Genetic Components of 25-Hydroxyvitamin D Increase in Three Randomized Controlled Trials
Abstract
1. Introduction
2. Experimental Section
2.1. Study Populations
2.1.1. “RCT1” Vitamin D, and Metabolic and Endocrine Parameters in Polycystic Ovary Syndrome (PCOS) Women and Healthy Controls
2.1.2. “RCT2” The Graz Vitamin D and Total Testosterone (TT)-RCT
2.1.3. “RCT3” The Styrian Vitamin D Hypertension Trial
2.2. Procedures
2.3. SNP Selection and Genotyping
2.4. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Carmeliet, G.; Verlinden, L.; van Etten, E.; Verstuyf, A.; Luderer, H.F.; Lieben, L.; Mathieu, C.; Demay, M. Vitamin D and human health: Lessons from vitamin D receptor null mice. Endocr. Rev. 2008, 29, 726–776. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Zittermann, A.; Trummer, C.; Theiler-Schwetz, V.; Lerchbaum, E.; Keppel, M.H.; Grübler, M.R.; März, W.; Pandis, M. Vitamin D testing and treatment: A narrative review of current evidence. Endocr Connect. 2019, 8, R27–R43. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Kunutsor, S.; Vitezova, A.; Oliver-Williams, C.; Chowdhury, S.; Kiefte-de-Jong, J.C.; Khan, H.; Baena, C.P.; Prabhakaran, D.; Hoshen, M.B.; et al. Vitamin D and risk of cause specific death: Systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ 2014, 348, g1903. [Google Scholar] [CrossRef] [PubMed]
- Gaksch, M.; Jorde, R.; Grimnes, G.; Joakimsen, R.; Schirmer, H.; Wilsgaard, T.; Mathiesen, E.B.; Njølstad, I.; Løchen, M.L.; März, W.; et al. Vitamin D and mortality: Individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium. PLoS ONE 2017, 12, e0170791. [Google Scholar] [CrossRef] [PubMed]
- Trummer, O.; Pilz, S.; Hoffmann, M.M.; Winkelmann, B.R.; Boehm, B.O.; März, W.; Pieber, T.R.; Obermayer-Pietsch, B.; Renner, W. Vitamin D and Mortality: A Mendelian Randomization Study. Clin. Chem. 2013, 59, 793–797. [Google Scholar] [CrossRef]
- Dong, J.; Gharahkhani, P.; Chow, W.H.; Gammon, M.D.; Liu, G.; Caldas, C.; Wu, A.H.; Ye, W.; Onstad, L.; Anderson, L.A.; et al. No Association Between Vitamin D Status and Risk of Barrett’s Esophagus or Esophageal Adenocarcinoma: A Mendelian Randomization Study. Clin. Gastroenterol. Hepatol. 2019, 17, 2227–2235. [Google Scholar] [CrossRef]
- Orton, S.M.; Morris, A.P.; Herrera, B.M.; Ramagopalan, S.V.; Lincoln, M.R.; Chao, M.J.; Vieth, R.; Sadovnick, A.D.; Ebers, G.C. Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. Am. J. Clin. Nutr. 2008, 88, 441–447. [Google Scholar] [CrossRef]
- Hunter, D.; De Lange, M.; Snieder, H.; MacGregor, A.J.; Swaminathan, R.; Thakker, R.V.; Spector, T.D. Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J. Bone Miner. Res. 2001, 16, 371–378. [Google Scholar] [CrossRef]
- Shea, M.K.; Benjamin, E.J.; Dupuis, J.; Massaro, J.M.; Jacques, P.F.; D’Agostino, R.B.; Ordovas, J.M.; O’Donnell, C.J.; Dawson-Hughes, B.; Vasan, R.S.; et al. Genetic and non-genetic correlates of vitamins K and D. Eur. J. Clin. Nutr. 2009, 63, 458–464. [Google Scholar] [CrossRef]
- Wang, T.J.; Zhang, F.; Richards, J.B.; Kestenbaum, B.; van Meurs, J.B.; Berry, D.; Kiel, D.P.; Streeten, E.A.; Ohlsson, C.; Koller, D.L.; et al. Common genetic determinants of vitamin D insufficiency: A genome-wide association study. Lancet 2010, 376, 180–188. [Google Scholar] [CrossRef]
- Engelman, C.D.; Meyers, K.J.; Ziegler, J.T.; Taylor, K.D.; Palmer, N.D.; Haffner, S.M.; Fingerlin, T.E.; Wagenknecht, L.E.; Rotter, J.I.; Bowden, D.W.; et al. Genome-wide association study of vitamin D concentrations in Hispanic Americans: The IRAS family study. J. Steroid Biochem. Mol. Biol. 2010, 122, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Gozdzik, A.; Zhu, J.; Wong, B.Y.; Fu, L.; Cole, D.E.; Parra, E.J. Association of vitamin D binding protein (VDBP) polymorphisms and serum 25(OH)D concentrations in a sample of young Canadian adults of different ancestry. J. Steroid Biochem. Mol. Biol. 2011, 127, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Perna, L.; Felix, J.F.; Breitling, L.P.; Haug, U.; Raum, E.; Burwinkel, B.; Schottker, B.; Brenner, H. Genetic variations in the vitamin D binding protein and season-specific levels of vitamin D among older adults. Epidemiology 2013, 24, 104–109. [Google Scholar] [CrossRef]
- Jorde, R.; Sneve, M.; Emaus, N.; Figenschau, Y.; Grimnes, G. Crosssectional and longitudinal relation between serum 25-hydroxyvitamin D and body mass index: The Tromso study. Eur. J. Nutr. 2010, 49, 401–407. [Google Scholar] [CrossRef]
- Drincic, A.T.; Armas, L.A.; Van Diest, E.E.; Heaney, R.P. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity 2012, 20, 1444–1448. [Google Scholar] [CrossRef]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef]
- Grimnes, G.; Joakimsen, R.; Figenschau, Y.; Torjesen, P.A.; Almas, B.; Jorde, R. The effect of high-dose vitamin D on bone mineral density and bone turnover markers in postmenopausal women with low bone mass—A randomized controlled 1-year trial. Osteoporos. Int. 2012, 23, 201–211. [Google Scholar] [CrossRef]
- Grimnes, G.; Figenschau, Y.; Almas, B.; Jorde, R. Vitamin D, insulin secretion, sensitivity, and lipids: Results from a case–control study and a randomized controlled trial using hyperglycemic clamp technique. Diabetes 2011, 60, 2748–2757. [Google Scholar] [CrossRef]
- Jorde, R.; Schirmer, H.; Wilsgaard, T.; Joakimsen, R.M.; Mathiesen, E.B.; Njolstad, I.; Lochen, M.L.; Figenschau, Y.; Berg, J.P.; Svartberg, J.; et al. Polymorphisms related to the serum 25-hydroxyvitamin D level and risk of myocardial infarction, diabetes, cancer and mortality. The Tromso study. PLoS ONE 2012, 7, e37295. [Google Scholar] [CrossRef]
- Didriksen, A.; Grimnes, G.; Hutchinson, M.S.; Kjærgaard, M.; Svartberg, J.; Joakimsen, R.M.; Jorde, R. The serum 25- hydroxyvitamin D response to vitamin D supplementation is related to genetic factors, BMI, and baseline levels. Eur. J. Endocrinol. 2013, 169, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.C.; Yalamanchili, V.; Smith, L.M. The effect of vitamin D supplementation on serum 25(OH)D in thin and obese women. J. Steroid Biochem. Mol. Biol. 2013, 136, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.J.; Zhou, Y.; Bu, F.; Travers-Gustafson, D.; Ye, A.; Xu, X.; Hamm, L.; Gorsage, D.M.; Fang, X.; Deng, H.W.; et al. Factors predicting vitamin d response variation in non-Hispanic white postmenopausal women. J. Clin. Endocrinol. Metab. 2012, 97, 2699–2705. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine Society. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Trummer, C.; Schwetz, V.; Kollmann, M.; Wölfler, M.; Münzker, J.; Pieber, T.R.; Pilz, S.; Heijboer, A.C.; Obermayer-Pietsch, B.; Lerchbaum, E. Effects of vitamin D supplementation on metabolic and endocrine parameters in PCOS: A randomized-controlled trial. Eur. J. Nutr. 2019, 58, 2019–2028. [Google Scholar] [CrossRef] [PubMed]
- Trummer, C.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Münzker, J.; Pilz, S.; Pieber, T.R.; Heijboer, A.C.; Obermayer-Pietsch, B.; Lerchbaum, E. Effects of vitamin D supplementation on metabolic and endocrine parameters in healthy premenopausal women: A randomized controlled trial. Clin. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Trummer, C.; Theiler-Schwetz, V.; Kollmann, M.; Wölfler, M.; Heijboer, A.C.; Pilz, S.; Obermayer-Pietsch, B. Effects of vitamin D supplementation on androgens in men with low testosterone levels: A randomized controlled trial. Eur. J. Nutr. 2019, 58, 3135–3146. [Google Scholar] [CrossRef] [PubMed]
- Lerchbaum, E.; Pilz, S.; Trummer, C.; Schwetz, V.; Pachernegg, O.; Heijboer, A.C.; Obermayer-Pietsch, B. Vitamin D and Testosterone in Healthy Men: A Randomized Controlled Trial. J. Clin. Endocrinol. Metab. 2017, 102, 4292–4302. [Google Scholar] [CrossRef]
- Pilz, S.; Gaksch, M.; Kienreich, K.; Grübler, M.; Verheyen, N.; Fahrleitner-Pammer, A.; Treiber, G.; Drechsler, C.; Ó Hartaigh, B.; Obermayer-Pietsch, B.; et al. Effects of vitamin D on blood pressure and cardiovascular risk factors: A randomized controlled trial. Hypertension 2015, 65, 1195–1201. [Google Scholar] [CrossRef]
- Dirks, N.F.; Vesper, H.W.; van Herwaarden, A.E.; van den Ouweland, J.M.; Kema, I.P.; Krabbe, J.G.; Heijboer, A.C. Various calibration procedures result in optimal standardization of routinely used 25(OH)D ID-LC–MS/MS methods. Clin. Chim. Acta 2016, 462, 49–54. [Google Scholar] [CrossRef]
- Ahn, J.; Yu, K.; Stolzenberg-Solomon, R.; Simon, K.C.; McCullough, M.L.; Gallicchio, L.; Jacobs, E.J.; Ascherio, A.; Helzlsouer, K.; Jacobs, K.B.; et al. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet. 2010, 19, 2739–2745. [Google Scholar] [CrossRef] [PubMed]
- Trummer, O.; Schwetz, V.; Walter-Finell, D.; Lerchbaum, E.; Renner, W.; Gugatschka, M.; Dobnig, H.; Pieber, T.R.; Obermayer-Pietsch, B. Allelic determinants of vitamin d insufficiency, bone mineral density, and bone fractures. J. Clin. Endocrinol. Metab. 2012, 97, E1234–E1240. [Google Scholar] [CrossRef] [PubMed]
- Peña-Chilet, M.; Ibarrola-Villava, M.; Martin-González, M.; Feito, M.; Gomez-Fernandez, C.; Planelles, D.; Carretero, G.; Lluch, A.; Nagore, E.; Ribas, G. rs12512631 on the group specific complement (vitamin D-binding protein GC) implicated in melanoma susceptibility. PLoS ONE 2013, 8, e59607. [Google Scholar]
- Nissen, J.; Rasmussen, L.B.; Ravn-Haren, G.; Andersen, E.W.; Hansen, B.; Andersen, R.; Mejborn, H.; Madsen, K.H.; Vogel, U. Common variants in CYP2R1 and GC genes predict vitamin D concentrations in healthy Danish children and adults. PLoS ONE 2014, 27, e89907. [Google Scholar] [CrossRef]
- McGrath, J.J.; Saha, S.; Burne, T.H.; Eyles, D.W. A systematic review of the association between common single nucleotide polymorphisms and 25-hydroxyvitamin D concentrations. J. Steroid Biochem. Mol. Biol. 2010, 121, 471–477. [Google Scholar] [CrossRef]
- Jiang, T.; Li, L.; Wang, Y.; Zhao, C.; Yang, J.; Ma, D.; Guan, Y.; Zhao, D.; Bao, Y.; Wang, Y.; et al. The Association Between Genetic Polymorphism rs703842 in CYP27B1 and Multiple Sclerosis: A Meta-Analysis. Medicine 2016, 95, e3612. [Google Scholar] [CrossRef]
- Mokry, L.E.; Ross, S.; Ahmad, O.S.; Forgetta, V.; Smith, G.D.; Goltzman, D.; Leong, A.; Greenwood, C.M.; Thanassoulis, G.; Richards, J.B. Vitamin D and Risk of Multiple Sclerosis: A Mendelian Randomization Study. PLoS Med. 2015, 25, e1001866. [Google Scholar] [CrossRef]
- Barry, E.L.; Rees, J.R.; Peacock, J.L.; Mott, L.A.; Amos, C.I.; Bostick, R.M.; Figueiredo, J.C.; Ahnen, D.J.; Bresalier, R.S.; Burke, C.A.; et al. Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D levels in a randomized controlled trial. J. Clin. Endocrinol. Metab. 2014, 99, E2133–E2137. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: A D-Lightful health perspective. Nutr. Rev. 2008, 66, 182–194. [Google Scholar] [CrossRef]
- Calvo, M.S.; Whiting, S.J.; Barton, C.N. Vitamin D intake: A global perspective of current status. J. Nutr. 2005, 135, 310–316. [Google Scholar] [CrossRef]
- Karohl, C.; Su, S.; Kumari, M.; Tangpricha, V.; Veledar, E.; Vaccarino, V.; Raggi, P. Heritability and seasonal variability of vitamin D concentrations in male twins. Am. J. Clin. Nutr. 2010, 92, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S. A farewell to Bonferroni: The problems of low statistical power and publication bias. Behav. Ecol. 2004, 15, 1044–1045. [Google Scholar] [CrossRef]
- Wacholder, S.; Chanock, S.; Garcia-Closas, M.; El Ghormli, L.; Rothman, N. Assessing the probability that a positive report is false: An approach for molecular epidemiology studies. J. Natl. Cancer Inst. 2004, 96, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Yun, F.; Oczak, M.; Wong, B.Y.L.; Vieth, R.; Cole, D.E.C. Common genetic variants of the vitamin D binding protein (DBP) predict differences in response of serum 25-hydroxyvitamin D [25(OH)D) to vitamin D supplementation. Clin. Biochem. 2009, 42, 1174–1177. [Google Scholar] [CrossRef] [PubMed]
- Nimitphong, H.; Saetung, S.; Chanprasertyotin, S.; Chailurkit, L.O.; Ongphiphadhanakul, B. Changes in circulating 25-hydroxyvitamin D according to vitamin D binding protein genotypes after vitamin D3 or D2 supplementation. Nutr. J. 2013, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, M.; Tran, B.; Armstrong, B.K.; Baxter, C.; Ebeling, P.R.; English, D.R.; Gebski, V.; Hill, C.; Kimlin, M.G.; Lucas, R.M.; et al. Environmental, personal, and genetic determinants of response to vitamin D supplementation in older adults. J. Clin. Endocrinol. Metab. 2014, 99, E1332–E1340. [Google Scholar] [CrossRef]
- Seuter, S.; Virtanen, J.K.; Nurmib, T.; Pihlajamäkib, J.; Mursub, J.; Voutilainen, S.; Tuomainen, T.P.; Nemea, A.; Carlberg, C. Molecular evaluation of vitamin D responsiveness of healthy young adults. J. Steroid Biochem. Mol. Biol. 2017, 174, 314–321. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific opinion on dietary reference values for vitamin D. EFSA J. 2016, 14, 4547. [Google Scholar]
- Allen, L.; de Benoist, B.; Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; WHO/Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2006. [Google Scholar]
- Jorde, R.; Grimnes, G. Serum cholecalciferol may be a better marker of vitamin D status than 25-hydroxyvitamin D. Med. Hypotheses 2018, 111, 61–65. [Google Scholar] [CrossRef]
Gen | SNPs | AOD | Literature |
---|---|---|---|
GC | rs7041 | C___3133594_30 | Wang et al. 2010 [11] |
Ahn et al. 2010 [31] | |||
GC | rs4588 | C___8278879_10 | Trummer et al. 2012 [32] |
GC | rs1155563 | C___8278782_20 | Pena-Chilet et al. 2013 [33] |
GC | rs12512631 | C___3133604_10 | Nissen et al. 2014 [34] |
CYP27B1 | rs703842 | Custom | Orton et al. 2008 [8] |
McGrath et al. 2010 [35] | |||
Jiang et al. 2016 [36] | |||
DHCR7 | rs12785878 | C__32063037_10 | Trummer et al. 2013[6] |
Wang et al. 2010 [11] | |||
CYP2R1 | rs10741657 | C___2958430_10 | Wang et al. 2010 [11] |
Trummer et al. 2013 [6] | |||
Nissen et al. 2014; [34] | |||
CYP24A1 | rs6013897 | C__29958084_10 | Wang et al. 2010; [11] |
VDR | rs2228570 | C__12060045_20 | Mokry et al. 2015 [37] |
VDR | rs10783219 | C___2880803_10 | Barry et al. 2014 [38] |
RCT1 | RCT2 | RCT3 | Total | |||
---|---|---|---|---|---|---|
Vitamin D, and Metabolic and Endocrine Parameters | Vitamin D and TT in Men | Styrian Vitamin D and Hypertension Trial | All RCTs Combined | |||
Women with PCOS | Healthy Women | Men with Low TT Levels (<10.4 nmol/l) | Healthy Men | Participants with Arterial Hypertension | ||
n | 119 (180) | 99 (150) | 50 (100) | 50 (100) | 93 (200) | 411 (730) |
Sex male | n.a. | n.a. | 50 | 50 | 51 (55%) | 151 |
Sex female | 119 (100%) | 99 (100%) | n.a. | n.a. | 42 (45%) | 260 |
Age (yr) | 25.7 ± 0.5 | 35.7 ± 1.0 | 46.9 ± 1.6 | 38.0 ± 1.8 | 60.8 ± 1.2 | 65.8 ± 1.2 |
BMI (kg/m2) | 26.7 ± 0.7 | 25.7 ± 0.6 | 29.3 ± 0.6 | 24.9 ± 0.5 | 30.4 ± 0.5 | 27.4 ± 0.6 |
25(OH)D at screening (nmol/l) | 48.1 ± 1.9 | 55.4 ± 2.1 | 56.8 ± 2.5 | 52.5 ± 2.2 | 46.3 ± 1.5 | 51.8 ± 2.0 |
25(OH)D after 8 weeks of supplementation (nmol/l) | n.a. | n.a. | n.a. | n.a. | 61.4 ± 2.0 | 61.4 ± 2.0 |
25(OH)D after 12 weeks of supplementation (nmol/l) | 92.2 ± 2.7 | 92.8 ± 2.7 | 98.1 ± 4.1 | 106.2 ± 3.1 | n.a. | 97.3 ± 3.2 |
RCT1 (n = 218) | RCT2 (n = 100) | RCT3 (n = 93) | All (n = 411) | ||||||
---|---|---|---|---|---|---|---|---|---|
Vitamin D, and Metabolic and Endocrine Parameters | Vitamin D and TT in Men | Styrian Vitamin D and Hypertension Trial | All | ||||||
SNP | Delta 25(OH)D (nmol/l) | p-Value | Delta 25(OH)D (nmol/l) | p-Value | Delta 25(OH)D (nmol/l) | p-Value | Delta 25(OH)D (nmol/l) | p-Value | |
GC_rs7041 | AA | 30.8 ± 4.7 | 55.1 ± 8.5 | 7.5 ± 8.6 | 30.5 ± 4.6 | ||||
AC | 40.7 ± 3.0 | 0.601 | 45.3 ± 4.7 | 0.216 | 10.6 ± 4.5 | 0.499 | 37.5 ± 2.5 | 0.423 | |
CC | 36.0 ± 5.8 | 53.5 ± 6.9 | 6.9 ± 3.9 | 34.2 ± 4.7 | |||||
GC_rs4588 | GG | 38.6 ± 4.0 | 51.7 ± 4.4 | −1 ± 4.1 | 37.0 ± 3.1 | ||||
GT | 39.0 ± 3.1 | 0.233 | 46.0 ± 6.1 | 0.267 | 8.0 ± 4.8 | 0.765 | 35.6 ± 2.8 | 0.532 | |
TT | 24.9 ± 6.6 | 49.8 ± 15.9 | 4.2 ± 11.8 | 23.4 ± 7.2 | |||||
GC_rs12512631 | CC | 38.0 ± 8.0 | 37.4 ± 6.0 | −19.0 ± 3.0 | 32.6 ± 6.0 | ||||
CT | 39.5 ± 3.4 | 0.765 | 51.4 ± 4.5 | 0.323 | 5.9 ± 3.5 | 0.859 | 39.4 ± 2.7 | 0.149 | |
TT | 36.1 ± 3.6 | 50.1 ± 7.0 | 5.5 ± 4.8 | 32.0 ± 3.2 | |||||
GC_rs1155563 | CC | 31.0 ± 5.8 | 36.9 ± 11.0 | 8.4 ± 13.5 | 26.8 ± 6.6 | ||||
CT | 38.8 ± 3.0 | 0.417 | 48.6 ± 8.0 | 0.371 | 10.0 ± 6.0 | 0.924 | 36.4 ± 3.0 | 0.774 | |
TT | 37.7 ± 4.1 | 51.9 ± 3.5 | −0.8 ± 3.6 | 36.3 ± 3.0 | |||||
DHCR7_rs12785878 | GG | 36.6 ± 4.3 | 38.0 ± 5.0 | −6.0 ± 18.9 | 31.9 ± 4.7 | ||||
GT | 37.3 ± 4.3 | 0.866 | 43.2 ± 4.0 | 0.114 | 7.8 ± 5.1 | 0.557 | 32.6 ± 2.9 | 0.220 | |
TT | 39.2 ± 3.5 | 55.3 ± 5.8 | 5.9 ± 4.5 | 40.2 ± 3.2 | |||||
CYP24A1_rs6013897 | AA | 32.5 ± 8.3 | 50.0 ± 6.0 | 1.0 ± 0.0 | 32.8 ± 7.1 | ||||
AT | 39.9 ± 3.6 | 0.944 | 54.2 ± 8.5 | 0.633 | −1.5 ± 5.3 | 0.334 | 36.0 ± 4.0 | 0.890 | |
TT | 37.7 ± 3.2 | 47.0 ± 3.7 | 9.0 ± 4.5 | 35.3 ± 2.4 | |||||
VDR_rs2228570 | AA | 36.2 ± 6.3 | 41.3 ± 6.8 | 13.8 ± 16.6 | 35.3 ± 4.6 | ||||
AG | 37.7 ± 3.4 | 0.933 | 51.3 ± 5.2 | 0.532 | −0.6 ± 4.8 | 0.806 | 36.1 ± 3.0 | 0.957 | |
GG | 39.3 ± 3.8 | 50.6 ± 6.5 | 9.3 ± 4.8 | 35.2 ± 3.2 | |||||
VDR_rs10783219 | AA | 36.4 ± 3.5 | 44.3 ± 4.5 | −4.9 ± 4.8 | 31.0 ± 3.0 | ||||
AT | 41.8 ± 3.5 | 0.458 | 58.2 ± 6.6 | 0.083 | 13.2 ± 4.3 | 0.153 | 41.4 ± 3.1 | 0.022 | |
TT | 27.9 ± 7.4 | 38.7 ± 4.4 | 7.0 ± 9.5 | 29.7 ± 4.5 | |||||
CYP27B1_rs70384 | CC | 30.5 ± 7.4 | 52.4 ± 12.3 | −0.8 ± 19.5 | 32.5 ± 7.0 | ||||
CT | 35.2 ± 3.8 | 0.147 | 47.5 ± 3.7 | 0.288 | 7.7 ± 5.0 | 0.322 | 35.0 ± 2.7 | 0.514 | |
TT | 42.7 ± 3.1 | 52.5 ± 9.9 | 4.1 ± 4.3 | 36.8 ± 3.3 | |||||
CYP2R1_rs10741657 | AA | 34.9 ± 5.9 | 56.7 ± 10.6 | −6.5 ± 9.2 | 33.8 ± 5.5 | ||||
AG | 40.9 ± 3.4 | 0.417 | 45.0 ± 3.8 | 0.422 | 1.3 ± 5.6 | 0.982 | 35.4 ± 2.8 | 0.822 | |
GG | 35.3 ± 3.8 | 53.1 ± 7.2 | 12.1 ± 5.5 | 37.6 ± 3.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trummer, O.; Schweighofer, N.; Haudum, C.W.; Trummer, C.; Pilz, S.; Theiler-Schwetz, V.; Keppel, M.H.; Grübler, M.; Pieber, T.R.; Renner, W.; et al. Genetic Components of 25-Hydroxyvitamin D Increase in Three Randomized Controlled Trials. J. Clin. Med. 2020, 9, 570. https://doi.org/10.3390/jcm9020570
Trummer O, Schweighofer N, Haudum CW, Trummer C, Pilz S, Theiler-Schwetz V, Keppel MH, Grübler M, Pieber TR, Renner W, et al. Genetic Components of 25-Hydroxyvitamin D Increase in Three Randomized Controlled Trials. Journal of Clinical Medicine. 2020; 9(2):570. https://doi.org/10.3390/jcm9020570
Chicago/Turabian StyleTrummer, Olivia, Natascha Schweighofer, Christoph W. Haudum, Christian Trummer, Stefan Pilz, Verena Theiler-Schwetz, Martin H. Keppel, Martin Grübler, Thomas R. Pieber, Wilfried Renner, and et al. 2020. "Genetic Components of 25-Hydroxyvitamin D Increase in Three Randomized Controlled Trials" Journal of Clinical Medicine 9, no. 2: 570. https://doi.org/10.3390/jcm9020570
APA StyleTrummer, O., Schweighofer, N., Haudum, C. W., Trummer, C., Pilz, S., Theiler-Schwetz, V., Keppel, M. H., Grübler, M., Pieber, T. R., Renner, W., Obermayer-Pietsch, B., & Lerchbaum, E. (2020). Genetic Components of 25-Hydroxyvitamin D Increase in Three Randomized Controlled Trials. Journal of Clinical Medicine, 9(2), 570. https://doi.org/10.3390/jcm9020570