results of Posterior Chamber Phakic Intraocular Lens Implantation in Eyes with Low Anterior Chamber Depth. Am. J. Ophthalmol. 2014, 158, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Vigo, J.I.; Macarro-Merino, A.; Fernández-Vigo, C.; Fernández-Vigo, J.Á.; De La Casa, J.M.M.; Fernandez-Perez, C.; García-Feijoó, J.; Information, P.E.K.F.C. Effects of Implantable Collamer Lens V4c Placement on Iridocorneal Angle Measurements by Fourier-Domain Optical Coherence Tomography. Am. J. Ophthalmol. 2016, 162, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Vigo, J.I.; Macarro-Merino, A.; Fernández-Vigo, C.; Fernández-Vigo, J.Á.; De-Pablo-Gómez-De-Liaño, L.; Fernandez-Perez, C.; García-Feijoó, J. Impacts of Implantable Collamer Lens V4c Placement on Angle Measurements Made by Optical Coherence Tomography: Two-Year Follow-up. Am. J. Ophthalmol. 2017, 181, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Coskunseven, E.; Kavadarli, I.; Sahin, O.; Kayhan, B.; Pallikaris, I. Refractive Outcomes of 20 Eyes Undergoing ICL Implantation for Correction of Hyperopic Astigmatism. J. Refract. Surg. 2017, 33, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, Z.; Wang, Y.; Liu, Q.; Chen, B. Implantable collamer lens surgery in patients with primary iris and/or ciliary body cysts. BMC Ophthalmol. 2018, 18, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E Murdoch, I.; Morris, S.S.; Cousens, S.N. People and eyes: Statistical approaches in ophthalmology. Br. J. Ophthalmol. 1998, 82, 971–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographic | Preoperative | Postoperative (18 months) | p-Value |
---|---|---|---|
Age (years) | 34.0 ± 8.8 (95%CI, 16.7 to 51.0) | ||
Gender (male:female) | 25:34 | ||
Manifest spherical refraction (D) | −7.20 ± 3.62 (95%CI, −14.21 to −0.10) | 0.01 ± 0.30 (95%CI, −0.57 to 0.59) | <0.001 |
Manifest cylinder (D) | −0.80 ± 0.96 (95%CI, −2.67 to 1.08) | −0.17 ± 0.35 (95%CI, −0.85 to 0.52) | <0.001 |
UDVA (logMAR) | 1.17 ± 0.40 (95%CI, 0.39 to 1.96) | −0.17 ± 0.13 (95%CI, −0.43 to 0.09) | <0.001 |
CDVA (logMAR) | −0.23 ± 0.08 (95%CI, −0.39 to −0.07) | −0.23 ± 0.09 (95%CI, −0.40 to −0.06) | 0.586 |
Intraocular pressure (mmHg) | 14.2 ± 2.6 (95%CI, 9.1 to 19.3) | 14.0 ± 3.0 (95%CI, 8.1 to 19.9) | 0.495 |
Endothelial cell density (cells/mm2) | 2815 ± 220 (95%CI, 2384 to 3246) | 2775 ± 226 (95%CI, 2331 to 3218) | 0.173 |
AOD500 (mm) | 0.59 ± 0.21 (95%CI, 0.17 to 1.01) | 0.32 ± 0.09 (95%CI, 0.15 to 0.50) | <0.001 |
TISA500 (mm2) | 0.20 ± 0.08 (95%CI, 0.04 to 0.37) | 0.12 ± 0.05 (95%CI, 0.02 to 0.22) | <0.001 |
TIA500 (degree) | 48.1 ± 10.9 (95%CI, 26.7 to 69.5) | 29.9 ± 7.3 (95%CI, 15.6 to 44.3) | <0.001 |
Postoperative | ECD | IOP | Δ Change | ΔECD | ΔIOP | ||||
---|---|---|---|---|---|---|---|---|---|
(18 Months) | Correlation | p-Value | Correlation | p-Value | (Pre–Post) | Correlation | p-Value | Correlation | p-Value |
AOD500 | −0.108 | 0.249 | −0.106 | 0.256 | ΔAOD500 | −0.109 | 0.246 | 0.151 | 0.106 |
TISA500 | −0.162 | 0.083 | −0.021 | 0.826 | ΔTISA500 | −0.076 | 0.418 | 0.155 | 0.097 |
TIA500 | −0.022 | 0.815 | −0.018 | 0.850 | ΔTIA500 | −0.074 | 0.430 | 0.020 | 0.833 |
Author | Year | Eyes | Model | F/U | Device | AOD500 (µm) | TISA500 (mm2) | TIA (°) |
---|---|---|---|---|---|---|---|---|
Chung et al. [8] | 2009 | 48 | V4 | 2Y | UBM | 327.7 ± 177.8 | N.A. | 24.2 ± 5.5 |
Wang et al. [9] | 2011 | 30 | V4 | 1Y | UBM | 0.41 ± 0.03 mm | N.A. | 32.40 ± 3.23 |
Cao et al. [10] | 2013 | 64 | V4 | 1Y | UBM | 0.32 ± 0.15 mm | N.A. | 29.1% (>30°) 50.0% (21° to 30°) 11.6% (11° to 20°) 9.3% (<10°) |
Lim et al. [11] | 2014 | 18 | V4 | 10 to 51M | UBM | 265.27 ± 112.83 | N.A. | 23.27 ± 8.14 |
Fernández-Vigo et al. [12] | 2016 | 50 | V4c | 3M | FD-OCT | 380.5 ± 171.8 (nasal) 363.8 ± 167.1 (temporal) | 0.13 ± 0.06 (nasal) 0.12 ± 0.06 (temporal) | 30.6 6 ± 12.3 (nasal) 30.1 ± 11.9 (temporal) |
Fernández-Vigo et al. [13] | 2017 | 54 | V4c | 2Y | FD-OCT | 390.1 ± 166.5 (nasal) 354.1 ± 151.9 (temporal) | N.A. | 27.3 ± 8.8 (nasal) 26.8 ± 8.1 (temporal) |
Coskunseven et al. [14] | 2017 | 20 | V4 | 1Y | FD-OCT | 0.414 ± 0.027 mm (nasal) 0.420 ± 0.041 mm (temporal) | 0.168 ± 0.013 (nasal) 0.173 ± 0.014 (temporal) | 27.77 ± 1.55 (nasal) 27.85 ± 1.47 (temporal) |
Li et al. [15] | 2018 | 201 | V4c | 6M | UBM | 0.21 ± 0.06 mm in Group 1, 0.26 ± 0.09 mm in Group 2 for 3′oclock; 0.25 ± 0.09 mm in Group 1, 0.26 ± 0.06 mm in Group 2 for 9′oclock | N.A. | 22.67 ± 6.15 in Group 1, 27.56 ± 8.50 in Group 2 for 3′oclock; 26.30 ± 7.11 in Group 1, 25.54 ± 5.72 in Group 2 for 9′oclock |
Current | 2020 | 116 | V5 | 18M | SS-OCT | 0.32 ± 0.09 mm | 0.12 ± 0.05 | 29.9 ± 7.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiya, K.; Ando, W.; Tsujisawa, T.; Takahashi, M.; Shoji, N. Effect of Angle Opening Parameters on Corneal Endothelial Cell Density and Intraocular Pressure after Posterior Chamber Phakic Intraocular Lens Implantation. J. Clin. Med. 2020, 9, 2704. https://doi.org/10.3390/jcm9092704
Kamiya K, Ando W, Tsujisawa T, Takahashi M, Shoji N. Effect of Angle Opening Parameters on Corneal Endothelial Cell Density and Intraocular Pressure after Posterior Chamber Phakic Intraocular Lens Implantation. Journal of Clinical Medicine. 2020; 9(9):2704. https://doi.org/10.3390/jcm9092704
Chicago/Turabian StyleKamiya, Kazutaka, Wakako Ando, Tatsuhiko Tsujisawa, Masahide Takahashi, and Nobuyuki Shoji. 2020. "Effect of Angle Opening Parameters on Corneal Endothelial Cell Density and Intraocular Pressure after Posterior Chamber Phakic Intraocular Lens Implantation" Journal of Clinical Medicine 9, no. 9: 2704. https://doi.org/10.3390/jcm9092704
APA StyleKamiya, K., Ando, W., Tsujisawa, T., Takahashi, M., & Shoji, N. (2020). Effect of Angle Opening Parameters on Corneal Endothelial Cell Density and Intraocular Pressure after Posterior Chamber Phakic Intraocular Lens Implantation. Journal of Clinical Medicine, 9(9), 2704. https://doi.org/10.3390/jcm9092704