Both Human Hematoma Punctured from Pelvic Fractures and Serum Increase Muscle Resident Stem Cells Response to BMP9: A Multivariate Statistical Approach
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Patient Recruitment Protocol and Sample Conditioning
2.3. Human Muscle Resident Stromal Cells Harvesting, Sorting and Cultivation Protocol
2.4. Alkaline Phosphatase Activity Assays
2.5. Dose Response of BMP2 and BMP9 and EC50 Determination
2.6. Dose Response of Serum from Healthy Human on hmrSCs with or without BMP9
2.7. Multiplex ELISA Assays
2.8. Correlation Matrix, Statistical Analysis, Principal Component Analysis and Clustering of Cytokines Multiplex ELISA Assay Results
- = covariance matrix
- X = non-processed raw data
- with In the identity matrix and 1n, a column vector of “n” ones
- with S the standard deviation
2.9. Effect of Osteopontin on hmrSCs Cells Response to BMP9
3. Results
3.1. Effect of BMP on hmrSCs Differentiation with or without Serum or Hematoma
3.1.1. Dose Response of BMP2 and BMP9 and EC50 Determination in the Presence of Fetal Bovine Serum
3.1.2. Dose response of Serum from Healthy Human on hmrSCs with or without BMP9
3.1.3. Effect of Human Hematoma on hmrSCs Response to BMP-9
3.2. Multiplex Analyses of Cytokines in Healthy Human Serum and Hematoma
3.2.1. Correlation Analysis
3.2.2. Principal Component Analysis and Clustering
3.2.3. Effect of Osteopontin on Human Muscle Resident Stem Cells Response to BMP-9 in the Presence of HH
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marsell, R.; Einhorn, T.A. The biology of fracture healing. Injury 2011, 42, 551–555. [Google Scholar] [CrossRef] [Green Version]
- Claes, L.; Recknagel, S.; Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 2012, 8, 133–143. [Google Scholar] [CrossRef]
- Walters, G.; Pountos, I.; Giannoudis, P.V. The cytokines and micro-environment of fracture haematoma: Current evidence. J. Tissue Eng. Regen. Med. 2018, 12, e1662–e1677. [Google Scholar] [CrossRef]
- Cho, T.J.; Gerstenfeld, L.C.; Einhorn, T.A. Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J. Bone Miner. Res. 2002, 17, 513–520. [Google Scholar] [CrossRef]
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015, 11, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Harry, L.E.; Sandisson, A.; Paleolog, E.; Hensen, U.; MF, P.; Nanchahal, J. Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J Orthop Res 2008, 26, 1238–1244. [Google Scholar] [CrossRef]
- Lemos, D.R.; Eisner, C.; Hopkins, C.I.; Rossi, F.M. V Skeletal muscle-resident MSCs and bone formation. Bone 2015, 80, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Glass, G.E.; Chan, J.K.; Freidin, A.; Feldmann, M.; Horwood, N.J.; Nanchahal, J. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc. Natl. Acad. Sci. USA 2011, 108, 1585–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wosczyna, M.N.; Biswas, A.A.; Cogswell, C.A.; Goldhamer, D.J. Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J. Bone Miner. Res. 2012, 27, 1004–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downey, J.; Lauzier, D.; Kloen, P.; Klarskov, K.; Richter, M.; Hamdy, R.; Faucheux, N.; Scime, A.; Balg, F.; Grenier, G. Prospective heterotopic ossification progenitors in adult human skeletal muscle. Bone 2015, 71, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hong, S.; Li, M.; Zhang, J.; Bi, Y.; He, Y.; Liu, X.; Nan, G.; Su, Y.; Zhu, G.; et al. Noggin resistance contributes to the potent osteogenic capability of BMP9 in mesenchymal stem cells. J. Orthop. Res. 2013, 31, 1796–1803. [Google Scholar] [CrossRef] [PubMed]
- Wright, V.; Peng, H.; Usas, A.; Young, B.; Gearhart, B.; Cummins, J.; Huard, J. BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol. Ther. 2002, 6, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Drouin, G.; Couture, V.; Lauzon, M.-A.; Balg, F.; Faucheux, N.; Grenier, G. Muscle injury-induced hypoxia alters the proliferation and differentiation potentials of muscle resident stromal cells. Skelet. Muscle 2019, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Lauzon, M.-A.; Daviau, A.; Drevelle, O.; Marcos, B.; Faucheux, N. Identification of a growth factor mimicking the synergistic effect of fetal bovine serum on BMP-9 cell response. Tissue Eng. Part A 2014, 20. [Google Scholar] [CrossRef] [PubMed]
- Lauzon, M.-A.; Marcos, B.; Faucheux, N. Characterization of alginate/chitosan-based nanoparticles and mathematical modeling of their SpBMP-9 release inducing neuronal differentiation of human SH-SY5Y cells. Carbohydr. Polym. 2018, 181, 801–811. [Google Scholar] [CrossRef]
- Dipankar, D.; Michalewicz, Z. (Eds.) Evolutionary Algorithms in Engineering Applications, 1st ed.; Springer-Verlag: Heidelberg, Germany, 2013; ISBN 978-3-642-08282-5. [Google Scholar]
- Hoff, P.; Gaber, T.; Strehl, C.; Schmidt-Bleek, K.; Lang, A.; Huscher, D.; Burmester, G.R.; Schmidmaier, G.; Perka, C.; Duda, G.N.; et al. Immunological characterization of the early human fracture hematoma. Immunol. Res. 2016, 64, 1195–1206. [Google Scholar] [CrossRef]
- Fischer, V.; Kalbitz, M.; Muller-Graf, F.; Gebhard, F.; Ignatius, A.; Liedert, A.; Haffner-Luntzer, M. Influence of Menopause on Inflammatory Cytokines during Murine and Human Bone Fracture Healing. Int. J. Mol. Sci. 2018, 19, e2070. [Google Scholar] [CrossRef] [Green Version]
- Pountos, I.; Walters, G.; Panteli, M.; Thomas, A.E.; Giannoudis, P. V Inflammatory Profile and Osteogenic Potential of Fracture Haematoma in Humans. J. Clin. Med. 2020, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.M.; Griffin, K.S.; Chu, T.G.; Wenke, J.C.; Corona, B.T.; McKinley, T.O.; Kacena, M.A. Muscle-bone interactions during fracture healing. J. Musculoskelet. Neuronal Interact. 2015, 15, 1–9. [Google Scholar]
- Herrera, B.; Inman, G.J. A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. BMC Cell Biol. 2009, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Evans, K.N.; Forsberg, J.A.; Potter, B.K.; Hawksworth, J.S.; Brown, T.S.; Andersen, R.; Dunne, J.R.; Tadaki, D.; Elster, E.A. Inflammatory cytokine and chemokine expression is associated with heterotopic ossification in high-energy penetrating war injuries. J. Orthop. Trauma 2012, 26, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, E.; Trensz, F.; Haroun, S.; Drouin, G.; Bergeron, E.; Penton, C.M.; Montanaro, F.; Roux, S.; Faucheux, N.; Grenier, G. BMP-9-induced muscle heterotopic ossification requires changes to the skeletal muscle microenvironment. J. Bone Miner. Res. 2011, 26, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Grenier, G.; Leblanc, E.; Faucheux, N.; Lauzier, D.; Kloen, P.; Hamdy, R.C. BMP-9 expression in human traumatic heterotopic ossification: A case report. Skelet. Muscle 2013, 3, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowgey, E.L.; Wyffels, J.T.; Osborn, P.M.; Wood, T.T.; Edsberg, L.E. A Systems Biology Approach for Studying Heterotopic Ossification: Proteomic Analysis of Clinical Serum and Tissue Samples. Genom. Proteom. Bioinform. 2018, 16, 212–220. [Google Scholar] [CrossRef]
- He, X.; Yang, X.; Jabbari, E. Combined effect of osteopontin and BMP-2 derived peptides grafted to an adhesive hydrogel on osteogenic and vasculogenic differentiation of marrow stromal cells. Langmuir 2012, 28, 5387–5397. [Google Scholar] [CrossRef]
Patients | Sex | Age | Patients | Sex | Age | ||
---|---|---|---|---|---|---|---|
Serum from healthy human | 1 | M | 43 | Hematoma (pelvic fracture) | 1 | F | 33 |
2 | M | 33 | 2 | M | 71 | ||
3 | F | 36 | 3 | M | 79 | ||
4 | F | 29 | 4 | F | 69 | ||
5 | F | 35 | 5 | F | 21 | ||
6 | M | 23 | 6 | M | 51 | ||
7 | M | 33 | 7 | F | 23 | ||
8 | M | 22 | 8 | M | 59 | ||
Average | 0.62(M)/0.38(F) | 31.75 | Average | 0.5(M)/0.5(F) | 50.75 | ||
SEM | - | 2.44 | SEM | - | 8.13 |
Parameters | BMP2 | BMP9 |
---|---|---|
RALPmax | 31.25 ± 0.36 | 19.34 ± 0.32 |
Beta (β) | 1.23 ± 0.05 | 1.97 ± 0.07 |
EC50 | 3.75 ± 0.09 | 0.09 ± 0.02 |
R2 | 0.98 | 0.98 |
Model statistics | p < 0.001 | p < 0.001 |
Cytokines from Cluster #2 | Significance | Effect | Cytokines from Cluster #3 | Significance | Effect |
---|---|---|---|---|---|
Angiopoietin-2 | * | ↑ | BCA-1 | N. S | - |
Cathepsin D | N.S. | - | BDNF | ** | ↓ |
ENA-78 | N.S. | - | BMP-9 | ** | ↓ |
Eotaxin-3 | N.S. | - | CTACK | ** | ↓ |
FGF-1 | N.S. | - | Endoglin | N.S. | - |
FGF-2 | * | ↑ | Eotaxin-1 | * | ↓ |
GRO pan | N.S. | - | Eotaxin-2 | N.S. | - |
HGF | *** | ↑ | Follistatin | N.S. | - |
IL-10 | * | ↑ | HB-EGF | N.S. | - |
IL-16 | ** | ↑ | NCAM | ** | ↓ |
IL-6 | * | ↑ | PDGF-AA | ** | ↓ |
IL-8 | * | ↑ | PDGF-AB/BB | ** | ↓ |
IP-10 | N.S. | - | PDGF-BB | *** | ↓ |
LIF | N.S. | - | RANTES | N.S. | - |
MCP-1 | * | ↑ | sCD40L | N.S. | - |
MCP-3 | N.S. | - | sICAM-1 | N.S. | - |
Myeloperoxidase | *** | ↑ | sVCAM-1 | N.S. | - |
OPG | N.S. | - | TGF-B1 | N.S. | - |
OPN | *** | ↑ | TGF-B2 | N.S. | - |
PAI-1 (total) | N.S. | - | TRAIL | * | ↓ |
PLGF | ** | ↑ | VEGF-D | N.S. | - |
TGF-B3 | * | ↑ | |||
VEGF-A | * | ↑ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alinejad, Y.; Lauzon, M.-A.; Grenier, G.; Balg, F.; Faucheux, N. Both Human Hematoma Punctured from Pelvic Fractures and Serum Increase Muscle Resident Stem Cells Response to BMP9: A Multivariate Statistical Approach. J. Clin. Med. 2020, 9, 1175. https://doi.org/10.3390/jcm9041175
Alinejad Y, Lauzon M-A, Grenier G, Balg F, Faucheux N. Both Human Hematoma Punctured from Pelvic Fractures and Serum Increase Muscle Resident Stem Cells Response to BMP9: A Multivariate Statistical Approach. Journal of Clinical Medicine. 2020; 9(4):1175. https://doi.org/10.3390/jcm9041175
Chicago/Turabian StyleAlinejad, Yasaman, Marc-Antoine Lauzon, Guillaume Grenier, Frédéric Balg, and Nathalie Faucheux. 2020. "Both Human Hematoma Punctured from Pelvic Fractures and Serum Increase Muscle Resident Stem Cells Response to BMP9: A Multivariate Statistical Approach" Journal of Clinical Medicine 9, no. 4: 1175. https://doi.org/10.3390/jcm9041175
APA StyleAlinejad, Y., Lauzon, M.-A., Grenier, G., Balg, F., & Faucheux, N. (2020). Both Human Hematoma Punctured from Pelvic Fractures and Serum Increase Muscle Resident Stem Cells Response to BMP9: A Multivariate Statistical Approach. Journal of Clinical Medicine, 9(4), 1175. https://doi.org/10.3390/jcm9041175