Effect of rhTSH on Lipids
Abstract
1. Introduction
2. Experimental Section
2.1. Material and Methods
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Delitala, A.P.; Manzocco, M.; Sinibaldi, F.G.; Fanciulli, G. Thyroid function in elderly people: The role of subclinical thyroid disorders in cognitive function and mood alterations. Int. J. Clin. Pract. 2018, 72, e13254. [Google Scholar] [CrossRef]
- Biondi, B.; Cappola, A.R.; Cooper, D.S. Subclinical Hypothyroidism: A Review. JAMA 2019, 322, 153–160. [Google Scholar] [CrossRef]
- Biondi, B.; Cooper, D.S. Subclinical Hyperthyroidism. N. Engl. J. Med. 2018, 379, 1485–1486. [Google Scholar] [PubMed]
- Delitala, A.P.; Pilia, M.G.; Ferreli, L.; Loi, F.; Curreli, N.; Balaci, L.; Schlessinger, D.; Cucca, F. Prevalence of unknown thyroid disorders in a Sardinian cohort. Eur. J. Endocrinol. 2014, 171, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Fiore, E.; Rago, T.; Latrofa, F.; Provenzale, M.A.; Piaggi, P.; Delitala, A.; Scutari, M.; Basolo, F.; Di Coscio, G.; Grasso, L.; et al. Hashimoto’s thyroiditis is associated with papillary thyroid carcinoma: Role of TSH and of treatment with L-thyroxine. Endocr. Relat. Cancer 2011, 18, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P.; Scuteri, A.; Maioli, M.; Mangatia, P.; Vilardi, L.; Erre, G.L. Subclinical hypothyroidism and cardiovascular risk factors. Minerva Med. 2019, 110, 530–545. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P. Subclinical Hyperthyroidism and the Cardiovascular Disease. Horm. Metab. Res. 2017, 49, 723–731. [Google Scholar] [CrossRef]
- Delitala, A.P.; Orru, M.; Filigheddu, F.; Pilia, M.G.; Delitala, G.; Ganau, A.; Saba, P.S.; Decandia, F.; Scuteri, A.; Marongiu, M.; et al. Serum free thyroxine levels are positively associated with arterial stiffness in the SardiNIA study. Clin. Endocrinol. 2015, 82, 592–597. [Google Scholar] [CrossRef]
- Chang, Y.C.; Hua, S.C.; Chang, C.H.; Kao, W.Y.; Lee, H.L.; Chuang, L.M.; Huang, Y.T.; Lai, M.S. High TSH Level within Normal Range Is Associated with Obesity, Dyslipidemia, Hypertension, Inflammation, Hypercoagulability, and the Metabolic Syndrome: A Novel Cardiometabolic Marker. J. Clin. Med. 2019, 8, 817. [Google Scholar] [CrossRef]
- Canaris, G.J.; Manowitz, N.R.; Mayor, G.; Ridgway, E.C. The Colorado thyroid disease prevalence study. Arch. Intern. Med. 2000, 160, 526–534. [Google Scholar] [CrossRef]
- Ito, M.; Takamatsu, J.; Sasaki, I.; Hiraiwa, T.; Fukao, A.; Murakami, Y.; Isotani, H.; Miyauchi, A.; Kuma, K.; Hanafusa, T. Disturbed metabolism of remnant lipoproteins in patients with subclinical hypothyroidism. Am. J. Med. 2004, 117, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P.; Fanciulli, G.; Pes, G.M.; Maioli, M.; Delitala, G. Thyroid Hormones, Metabolic Syndrome and Its Components. Endocr. Metab. Immune Disord. Drug Targets 2017, 17, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ha, J.; Jo, K.; Lim, D.J.; Lee, J.M.; Chang, S.A.; Kang, M.I.; Kim, M.H. High Normal Range of Free Thyroxine is Associated with Decreased Triglycerides and with Increased High-Density Lipoprotein Cholesterol Based on Population Representative Data. J. Clin. Med. 2019, 8, 758. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, G.S.; Alshammari, S.M.; Alenezi, M.Y.; Mansour, M.; Khalil, N.A. Increased atherogenic low-density lipoprotein cholesterol in untreated subclinical hypothyroidism. Endocr. Pract. 2008, 14, 570–575. [Google Scholar] [CrossRef]
- Ito, M.; Arishima, T.; Kudo, T.; Nishihara, E.; Ohye, H.; Kubota, S.; Fukata, S.; Amino, N.; Kuma, K.; Sasaki, I.; et al. Effect of levo-thyroxine replacement on non-high-density lipoprotein cholesterol in hypothyroid patients. J. Clin. Endocrinol. Metab. 2007, 92, 608–611. [Google Scholar] [CrossRef]
- Petrosyan, L. Relationship between high normal TSH levels and metabolic syndrome components in type 2 diabetic subjects with euthyroidism. J. Clin. Transl. Endocrinol. 2015, 2, 110–113. [Google Scholar]
- Gong, Y.; Ma, Y.; Ye, Z.; Fu, Z.; Yang, P.; Gao, B.; Guo, W.; Hu, D.; Ye, J.; Ma, S.; et al. Thyroid stimulating hormone exhibits the impact on LDLR/LDL-c via up-regulating hepatic PCSK9 expression. Metabolism 2017, 76, 32–41. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, H.; Han, S.; Jung, H.; Shin, D.Y.; Nam, K.H.; Chung, W.Y.; Lee, E.J. Association between Thyroid-Stimulating Hormone Level after Total Thyroidectomy and Hypercholesterolemia in Female Patients with Differentiated Thyroid Cancer: A Retrospective Study. J. Clin. Med. 2019, 8, 1106. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Basoli, V.; Santaniello, S.; Cruciani, S.; Ginesu, G.C.; Cossu, M.L.; Delitala, A.P.; Serra, P.A.; Ventura, C.; Maioli, M. Melatonin and Vitamin D Interfere with the Adipogenic Fate of Adipose-Derived Stem Cells. Int. J. Mol. Sci. 2017, 18, 981. [Google Scholar] [CrossRef]
- Santaniello, S.; Cruciani, S.; Basoli, V.; Balzano, F.; Bellu, E.; Garroni, G.; Ginesu, G.C.; Cossu, M.L.; Facchin, F.; Delitala, A.P.; et al. Melatonin and Vitamin D Orchestrate Adipose Derived Stem Cell Fate by Modulating Epigenetic Regulatory Genes. Int. J. Med. Sci. 2018, 15, 1631–1639. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.A.; Singh, B.K.; Yen, P.M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 2018, 14, 259–269. [Google Scholar] [CrossRef]
- Delitala, A.P.; Fanciulli, G.; Maioli, M.; Delitala, G. Subclinical hypothyroidism, lipid metabolism and cardiovascular disease. Eur. J. Intern. Med. 2017, 38, 17–24. [Google Scholar] [CrossRef]
- Delitala, A.P.; Delitala, G.; Sioni, P.; Fanciulli, G. Thyroid hormone analogs for the treatment of dyslipidemia: Past, present, and future. Curr. Med. Res. Opin. 2017, 33, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xu, C.; Shao, S.; Liu, J.; Xing, W.; Xu, J.; Qin, C.; Li, C.; Hu, B.; Yi, S.; et al. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4alpha/CYP7A1 axis. J. Hepatol. 2015, 62, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Beukhof, C.M.; Massolt, E.T.; Visser, T.J.; Korevaar, T.I.M.; Medici, M.; de Herder, W.W.; Roeters van Lennep, J.E.; Mulder, M.T.; de Rijke, Y.B.; Reiners, C.; et al. Effects of Thyrotropin on Peripheral Thyroid Hormone Metabolism and Serum Lipids. Thyroid 2018, 28, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Delitala, A.P.; Steri, M.; Pilia, M.G.; Dei, M.; Lai, S.; Delitala, G.; Schlessinger, D.; Cucca, F. Menopause modulates the association between thyrotropin levels and lipid parameters: The SardiNIA study. Maturitas 2016, 92, 30–34. [Google Scholar] [CrossRef]
- Scuteri, A.; Morrell, C.H.; Orru, M.; AlGhatrif, M.; Saba, P.S.; Terracciano, A.; Ferreli, L.A.; Loi, F.; Marongiu, M.; Pilia, M.G.; et al. Gender specific profiles of white coat and masked hypertension impacts on arterial structure and function in the SardiNIA study. Int. J. Cardiol. 2016, 217, 92–98. [Google Scholar] [CrossRef]
- Meisinger, C.; Ittermann, T.; Tiller, D.; Agger, C.; Nauck, M.; Schipf, S.; Wallaschofski, H.; Jorgensen, T.; Linneberg, A.; Thiery, J.; et al. Sex-specific associations between thyrotropin and serum lipid profiles. Thyroid 2014, 24, 424–432. [Google Scholar] [CrossRef]
- Delitala, A.P.; Scuteri, A.; Fiorillo, E.; Lakatta, E.G.; Schlessinger, D.; Cucca, F. Role of Adipokines in the Association between Thyroid Hormone and Components of the Metabolic Syndrome. J. Clin. Med. 2019, 8, 764. [Google Scholar] [CrossRef]
- Delitala, A.P.; Steri, M.; Fiorillo, E.; Marongiu, M.; Lakatta, E.G.; Schlessinger, D.; Cucca, F. Adipocytokine correlations with thyroid function and autoimmunity in euthyroid sardinians. Cytokine 2018, 111, 189–193. [Google Scholar] [CrossRef]
- Cecoli, F.; Andraghetti, G.; Ghiara, C.; Briatore, L.; Cavallero, D.; Mussap, M.; Minuto, F.; Giusti, M. Absence of thyrotropin-induced increase in leptin levels in patients with history of differentiated thyroid carcinoma undergoing recombinant human thyrotropin testing. J. Endocrinol. Investig. 2008, 31, 888–892. [Google Scholar] [CrossRef] [PubMed]
- Langer, T.; Strober, W.; Levy, R.I. The metabolism of low density lipoprotein in familial type II hyperlipoproteinemia. J. Clin. Investig. 1972, 51, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
- Ghosh Laskar, M.; Eriksson, M.; Rudling, M.; Angelin, B. Treatment with the natural FXR agonist chenodeoxycholic acid reduces clearance of plasma LDL whilst decreasing circulating PCSK9, lipoprotein(a) and apolipoprotein C-III. J. Intern. Med. 2017, 281, 575–585. [Google Scholar] [CrossRef] [PubMed]
Variable | Before rhTSH | After rhTSH | p Value |
---|---|---|---|
TSH (mUI/L) | 0.43 ± 0.23 | 12.34 ± 4.53 | <0.001 |
FT4 (ng/dL) | 1.10 ± 0.21 | 1.10 ± 0.212 | ns |
Total cholesterol (mg/dL) | 192 ± 33 | 207 ± 26 | 0.036 |
LDLc (mg/dL) | 116 ± 27 | 126 ± 22 | 0.066 |
HDLc (mg/dL) | 62 ± 15 | 63 ± 15 | ns |
Triglycerides (mg/dL) | 72 ± 23 | 85 ± 23 | 0.016 |
Non-HDLc (mg/dL) | 130 ± 30 | 143 ± 25 | 0.037 |
Variable | Pre-rhTSH | Post-rhTSH | ||
---|---|---|---|---|
Age ≤ 39.4 | Age > 39.4 | Age ≤ 39.4 | Age > 39.4 | |
Total cholesterol (mg/dL) | 173 | 210 * | 191 | 219 # |
LDLc (mg/dL) | 100 | 131 * | 114 | 135 # |
HDL (mg/dL) | 59 | 64 | 61 | 67 |
Triglycerides (mg/dL) | 69 | 73 | 83 | 86 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delitala, A.P.; Scuteri, A.; Maioli, M.; Casu, G.; Merella, P.; Fanciulli, G. Effect of rhTSH on Lipids. J. Clin. Med. 2020, 9, 515. https://doi.org/10.3390/jcm9020515
Delitala AP, Scuteri A, Maioli M, Casu G, Merella P, Fanciulli G. Effect of rhTSH on Lipids. Journal of Clinical Medicine. 2020; 9(2):515. https://doi.org/10.3390/jcm9020515
Chicago/Turabian StyleDelitala, Alessandro P., Angelo Scuteri, Margherita Maioli, Gavino Casu, Pierluigi Merella, and Giuseppe Fanciulli. 2020. "Effect of rhTSH on Lipids" Journal of Clinical Medicine 9, no. 2: 515. https://doi.org/10.3390/jcm9020515
APA StyleDelitala, A. P., Scuteri, A., Maioli, M., Casu, G., Merella, P., & Fanciulli, G. (2020). Effect of rhTSH on Lipids. Journal of Clinical Medicine, 9(2), 515. https://doi.org/10.3390/jcm9020515