Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms
Abstract
1. Introduction
2. Patients and Methods
3. Statistical Analyses
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADT | androgen deprivation therapy; |
CTV | clinical target volume; |
IPSS | international prostate symptom score; |
LUTS | lower urinary tract symptoms; |
NCCN | National Comprehensive Cancer Network; |
QoL | Quality of Life; |
RT | radiation therapy. |
References
- Ishikawa, H.; Tsuji, H.; Murayama, S.; Sugimoto, M.; Shinohara, N.; Maruyama, S.; Murakami, M.; Shirato, H.; Sakurai, H. Particle therapy for prostate cancer: The past, present and future. Int. J. Urol. 2019, 26, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Zietman, A.L.; DeSilvio, M.L.; Slater, J.D.; Rossi, C.J.; Miller, D.W.; Adams, J.A.; Shipley, W.U. Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: A randomized controlled trial. JAMA 2005, 294, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Budäus, L.; Bolla, M.; Bossi, A.; Cozzarini, C.; Crook, J.; Widmark, A.; Wiegel, T. Functional outcomes and complications following radiation therapy for prostate cancer: A critical analysis of the literature. Eur. Urol. 2012, 61, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Mascan, B.; Marignol, L. Aspirin in the Management of Patients with Prostate Cancer Undergoing Radiotherapy: Friend or Foe? Anticancer Res. 2018, 38, 1897–1902. [Google Scholar]
- Lobo, N.; Kulkarni, M.; Hughes, S.; Nair, R.; Khan, M.S.; Thurairaja, R. Urologic Complications Following Pelvic Radiotherapy. Urology 2018, 122, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shuboni-Mulligan, D.D.; Breton, G.; Smart, D.; Gilbert, M.; Armstrong, T.S. Radiation chronotherapy-clinical impact of treatment time-of-day: A systematic review. J. Neurooncol. 2019, 145, 415–427. [Google Scholar] [CrossRef]
- Kumar, P.V.; Dakup, P.P.; Sarkar, S.; Modasia, J.B.; Motzner, M.S.; Gaddameedhi, S. It’s About Time: Advances in Understanding the Circadian Regulation of DNA Damage and Repair in Carcinogenesis and Cancer Treatment Outcomes. Yale J. Biol. Med. 2019, 92, 305–316. [Google Scholar]
- Reinke, H.; Asher, G. Crosstalk between metabolism and circadian clocks. Nat. Rev. Mol. Cell Biol. 2019, 20, 227–241. [Google Scholar] [CrossRef]
- Negoro, H.; Kanematsu, A.; Yoshimura, K.; Ogawa, O. Chronobiology of micturition: Putative role of the circadian clock. J. Urol. 2013, 190, 843–849. [Google Scholar] [CrossRef]
- Bebas, P.; Goodall, C.P.; Majewska, M.; Neumann, A.; Giebultowicz, J.M.; Chappell, P.E. Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice. FASEB J. 2009, 23, 523–533. [Google Scholar] [CrossRef]
- Negoro, H.; Kanematsu, A.; Doi, M.; Suadicani, S.O.; Matsuo, M.; Imamura, M.; Okinami, T.; Nishikawa, N.; Oura, T.; Matsui, S.; et al. Involvement of urinary bladder Connexin43 and the circadian clock in coordination of diurnal micturition rhythm. Nat. Commun. 2012, 3, 809. [Google Scholar] [CrossRef] [PubMed]
- Scheiermann, C.; Gibbs, J.; Ince, L.; Loudon, A. Clocking in to immunity. Nat. Rev. Immunol. 2018, 18, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Harper, E.; Talbot, C.J. Is it Time to Change Radiotherapy: The Dawning of Chronoradiotherapy? Clin. Oncol. 2019, 31, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Makishima, H.; Ishikawa, H.; Tanaka, K.; Mori, Y.; Mizumoto, M.; Ohnishi, K.; Aihara, T.; Fukumitsu, N.; Okumura, T.; Sakurai, H. A retrospective study of late adverse events in proton beam therapy for prostate cancer. Mol. Clin. Oncol. 2017, 7, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Hsu, F.M.; Hou, W.H.; Huang, C.Y.; Wang, C.C.; Tsai, C.L.; Tsai, Y.C.; Yu, H.J.; Pu, Y.S.; Cheng, J.C. Differences in toxicity and outcome associated with circadian variations between patients undergoing daytime and evening radiotherapy for prostate adenocarcinoma. Chronobiol. Int. 2016, 33, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Griffin, F.; Marignol, L. Therapeutic potential of melatonin for breast cancer radiation therapy patients. Int. J. Radiat. Biol. 2018, 94, 472–477. [Google Scholar] [CrossRef]
- Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Mirtavoos-Mahyari, H.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; et al. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin. Transl. Oncol. 2019, 21, 268–279. [Google Scholar] [CrossRef]
- Kandaz, M.; Ertekin, M.V.; Karslıoğlu, İ.; Erdoğan, F.; Sezen, O.; Gepdiremen, A.; Gündoğdu, C. Zinc Sulfate and/or Growth Hormone Administration for the Prevention of Radiation-Induced Dermatitis: A Placebo-Controlled Rat Model Study. Biol. Trace Elem. Res. 2017, 179, 110–116. [Google Scholar] [CrossRef]
- Al-Turk, W.; Al-Dujaili, E.A. Effect of age, gender and exercise on salivary dehydroepiandrosterone circadian rhythm profile in human volunteers. Steroids 2016, 106, 19–25. [Google Scholar] [CrossRef]
- Cao, J.; Yu, L.; Zhao, J.; Ma, H. Effect of dehydroepiandrosterone on the immune function of mice in vivo and in vitro. Mol. Immunol. 2019, 112, 283–290. [Google Scholar] [CrossRef]
- Shafi, A.A.; Knudsen, K.E. Cancer and the Circadian Clock. Cancer Res. 2019, 79, 3806–3814. [Google Scholar] [CrossRef] [PubMed]
- Antoch, M.P.; Kondratov, R.V. Circadian proteins and genotoxic stress response. Circ. Res. 2010, 106, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Schibler, U. Oxidation of CLOCK boosts circadian rhythms. Nat. Cell Biol. 2019, 21, 1464–1465. [Google Scholar] [CrossRef] [PubMed]
- Dakup, P.P.; Porter, K.I.; Gajula, R.P.; Goel, P.N.; Cheng, Z.; Gaddameedhi, S. The circadian clock protects against ionizing radiation-induced cardiotoxicity. FASEB J. 2020, 34, 3347–3358. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.; Chang-Claude, J.; Critchley, A.M.; Kyriacou, C.; Lavers, S.; Rattay, T.; Seibold, P.; Webb, A.; West, C.; Symonds, R.P.; et al. Genetic Variants Predict Optimal Timing of Radiotherapy to Reduce Side-effects in Breast Cancer Patients. Clin. Oncol. 2019, 31, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Storch, K.F.; Lipan, O.; Leykin, I.; Viswanathan, N.; Davis, F.C.; Wong, W.H.; Weitz, C.J. Extensive and divergent circadian gene expression in liver and heart. Nature 2002, 417, 78–83. [Google Scholar] [CrossRef] [PubMed]
Time of Day for Proton Beam Therapy | |||||
---|---|---|---|---|---|
Morning | Around Noon | Late Afternoon | |||
(08:30–10:30) | (10:31–14:30) | (14:31–16:30) | Total | p Value | |
No. patients (%) | 52 (31.0) | 64 (38.1) | 52 (31.0) | 168 | |
Age at proton therapy (median [range], years) | 68 (57–80) | 67 (56–86) | 68.5 (53–86) | 68 (53–86) | 0.8 |
Initial PSA (median [range], ng/mL) | 10.3 (3.5–220) | 7.66 (3.5–143) | 8.3 (1.6–150) | 8.6 (1.6–220) | 0.39 |
Gleason score at prostate biopsy (n, %) | 0.37 | ||||
6 | 10 (19.2) | 13 (20.3) | 6 (11.5) | 29 (17.3) | |
7 | 20 (38.5) | 30 (46.9) | 21 (40.4) | 71 (42.3) | |
8 | 15 (28.9) | 15 (23.4) | 13 (25) | 43 (25.6) | |
9 | 6 (11.5) | 5 (7.8) | 12 (23.1) | 23 (13.7) | |
10 | 1 (1.9) | 1 (1.6) | 0 | 2 (1.2) | |
Clinical T stage (n, %) | 0.77 | ||||
T1 | 12 (23.1) | 16 (25) | 10 (19.2) | 33 (22.6) | |
T2 | 27 (51.9) | 35 (54.7) | 26 (50) | 88 (52.4) | |
T3 | 13 (25) | 13 (20.3) | 16 (30.8) | 42 (25.0) | |
NCCN risk classification (n, %) | 0.67 | ||||
Low | 7 (13.5) | 9 (14.1) | 4 (7.7) | 20 (11.9) | |
Intermediate | 20 (38.5) | 26 (40.6) | 18 (34.6) | 64 (38.1) | |
High | 25 (48.1) | 29 (45.3) | 30 (57.7) | 84 (50.0) | |
ADT (n, %) | 46 (88.5) | 52 (81.3) | 48 (92.3) | 146 (86.9) | 0.21 |
Fractional PBT dose (n, %) | 0.47 | ||||
2.0 Gy | 25 (48.1) | 24 (37.5) | 24 (46.2) | 73 (43.5) | |
2.5 Gy | 27 (51.9) | 40 (62.5) | 28 (53.9) | 95 (56.5) | |
CTV (median [range], mL) | 29.8 (15.1–61.9) | 29.5 (16.9–98.6) | 28 (16.4–87.1) | 29 (15–84) | 0.7 |
IPSS total score (median [range]) | 8 (0–18) | 8.5 (0–24) | 8 (0–20) | 8 (0–24) | 0.84 |
Severity of IPSS (n, %) | 0.44 | ||||
Mild | 24 (46.2) | 26 (40.6) | 25 (48.1) | 75 (44.6) | |
Moderate | 28 (53.9) | 34 (53.1) | 26 (50) | 88 (52.4) | |
Severe | 0 (0) | 4 (6.3) | 1 (1.9) | 5 (3.0) | |
IPSS-QoL score (median [range]) | 2 (0–5) | 2 (0–6) | 2 (0–6) | 2 (0–6) | 0.79 |
LUTS medication use before PBT (n, %) | 3 (5.8) | 8 (12.5) | 3 (5.8) | 14 (8.3) | 0.31 |
Diabetes (n, %) | 14 (26.9) | 11 (17.2) | 8 (15.4) | 33 (19.6) | 0.29 |
Anti-coagulant therapy (n, %) | 9 (17.3) | 8 (12.5) | 8 (13.4) | 25 (14.9) | 0.8 |
Time of Day for Proton Beam Therapy | |||||
---|---|---|---|---|---|
Morning | Around Noon | Late Afternoon | |||
(08:30–10:30) | (10:31–14:30) | (14:31–16:30) | β | p Value | |
IPSS total score | 5 ± 0.77 | 7,33 ± 0.86 | 7.92 ± 0.87 | −0.24 | 0.008 |
IPSS voiding subscore | 2.85 ± 0.55 | 4.12 ± 0.58 | 4.88 ± 0.66 | −0.21 | 0.02 |
IPSS storage subscore | 2.15 ± 0.39 | 3.14 ± 0.42 | 3.26 ± 0.43 | n.s. | |
IPSS subscore | |||||
1 | 0.56 ± 0.15 | 0.92 ± 0.17 | 0.87 ± 0.19 | n.s. | |
2 | 0.85 ± 0.22 | 1.03 ± 0.20 | 1.08 ± 0.22 | n.s. | |
3 | 0.81 ± 0.18 | 0.92 ± 0.19 | 1.27 ± 0.20 | n.s. | |
4 | 0.52 ± 0.15 | 1.13 ± 0.18 | 1.22 ± 0.22 | −0.28 | 0.002 |
5 | 0.98 ± 0.25 | 1.30 ± 0.21 | 1.73 ± 0.27 | n.s. | |
6 | 0.5 ± 0.17 | 1.05 ± 0.16 | 0.94 ± 0.21 | n.s. | |
7 | 0.79 ± 0.14 | 0.98 ± 0.18 | 0.96 ± 0.14 | n.s. | |
IPSS-QoL score | 0.52 ± 0.15 | 1.18 ± 0.16 | 1.24 ± 0.24 | −0.27 | 0.004 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negoro, H.; Iizumi, T.; Mori, Y.; Matsumoto, Y.; Chihara, I.; Hoshi, A.; Sakurai, H.; Nishiyama, H.; Ishikawa, H. Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms. J. Clin. Med. 2020, 9, 2263. https://doi.org/10.3390/jcm9072263
Negoro H, Iizumi T, Mori Y, Matsumoto Y, Chihara I, Hoshi A, Sakurai H, Nishiyama H, Ishikawa H. Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms. Journal of Clinical Medicine. 2020; 9(7):2263. https://doi.org/10.3390/jcm9072263
Chicago/Turabian StyleNegoro, Hiromitsu, Takashi Iizumi, Yutaro Mori, Yoshitaka Matsumoto, Ichiro Chihara, Akio Hoshi, Hideyuki Sakurai, Hiroyuki Nishiyama, and Hitoshi Ishikawa. 2020. "Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms" Journal of Clinical Medicine 9, no. 7: 2263. https://doi.org/10.3390/jcm9072263
APA StyleNegoro, H., Iizumi, T., Mori, Y., Matsumoto, Y., Chihara, I., Hoshi, A., Sakurai, H., Nishiyama, H., & Ishikawa, H. (2020). Chronoradiation Therapy for Prostate Cancer: Morning Proton Beam Therapy Ameliorates Worsening Lower Urinary Tract Symptoms. Journal of Clinical Medicine, 9(7), 2263. https://doi.org/10.3390/jcm9072263