Salivary Redox Biomarkers in Selected Neurodegenerative Diseases
Abstract
:1. Introduction
2. Saliva: Composition and Diagnostic Importance
3. Neurodegenerative Diseases (NDDs)
4. Oxidative Stress in Neurodegenerative Diseases
5. Salivary Redox Biomarkers in Patients with Neurodegenerative Diseases
5.1. Protein Oxidation Products
5.2. Lipid Peroxidation Products
5.3. Nucleic Acid Oxidation Products
5.4. Amyloid β
5.5. Antioxidant Defense
5.6. HO-1
6. Differences and Similarities in Levels of Biomarkers in Saliva and Blood
7. Biomarkers and Stage of the Disease
8. Limitations of Salivary Redox Biomarkers
9. Other Salivary Biomarkers NDDs
10. Summary and Perspective
11. Conclusions
- Salivary redox biomarkers can be non-invasive indicators of NDDs. The level of many biomarkers in saliva correlates with their plasma content and the severity of NDDs.
- The protein oxidation products, such as AGE, as well as antioxidant molecules, such as GSH and HO-1, appear to be particularly interesting in NDDs diagnostics.
- The clinical usefulness of salivary redox biomarkers of NDDs requires further verification in clinical trials on a large population of patients. Additionally, there is a need to standardize saliva collection protocols and develop reference values for salivary redox biomarkers.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
↑ | higher |
↓ | lower |
•OH | hydroxyl radical |
3-NT | 3-nitrotyrosine |
4-HNE | 4-hydroxy-2-nonenal |
8-isop | 8-isoprostanes |
8-OHdG | 8-hydroxy-2’- deoxyguanosine |
8-OHG | 8-hydroxyguanosine |
AD | Alzheimer’s disease (dementia) |
AGE | advanced glycation end products; AOPP – advanced oxidation protein products |
ALS | amyotrophic lateral sclerosis |
Aβ | amyloid-β |
CAT | catalase |
CG | control group |
CNS | central nervous system |
DLB | dementia with Lewy bodies |
DNA | deoxyribonucleic acid |
ER | endoplasmic reticulum |
EWSR1 | Ewing sarcoma RNA-binding protein 1 |
FTD | frontotemporal dementia; |
FUS | fused-in sarcoma |
GPx | glutathione peroxidase |
GSH | glutathione |
GSH | reduced glutathione |
H2O2 | hydrogen peroxide |
HBV | hepatitis B virus |
HCV | hepatitis C virus |
HD | Huntington’s disease |
HIV | human immunodeficiency virus |
HO-1 | Heme oxygenase-1 |
hs-CRP | high-sensitivity C-reactive protein |
LTP | long-term potentiation |
MCI | mild cognitive impairment |
MDA | malondialdehyde |
MMD | mild to moderate dementia (MMSE 11-23); |
MMSE | Mini Mental State Examination |
MxD | mixed dementias |
NDDs | neurodegenerative diseases |
NFTs | neurofibrillary tangles |
NO | nitric oxide |
Nox | nicotinamide adenine dinucleotide phosphate NADPH) oxidase |
NWS | non-stimulated saliva |
O2• | superoxide anion |
ONOO | peroxynitrite |
OS | oxidative stress |
OSI | oxidative stress index |
PC | protein carbonyls |
PD | Parkinson’s disease |
PrP | prion protein |
pTau | tau protein |
PUFA | polyunsaturated fatty acid |
Px/SP | salivary peroxidase |
RNA | ribonucleic acid |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
SD | severe dementia (MMSE 0-10) |
SG | study group |
SOD | superoxide dismutase |
SWS | stimulated saliva |
TAC | mean total antioxidant capacity |
TAF15 | TATA-binding protein-associated factor15 |
TAS | total antioxidant status |
TBARS | thiobarbituric acid reactive substances |
TDP-43 | transactive response (TAR) DNA-binding protein 43 |
TOS | mean total oxidant status |
TR | thioredoxin reductase |
UA | uric acid |
UPDRS | Unified Parkinson’s Disease Rating Stage |
VaD | vascular dementia |
WHO | World Health Organization |
XO | xanthine oxidase |
References
- Kulak-Bejda, A.; Waszkiewicz, N.; Bejda, G.; Zalewska, A.; Maciejczyk, M. Diagnostic Value of Salivary Markers in Neuropsychiatric Disorders. Dis. Markers 2019, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangbulla, V.; Nirola, A.; Gupta, M.; Batra, P.; Gupta, M. Salivary IgA, Interleukin-1β and MMP-8 as Salivary Biomarkers in Chronic Periodontitis Patients. Chin. J. Dent. Res. 2017, 20, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lundmark, A.; Johannsen, G.; Eriksson, K.; Kats, A.; Jansson, L.; Tervahartiala, T.; Rathnayake, N.; Åkerman, S.; Klinge, B.; Sorsa, T.; et al. Mucin 4 and matrix metalloproteinase 7 as novel salivary biomarkers for periodontitis. J. Clin. Periodontol. 2017, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaedicke, K.M.; Preshaw, P.M.; Taylor, J.J. Salivary cytokines as biomarkers of periodontal diseases. Periodontology 2000 2016, 70, 164–183. [Google Scholar] [CrossRef] [PubMed]
- Güncü, G.N.; Yilmaz, D.; Könönen, E.; Gürsoy, U.K. Salivary Antimicrobial Peptides in Early Detection of Periodontitis. Front. Cell. Infect. Microbiol. 2015, 5, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.T.; Ngo, L.Q.; Promsudthi, A.; Surarit, R. Salivary oxidative stress biomarkers in chronic periodontitis and acute coronary syndrome. Clin. Oral. Investig. 2017, 21, 2345–2353. [Google Scholar] [CrossRef]
- Ishikawa, S.; Sugimoto, M.; Kitabatake, K.; Sugano, A.; Nakamura, M.; Kaneko, M.; Ota, S.; Hiwatari, K.; Enomoto, A.; Soga, T.; et al. Identification of salivary metabolomic biomarkers for oral cancer screening. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kaur, J.; Jacobs, R.; Huang, Y.; Salvo, N.; Politis, C. Salivary biomarkers for oral cancer and pre-cancer screening: A review. Clin. Oral. Investig. 2018, 22, 633–640. [Google Scholar] [CrossRef]
- Khurshid, Z.; Zafar, M.S.; Khan, R.S.; Najeeb, S.; Slowey, P.D.; Rehman, I.U. Role of salivary Biomarkers in Oral Cancer Detection. Adv. Clin. Chem. 2018, 86, 23–70. [Google Scholar] [CrossRef]
- Dumache, R. Early Diagnosis of Oral Squamous Cell Carcinoma by Salivary microRNAs. Clin. Lab. 2017, 63, 1771–1776. [Google Scholar] [CrossRef]
- Aqrawi, L.A.; Galtung, H.K.; Vestad, B.; Øvstebø, R.; Thiede, B.; Rusthen, S.; Young, A.; Guerreiro, E.M.; Utheim, T.P.; Chen, X.; et al. Identification of potential saliva and tear biomarkers in primary Sjögren’s syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Arthritis Res. Ther. 2017, 19, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsson, R.; Brokstad, K.A.; Jonsson, M.V.; Delaleu, N.; Skarstein, K. Current concepts on Sjögren’s syndrome - classification criteria and biomarkers. Eur. J. Oral. Sci. 2018, 126, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Hegde, M.N.; Attavar, S.H.; Shetty, N.; Hegde, N.D.; Hegde, N.N. Saliva as a biomarker for dental caries: A systematic review. J. Conserv. Dent. 2019, 22, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Jiang, S.; Koh, D.; Hsu, C.Y. Salivary biomarkers for dental caries. Periodontology 2000 2016, 70, 128–141. [Google Scholar] [CrossRef]
- Smriti, K.; Pai, K.M.; Ravindranath, V.; Gadicherla, S.; Pentapati, K.C. Salivary Glucose as a Diagnostic Marker for Diabetes Mellitus. J. Diabetes Sci. Technol. 2016, 10, 991–992. [Google Scholar] [CrossRef] [Green Version]
- Abdul Rehman, S.; Khurshid, Z.; Hussain Niazi, F.; Naseem, M.; Al Waddani, H.; Sahibzada, H.A.; Sannam Khan, R. Role of Salivary Biomarkers in Detection of Cardiovascular Diseases (CVD). Proteomes 2017, 5, 21. [Google Scholar] [CrossRef]
- Porto-Mascarenhas, E.C.; Assad, D.X.; Chardin, H.; Gozal, D.; De Luca Canto, G.; Acevedo, A.C.; Guerra, E.N. Salivary biomarkers in the diagnosis of breast cancer: A review. Crit. Rev. Oncol. Hematol. 2017, 110, 62–73. [Google Scholar] [CrossRef]
- Liu, X.; Yu, H.; Qiao, Y.; Yang, J.; Shu, J.; Zhang, J.; Zhang, Z.; He, J.; Li, Z. Salivary Glycopatterns as Potential Biomarkers for Screening of Early-Stage Breast Cancer. EBioMedicine 2018, 28, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Fejfer, K.; Buczko, P.; Niczyporuk, M.; Ładny, J.R.; Hady, H.R.; Knaś, M.; Waszkiel, D.; Klimiuk, A.; Zalewska, A.; Maciejczyk, M. Oxidative Modification of Biomolecules in the Nonstimulated and Stimulated Saliva of Patients with Morbid Obesity Treated with Bariatric Surgery. Biomed Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Chielle, E.O.; Casarin, J.N. Evaluation of salivary oxidative parameters in overweight and obese young adults. Arch. Endocrinol. Metab. 2017, 61, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Kołodziej, U.; Maciejczyk, M.; Miąsko, A.; Matczuk, J.; Knaś, M.; Żukowski, P.; Żendzian-Piotrowska, M.; Borys, J.; Zalewska, A. Oxidative Modification in the Salivary Glands of High Fat-Diet Induced Insulin Resistant Rats. Front. Physiol. 2017, 8, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, G.S.; Mathews, S.T. Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance. World J. Diabetes 2014, 5, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Ben-Zvi, I.; Green, Y.; Nakhoul, F.; Kanter, Y.; Nagler, R.M. Effects of diabetes mellitus, chronic renal failure and hemodialysis on serum and salivary antioxidant status. Nephron Clin. Pract. 2007, 105, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Maciejczyk, M.; Szulimowska, J.; Skutnik, A.; Taranta-Janusz, K.; Wasilewska, A.; Wiśniewska, N.; Zalewska, A. Salivary Biomarkers of Oxidative Stress in Children with Chronic Kidney Disease. J. Clin. Med. 2018, 7, 209. [Google Scholar] [CrossRef] [Green Version]
- Choromańska, M.; Klimiuk, A.; Kostecka-Sochoń, P.; Wilczyńska, K.; Kwiatkowski, M.; Okuniewska, N.; Waszkiewicz, N.; Zalewska, A.; Maciejczyk, M. Antioxidant Defence, Oxidative Stress and Oxidative Damage in Saliva, Plasma and Erythrocytes of Dementia Patients. Can Salivary AGE be a Marker of Dementia? Int. J. Mol. Sci. 2017, 18, 205. [Google Scholar] [CrossRef] [Green Version]
- Klimiuk, A.; Maciejczyk, M.; Choromańska, M.; Fejfer, K.; Waszkiewicz, N.; Zalewska, A. Salivary Redox Biomarkers in Different Stages of Dementia Severity. J. Clin. Med. 2019, 8, 840. [Google Scholar] [CrossRef] [Green Version]
- Chojnowska, S.; Baran, T.; Wilińska, I.; Sienicka, P.; Cabaj-Wiater, I.; Knaś, M. Human saliva as diagnostic material. Adv. Med. Sci. 2018, 63, 185–191. [Google Scholar] [CrossRef]
- Buczko, P.; Zalewska, A.; Szarmach, I. Saliva and oxidative stress in oral cavity and in some systemic disorders. J. Physiol. Pharmacol. 2015, 66, 3–9. [Google Scholar]
- Pedersen, A.; Sørensen, C.E.; Proctor, G.B.; Carpenter, G.H. Salivary functions in mastication, taste and textural perception, swallowing and initial digestion. Oral. Dis. 2018, 24, 1399–1416. [Google Scholar] [CrossRef]
- Zalewska, A.; Waszkiewicz, N.; López-Pintor, R.M. The use of saliva in the diagnosis of oral and systemic diseases. Dis. Markers 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Van ’t Hof, W.; Veerman, E.C.; Nieuw Amerongen, A.V.; Ligtenberg, A.J. Antimicrobial defense systems in saliva. Monogr. Oral. Sci. 2014, 24. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Cheng, X.Q.; Li, J.Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.D. Saliva in the diagnosis of diseases. Int. J. Oral. Sci. 2016, 8, 133–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żukowski, P.; Maciejczyk, M.; Waszkiel, D. Sources of free radicals and oxidative stress in the oral cavity. Arch. Oral. Biol. 2018, 92, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Knas, M.; Maciejczyk, M.; Waszkiel, D.; Zalewska, A. Oxidative stress and salivary antioxidants. Dent. Med. Probl. 2013, 50, 461–466. [Google Scholar]
- Li, J.; Wuliji, O.; Li, W.; Jiang, Z.G.; Ghanbari, H.A. Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci. 2013, 14, 24438–24475. [Google Scholar] [CrossRef] [Green Version]
- Peña-Bautista, C.; Durand, T.; Vigor, C.; Oger, C.; Galano, J.M.; Cháfer-Pericás, C. Non-invasive assessment of oxidative stress in preterm infants. Free Radic. Biol. Med. 2019, 142, 73–81. [Google Scholar] [CrossRef]
- Hartmann, S.; Ledur Kist, T.B. A review of biomarkers of Alzheimer’s disease in noninvasive samples. Biomark. Med. 2018, 12, 677–690. [Google Scholar] [CrossRef]
- Saxena, S.; Kumar, S. Saliva in forensic odontology: A comprehensive update. J. Oral. Maxillofac. Pathol. 2015, 19, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Waszkiewicz, N.; Galińska-Skok, B.; Zalewska, A.; Szajda, S.D.; Zwierz, K.; Więdłocha, M.; Szulc, A. Salivary immune proteins monitoring can help detection of binge and chronic alcohol drinkers: Preliminary findings. Drug Alcohol Depend. 2018, 183, 13–18. [Google Scholar] [CrossRef]
- Waszkiewicz, N.; Chojnowska, S.; Zalewska, A.; Zwierz, K.; Szulc, A.; Szajda, S.D. Salivary exoglycosidases as markers of alcohol dependence. Alcohol Alcohol. 2014, 49, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Andreou, C.; Hoonejani, M.R.; Barmi, M.R.; Moskovits, M.; Meinhart, C.D. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS Nano 2013, 7, 7157–7164. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.R.; Choi, J.; Shultz, T.O.; Wang, S.X. Small Molecule Detection in Saliva Facilitates Portable Tests of Marijuana Abuse. Anal. Chem. 2016, 88, 7457–7461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, N.; Sakurada, M.; Kusunoki, H.; Ueno, Y. Development of a simultaneous identification method for 13 animal species using two multiplex real-time PCR assays and melting curve analysis. Leg. Med. (Tokyo) 2018, 30, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Gardner, S.L.; Geller, R.J.; Hannigan, R.; Sun, Y.; Mangla, A. Evaluating Oral Fluid as a Screening Tool for Lead Poisoning. J. Anal. Toxicol. 2016, 40, 744–748. [Google Scholar] [CrossRef]
- Bhowmick, S.; Kundu, A.K.; Adhikari, J.; Chatterjee, D.; Iglesias, M.; Nriagu, J.; Guha Mazumder, D.N.; Shomar, B.; Chatterjee, D. Assessment of toxic metals in groundwater and saliva in an arsenic affected area of West Bengal, India: A pilot scale study. Environ. Res. 2015, 142, 328–336. [Google Scholar] [CrossRef]
- Tzira, D.; Prezerakou, A.; Papadatos, I.; Vintila, A.; Bartzeliotou, A.; Apostolakou, F.; Papassotiriou, I.; Papaevangelou, V. Salivary biomarkers may measure stress responses in critically ill children. SAGE Open. Med. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, G.G. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int. J. Mol. Sci. 2016, 17, 189. [Google Scholar] [CrossRef]
- Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2017, 9. [Google Scholar] [CrossRef]
- Kovacs, G.G. Concepts and classification of neurodegenerative diseases. Handb. Clin. Neurol. 2017, 145, 301–307. [Google Scholar]
- Kovacs, G.G. Current concepts of neurodegenerative diseases. Eur. Med. J. 2014, 1, 78–86. [Google Scholar]
- Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53, 4094–4125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid. Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef]
- Bertolotti, A. Importance of the subcellular location of protein deposits in neurodegenerative diseases. Curr. Opin. Neurobiol. 2018, 51, 127–133. [Google Scholar] [CrossRef]
- Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Action Plan on the Public Health Response to Dementia. 2017–2025. Available online: https://apps.who.int/iris/bitstream/handle/10665/259615/9789241513487-eng.pdf;jsessionid=D2257B474A668F1AD12C21218C9882DF?sequence=1 (accessed on 5 July 2019).
- Ragusa, M.; Bosco, P.; Tamburello, L.; Barbagallo, C.; Condorelli, A.G.; Tornitore, M.; Spada, R.S.; Barbagallo, D.; Scalia, M.; Elia, M.; et al. miRNAs Plasma Profiles in Vascular Dementia: Biomolecular Data and Biomedical Implications. Front. Cell. Neurosci. 2016, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Zuo, L.; Hemmelgarn, B.T.; Chuang, C.C.; Best, T.M. The Role of Oxidative Stress-Induced Epigenetic Alterations in Amyloid-β Production in Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Wang, X. Antioxidant Therapies for Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef] [Green Version]
- Yew, M.Y.; Koh, R.Y.; Chye, S.M.; Othman, I.; Ng, K.Y. Edible bird’s nest ameliorates oxidative stress-induced apoptosis in SH-SY5Y human neuroblastoma cells. BMC Complement. Altern. Med. 2014, 14, 391. [Google Scholar] [CrossRef] [Green Version]
- Sherer, T.B. Biomarkers for Parkinson’s disease. Sci. Transl. Med. 2011, 3, 79. [Google Scholar] [CrossRef]
- Kang, W.Y.; Yang, Q.; Jiang, X.F.; Chen, W.; Zhang, L.Y.; Wang, X.Y.; Zhang, L.N.; Quinn, T.J.; Liu, J.; Chen, S.D. Salivary DJ-1 could be an indicator of Parkinson’s disease progression. Front. Aging. Neurosci. 2014, 6, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Maciejczyk, M.; Żebrowska, E.; Zalewska, A.; Chabowski, A. Redox Balance, Antioxidant Defense, and Oxidative Damage in the Hypothalamus and Cerebral Cortex of Rats with High Fat Diet-Induced Insulin Resistance. Oxid. Med. Cell. Longev. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother. 2015, 74, 101–110. [Google Scholar] [CrossRef]
- Zuo, L.; Motherwell, M.S. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene 2013, 532, 18–23. [Google Scholar] [CrossRef]
- Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4+T Cells in Neurodegenerative Diseases. Front. Cell. Neurosci. 2018, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Wojsiat, J.; Zoltowska, K.M.; Laskowska-Kaszub, K.; Wojda, U. Oxidant/Antioxidant Imbalance in Alzheimer’s Disease: Therapeutic and Diagnostic Prospects. Oxid. Med. Cell. Longev. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox. Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef]
- Cervellati, C.; Romani, A.; Seripa, D.; Cremonini, E.; Bosi, C.; Magon, S.; Bergamini, C.M.; Valacchi, G.; Pilotto, A.; Zuliani, G. Systemic oxidative stress and conversion to dementia of elderly patients with mild cognitive impairment. Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef]
- Żebrowska, E.; Maciejczyk, M.; Żendzian-Piotrowska, M.; Zalewska, A.; Chabowski, A. High Protein Diet Induces Oxidative Stress in Rat Cerebral Cortex and Hypothalamus. Int. J. Mol. Sci. 2019, 20, 1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciejczyk, M.; Żebrowska, E.; Chabowski, A. Insulin Resistance and Oxidative Stress in the Brain: What’s New? Int. J. Mol. Sci. 2019, 20, 874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paganoni, S.; Schwarzschild, M.A. Urate as a Marker of Risk and Progression of Neurodegenerative Disease. Neurotherapeutics 2017, 14, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Li, X.; Li, X.; Liu, Q.; Cheng, Y. Oxidative Stress in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front. Mol. Neurosci. 2018, 11. [Google Scholar] [CrossRef]
- Song, W.; Kothari, V.; Velly, A.M.; Cressatti, M.; Liberman, A.; Gornitsky, M.; Schipper, H.M. Evaluation of salivary heme oxygenase-1 as a potential biomarker of early Parkinson’s disease. Mov. Disord. 2018, 33, 583–591. [Google Scholar] [CrossRef]
- Wojsiat, J.; Laskowska-Kaszub, K.; Mietelska-Porowska, A.; Wojda, U. Search for Alzheimer’s disease biomarkers in blood cells: Hypotheses-driven approach. Biomark. Med. 2017, 11, 917–931. [Google Scholar] [CrossRef] [Green Version]
- Schrag, M.; Mueller, C.; Zabel, M.; Crofton, A.; Kirsch, W.M.; Ghribi, O.; Squitti, R.; Perry, G. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: A meta-analysis. Neurobiol. Dis. 2013, 59, 100–110. [Google Scholar] [CrossRef]
- Su, H.; Gornitsky, M.; Geng, G.; Velly, A.M.; Chertkow, H.; Schipper, H.M. Diurnal variations in salivary protein carbonyl levels in normal and cognitively impaired human subjects. Age (Dordr) 2008, 30, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Peña-Bautista, C.; Carrascosa-Marco, P.; Oger, C.; Vigor, C.; Galano, J.M.; Durand, T.; Baquero, M.; López-Nogueroles, M.; Vento, M.; García-Blanco, A.; et al. Validated analytical method to determine new salivary lipid peroxidation compounds as potential neurodegenerative biomarkers. J. Pharm. Biomed. Anal. 2019, 164, 742–749. [Google Scholar] [CrossRef] [Green Version]
- Cháfer-Pericás, C.; Torres-Cuevas, I.; Sanchez-Illana, A.; Escobar, J.; Kuligowski, J.; Solberg, R.; Garberg, H.T.; Huun, M.U.; Saugstad, O.D.; Vento, M. Development of a reliable analytical method to determine lipid peroxidation biomarkers in newborn plasma samples. Talanta 2016, 153, 152–157. [Google Scholar] [CrossRef]
- García-Blanco, A.; Peña-Bautista, C.; Oger, C.; Vigor, C.; Galano, J.M.; Durand, T.; Martín-Ibáñez, N.; Baquero, M.; Vento, M.; Cháfer-Pericás, C. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers. Talanta 2018, 184, 193–201. [Google Scholar] [CrossRef]
- Sabbagh, M.N.; Shi, J.; Lee, M.; Arnold, L.; Al-Hasan, Y.; Heim, J.; McGeer, P. Salivary beta amyloid protein levels are detectable and differentiate patients with Alzheimer’s disease dementia from normal controls: Preliminary findings. BMC Neurol. 2018, 18, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Guo, J.P.; Kennedy, K.; McGeer, E.G.; McGeer, P.L. A method for diagnosing Alzheimer’s disease based on salivary amyloid-beta protein 42 levels. J. Alzheimers Dis. 2017, 55, 1175–1182. [Google Scholar] [CrossRef]
- Bermejo-Pareja, F.; Antequera, D.; Vargas, T.; Molina, J.A.; Carro, E. Saliva levels of Abeta1-42 as potential biomarker of Alzheimer’s disease: A pilot study. BMC Neurol. 2010, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, L.E.; Muffat, J.A.; Cherny, R.A.; Moir, R.D.; Ericsson, M.H.; Huang, X.; Mavros, C.; Coccia, J.A.; Faget, K.Y.; Fitch, K.A.; et al. Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 2003, 361, 1258–1265. [Google Scholar] [CrossRef]
- Wang, J.; Schipper, H.M.; Velly, A.M.; Mohit, S.; Gornitsky, M. Salivary biomarkers of oxidative stress: A critical review. Free Radic. Biol. Med. 2015, 85, 95–104. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Zalewska, A.; Ładny, J.R. Salivary Antioxidant Barrier, Redox Status, and Oxidative Damage to Proteins and Lipids in Healthy Children, Adults, and the Elderly. Oxid. Med. Cell. Longev. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Barbe, A.G. Medication-Induced Xerostomia and Hyposalivation in the Elderly: Culprits, Complications, and Management. Drugs Aging 2018, 35, 877–885. [Google Scholar] [CrossRef]
- Miranda-Rius, J.; Brunet-Llobet, L.; Lahor-Soler, E.; Farré, M. Salivary Secretory Disorders, Inducing Drugs, and Clinical Management. Int. J. Med. Sci. 2015, 12, 811–824. [Google Scholar] [CrossRef] [Green Version]
- Cabello-Verrugio, C.; Simon, F.; Trollet, C.; Santibañez, J.F. Oxidative Stress in Disease and Aging: Mechanisms and Therapies 2016. Oxid. Med. Cell. Longev. 2017, 2017. [Google Scholar] [CrossRef]
- Skutnik-Radziszewska, A.; Maciejczyk, M.; Fejfer, K.; Krahel, J.; Flisiak, I.; Kołodziej, U.; Zalewska, A. Salivary Antioxidants and Oxidative Stress in Psoriatic Patients: Can Salivary Total Oxidant Status and Oxidative Status Index Be a Plaque Psoriasis Biomarker? Oxid. Med. Cell. Longev. 2020, 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arazi, H.; Simaei, E.; Taati, B. Comparison of responses of salivary antioxidant markers to exhaustive aerobic exercise in smoker and non-smoker young girls. J. Sports Med. Phys. Fit. 2016, 56, 1132–1138. [Google Scholar]
- Zalewska, A.; Maciejczyk, M.; Szulimowska, J.; Imierska, M.; Błachnio-Zabielska, A. High-Fat Diet Affects Ceramide Content, Disturbs Mitochondrial Redox Balance, and Induces Apoptosis in the Submandibular Glands of Mice. Biomolecules 2019, 9, 877. [Google Scholar] [CrossRef] [Green Version]
- Hattori, H.; Matsumoto, M.; Iwai, K.; Tsuchiya, H.; Miyauchi, E.; Takasaki, M.; Kamino, K.; Munehira, J.; Kimura, Y.; Kawanishi, K.; et al. The tau protein of oral epithelium increases in Alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, C.; Vianna, C.; Freeman, M.; Davies, P. A polymorphic gene nested within an intron of the tau gene: Implications for Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2002, 99, 7751–7756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Sui, Y.T.; Peskind, E.R.; Li, G.; Hwang, H.; Devic, I.; Ginghina, C.; Edgar, J.S.; Pan, C.; Goodlett, D.R.; et al. Salivary tau species are potential biomarkers of Alzheimer’s disease. J. Alzheimers Dis. 2011, 27, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Pekeles, H.; Qureshi, H.Y.; Paudel, H.K.; Schipper, H.M.; Gornistky, M.; Chertkow, H. Development and validation of a salivary tau biomarker in Alzheimer’s disease. Alzheimers Dement. (Amst) 2019, 11, 53–60. [Google Scholar] [CrossRef]
- Lau, H.C.; Lee, I.K.; Ko, P.W.; Lee, H.W.; Huh, J.S.; Cho, W.J.; Lim, J.O. Non-invasive screening for Alzheimer’s disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor. PLoS ONE 2015, 10, e0117810. [Google Scholar] [CrossRef] [Green Version]
- Ashton, N.J.; Ide, M.; Scholl, M.; Blennow, K.; Lovestone, S.; Hye, A.; Zetterberg, H. No association of salivary total tau concentration with Alzheimer’s disease. Neurobiol. Aging. 2018, 70, 125–127. [Google Scholar] [CrossRef] [Green Version]
- Sayer, R.; Law, E.; Connelly, P.J.; Breen, K.C. Association of a salivary acetylcholinesterase with Alzheimer’s disease and response to cholinesterase inhibitors. Clin. Biochem. 2004, 37, 98–104. [Google Scholar] [CrossRef]
- Bakhtiari, S.; Moghadam, N.B.; Ehsani, M.; Mortazavi, H.; Sabour, S.; Bakhshi, M. Can Salivary Acetylcholinesterase be a Diagnostic Biomarker for Alzheimer? J. Clin. Diagn. Res. 2017, 11, 58–60. [Google Scholar] [CrossRef]
- Boston, P.F.; Gopalkaje, K.; Manning, L.; Middleton, L.; Loxley, M. Developing a simple laboratory test for Alzheimer’s disease: Measuring acetylcholinesterase in saliva—A pilot study. Int. J. Geriatr. Psychiatry 2008, 23, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Honjo, K.; van Reekum, R.; Verhoeff, N.P. Alzheimer’s disease and infection: Do infectious agents contribute to progression of Alzheimer’s disease? Alzheimers Dement. 2009, 5, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Chavez, S.A.; Arevalo-Gallegos, S.; Rascon-Cruz, Q. Lactoferrin—structure, function and applications. Int. J. Antimicrob. Agents 2009, 33, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Ellison, R.T., 3rd; Giehl, T.J.; Laforce, F.M. Damage of the membrane of enteric Gram- negative bacteria by lactoferrin and transferrin. Infect. Immun. 1988, 56, 2774–2781. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Lu, H. Salivary biological biomarkers for Alzheimer’s disease. Arch. Oral. Biol. 2019, 105, 5–12. [Google Scholar] [CrossRef]
- Carro, E.; Bartolome, F.; Bermejo-Pareja, F.; Villarejo-Galende, A.; Molina, J.A.; Ortiz, P.; Calero, M.; Rabano, A.; Cantero, J.L.; Orive, G. Early diagnosis of mild cognitive impairment and Alzheimer’s disease based on salivary lactoferrin. Alzheimers Dement. (Amst) 2017, 8, 131–138. [Google Scholar] [CrossRef]
- Yilmaz, A.; Geddes, T.; Han, B.; Bahado-Singh, R.O.; Wilson, G.D.; Imam, K.; Maddens, M.; Graham, S.F. Diagnostic Biomarkers of Alzheimer’s Disease as Identified in Saliva using 1H NMR-Based Metabolomics. J. Alzheimers Dis. 2017, 58, 355–359. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, H.; Zhang, Y.; Jiang, Y.; Xing, H.; Zhang, A.H. Metabolomics-based screening of salivary biomarkers for early diagnosis of Alzhaimer’s disease. RSC Advances 2015, 5, 96074–96079. [Google Scholar] [CrossRef]
- Blasco, H.; Garcon, G.; Patin, F.; Veyrat-Durebex, C.; Boyer, J.; Devos, D.; Vourc’h, P.; Andres, C.R.; Corcia, P. Panel of Oxidative Stress and Inflammatory Biomarkers in ALS: A Pilot Study. Can. J. Neurol. Sci. 2017, 44, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Bolner, A.; Micciolo, R.; Bosello, O.; Nordera, G.P. A Panel of Oxidative Stress Markers in Parkinson’s Disease. Clin. Lab. 2016, 62, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, F.; Tasset, I.; Agüera, E.; Feijóo, M.; Fernández-Bolaños, R.; Sánchez, F.M.; Ruiz, M.C.; Cruz, A.H.; Gascón, F.; Túnez, I. Oxidative stress and inflammation biomarkers in the blood of patients with Huntington’s disease. Neurol. Res. 2012, 34, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Ciancarelli, I.; De Amicis, D.; Di Massimo, C.; Di Scanno, C.; Pistarini, C.; D’Orazio, N.; Tozzi Ciancarelli, M.G. Peripheral biomarkers of oxidative stress and their limited potential in evaluation of clinical features of Huntington’s patients. Biomarkers 2014, 19, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.T.; Chang, W.N.; Tsai, N.W.; Huang, C.C.; Kung, C.T.; Su, Y.J.; Lin, W.C.; Cheng, B.C.; Su, C.M.; Chiang, Y.F.; et al. The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: A systematic review. Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Farah, R.; Haraty, H.; Salame, Z.; Fares, Y.; Ojcius, D.M.; Said Sadier, N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed. J. 2018, 41, 63–87. [Google Scholar] [CrossRef]
- Knaś, M.; Maciejczyk, M.; Sawicka, K.; Hady, H.R.; Niczyporuk, M.; Ładny, J.R.; Matczuk, J.; Waszkiel, D.; Żendzian-Piotrowska, M.; Zalewska, A. Impact of morbid obesity and bariatric surgery on antioxidant/oxidant balance of the unstimulated and stimulated human saliva. J. Oral. Pathol. Med. 2016, 45, 455–464. [Google Scholar] [CrossRef]
- Al-Rawi, N.H. Oxidative stress, antioxidant status and lipid profile in the saliva of type 2 diabetics. Diabetes Vasc. Dis. Res. 2011, 8, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Maciejczyk, M.; Matczuk, J.; Żendzian-Piotrowska, M.; Niklińska, W.; Fejfer, K.; Szarmach, I.; Ładny, J.R.; Zieniewska, I.; Zalewska, A. Eight-Week Consumption of High-Sucrose Diet Has a Pro-Oxidant Effect and Alters the Function of the Salivary Glands of Rats. Nutrients 2018, 10, 1530. [Google Scholar] [CrossRef] [Green Version]
- Zygula, A.; Kosinski, P.; Zwierzchowska, A.; Sochacka, M.; Wroczynski, P.; Makarewicz-Wujec, M.; Pietrzak, B.; Wielgos, M.; Rzentala, M.; Giebultowicz, J. Oxidative stress markers in saliva and plasma differ between diet-controlled and insulin-controlled gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2019, 148. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Szulimowska, J.; Taranta-Janusz, K.; Werbel, K.; Wasilewska, A.; Zalewska, A. Salivary FRAP as A Marker of Chronic Kidney Disease Progression in Children. Antioxidants (Basel) 2019, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Sawczuk, B.; Maciejczyk, M.; Sawczuk-Siemieniuk, M.; Posmyk, R.; Zalewska, A.; Car, H. Salivary Gland Function, Antioxidant Defence and Oxidative Damage in the Saliva of Patients with Breast Cancer: Does the BRCA1 Mutation Disturb the Salivary Redox Profile? Cancers (Basel) 2019, 11, 1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Reference | Study Population | Smokers/Periodontal Disease Included | Saliva Collection | Salivary Markers (Analytical Method) | Endpoints | |||
---|---|---|---|---|---|---|---|---|
Type | Time | Centr. | Storage | |||||
Choromanska et al. 2017 | study group: 80 patients with moderate (MMSE 11–18) AD, VaD, MxD (mean age 80.12); control group: 80 heathy subjects (mean age 80.12, MMSE >23) age- and sex-matched to the study group | No/No | NWS, SWS | 8 AM – 10 AM | 3000 x g, 20 min, 4 oC | −80 oC | total protein (colorimetry) | ↑ in the study group in both NWS and SWS |
uric acid (UA) (colorimetry) | ↓ in NWS of study group (p < 0.05) | |||||||
CAT (colorimetry) | ↓ in NWS (p ˂ 0.05) and in SWS (p ˂ 0.008) of study group | |||||||
Px (colorimetry) | ↓ in NWS (p ˂ 0.002) and in SWS (p ˂ 0.002) of study group | |||||||
TOS (colorimetry) | ↑ in NWS (p < 0.006) and in SWS (p < 0.009) of study group | |||||||
OSI | ↑ in NWS (p < 0.01) and in SWS (p < 0.02) of study group | |||||||
TAC (colorimetry) | ↓ in NWS (p<0.02) and SWS (p < 0.001) of study group | |||||||
AGE (fluorimetry) | ↑ in NWS (p < 0.03) and in SWS (p < 0.02) of study group negative correlation between AGE NWS and cognitive function in MMSE scale (r = −0.45, p = 0.04) high diagnostic value of AGE NWS in the differentiation of patients with dementia from healthy control (AUC = 0.85, p < 0.0001; sensitivity of 75.68% and specificity of 75.86%) | |||||||
AOPP (colorimetry) | ↑ in NWS (p < 0.007) and in SWS (p < 0.02) of study group | |||||||
8-isop (ELISA) | ↑ in NWS (p < 0.04) and in SWS (p < 0.001) of study group | |||||||
8-OHdG (ELISA) | ↑ in NWS (p < 0.007) and in SWS (p < 0.0004) of study group | |||||||
Klimiuk et al. 2019 | study group: 50 patients with SD (0-10 MMSE) and MMD (11-23 MMSE) AD, VaD, MxD (mean age 80.24); control group: 50 healthy subjects 50 (mean age 80.82) age- and sex-matched to the study group | No/No | NWS, SWS | 8 AM – 10 AM | 3000 x g. 20 min, 4 oC | −80 oC | CAT (colorimetry) | ↓ in NWS (p < 0.001 in both groups) in SD and MMD patients compared to controls ↓ in NWS of SD compared to MMD patients (p < 0.001) ↓ in SWS of MMD (p < 0.001) and SD patients (p < 0.001) compared to controls ↓ in SWS of SD compared to MMD patients (p < 0.001) |
GSH (colorimetry) | ↓ in NWS (p < 0.001 in both groups) in SD and MMD patients compared to controls ↓ in NWS of SD compared to MMD patients (p < 0.001) ↓ in SWS of MMD (p < 0.001) and SD patients (p < 0.001) compared to controls ↓ in SWS of SD compared to MMD patients (p < 0.001) positive correlation between salivary and plasma levels (SD: r = 0.45, p = 0.002; MD: r = 0.51, p = 0.01) | |||||||
TAS (colorimetry) | ↓ in NWS (p < 0.001 in both groups) in SD and MMD patients compared to controls ↓ in NWS of SD compared to MMD patients (p < 0.001) ↓ in SWS of MMD (p < 0.001) and SD patients (p < 0.001) compared to controls ↓ in SWS of SD compared to MMD patients (p < 0.001) | |||||||
Px (colorimetry) | ↓ only in NWS of SD compared to controls (p < 0.001) ↓ in NWS of SD compared to MMD patients (p < 0.001) ↓ in SWS of MMD (p < 0.01) and SD patients (p < 0.001) compared to controls ↓ in SWS of SD compared to MMD patients (p < 0.001) | |||||||
AOPP (colorimetry) | ↑ in NWS of MMD and SD compared to controls (p < 0.001 in both groups) ↑ in NWS of SD than in MMD individuals (p < 0.001) ↑ in SWS of MMD and SD patients than in controls (p<0.001 in both groups) ↑ in SWS of SD than MMD patients (p < 0.001) | |||||||
Amadori products (colorimetry) | ↑ in NWS of MMD and SD compared to controls (p < 0.001 in both groups) ↑ in NWS of SD than in MMD individuals (p < 0.001) ↑ in SWS of MMD and SD patients than in controls (p < 0.001 in both groups) ↑ in SWS of SD than MMD patients (p < 0.001) high correlation between salivary and plasma levels (SD: r = 0.67, p < 0.001; MD: r = 0.62, p = 0.001) | |||||||
PC (colorimetry) | ↑ in NWS of MMD and SD compared to controls (p < 0.001 in both groups) ↑ in SWS of MMD and SD patients than in controls (p < 0.001 in both groups) ↑ in SWS of SD than MMD patients (p < 0.001) | |||||||
AGE (fluorimetry) | ↑ in NWS of MMD and SD compared to controls (p < 0.001 in both groups) ↑ in NWS of SD than in MMD individuals (p < 0.001) ↑ in SWS of MMD (p < 0.05) and SD (p < 0.001) patients than in controls ↑ in SWS of SD than MMD patients (p < 0.001) positive correlation between salivary and plasma levels (SD: r = 0.62 p < 0.001; MD: r = 0.69, p < 0.001) | |||||||
total thiols (colorimetry) | ↓ in NWS of MMD and SD compared to controls (p < 0.001 in both groups) ↓ in SWS of MMD and SD compared to controls (p < 0.001 in both groups) | |||||||
tryptophan (fluorimetry) | ↑ in NWS of MMD (p < 0.01) and SD (p < 0.001) patients compared to controls ↑ in NWS of SD than MMD (p < 0.001) patients ↑ in SWS of MMD and SD than in controls (p < 0.001 in both groups) ↑ in SWS of SD than MMD (p < 0.001) | |||||||
kynurenine (fluorimetry) | ↑ in NWS only of SD (p < 0.001) patients compared to controls ↑ in NWS of SD than MMD (p < 0.001) patients ↑ in SWS of MMD and SD than in controls (p < 0.001 in both groups) ↑ in SWS of SD than MMD (p < 0.001) | |||||||
N-formylkynurenine (fluorimetry) | ↑ in NWS only of SD (p < 0.001) patients compared to controls ↑ in NWS of SD than MMD (p < 0.001) patients ↑ in SWS of MMD and SD than in controls (p < 0.001 in both groups) ↑ in SWS of SD than MMD (p < 0.001) | |||||||
Dityrosine (fluorimetry) | ↑ in NWS of MMD (p < 0.001) patients compared to controls ↓ in NWS of SD patients (p < 0.001) ↑ in SWS of MMD and SD than in controls (p < 0.001 in both groups) ↑ in SWS of SD than MMD (p < 0.001) | |||||||
Pena-Bautista et al. 2019 | study group: 30 patients with AD, FTD, VaD (age range 50–75) | Yes-21%; Former smoker (>10 years)- 15%/No | SWS | 10 AM – 12 AM | 3500 x g, 10 min, 4 oC | -80 oC | IsoPs, IsoFs, NeuroPs, NeuroFs (UPLC-MS/MS) | new set of lipid peroxidation biomarkers (neuroprostanes) was measures for the first time in saliva samples, including F2-IsoPs, 4-NeuroPs, prostaglandins, dihomo-IsoFs, F2-dihoo-IsoPs; UPLC-MS/MS showed suitable sensitivity, as well as high precision and accuracy to be applied to saliva samples from NDDs patients; methodology was validated and showed high-throughput, satisfactory precision [coefficients of variation 2–11% (intra-day) and 5–12% (inter-day)], and high sensitivity (limits of detection 0.02–2 nmol L−1); reliability of the presented method was evaluated by analysis of samples of spiked saliva, and the recoveries were 80-120% for most of the analytes |
Su et al. 2008 | study group: 15 patients with AD (mean age 82.40), 21 patients with MCI (mean age 81.14); control group: 30 healthy subjects (mean age 69.20) | No/No | NWS | 8 AM – 10 PM (at 8AM, 10AM, 2PM, 4PM, 10PM) | 10,000 x g, 20 min, 4 oC | −80 oC | PC (colorimetry) | no statistically significant differences among the diagnostic groups; diurnal variation in AD and MCI patients as well as controls (peak of salivary PC concentrations at 2PM); repeat multivariate analyses revealed that overall mean protein carbonyl concentrations were not different (p = 0.45) between the ApoE ɛ4 noncarriers (2.0 ± 0.20 nmol/mg protein) and carriers (1.71 ± 0.32 nmol/mg protein). While, salivary carbonyl levels varied significantly (p < 0.0001) as a function of collection time (peak values at 2 PM) |
Song et al. 2018 | Study group: 58 patients with early idiopatic PD (mean age 70.83); control group: 59 healthy subjects (mean age 66.74) | No/Yes | NWS | N.A (not available) | 10,000 rpm), 20 min., 4 oC | –80 oC | HO-1 (ELISA, western blotting) | densitometric analysis of the salivary HO-1 bands relative to AMY1A (internal control) revealed a significant elevation of HO-1 protein concentrations in PD individuals compared to controls (p = 0.0014); ↑ salivary HO-1 levels in PD patients than in controls (p = 0.03); ↑ salivary logHO-1 concentrations in PD patients in H & Y stage 1 (early PD) than in controls (stage 0; p = 0.0006); difference statistically significant (p = 0.004) noted between PD stages 1 and 3 (↑ salivary logHO-1 concentrations in stage 3 than stage 1 of PD patients); salivary HO-1 concentrations distinguish PD subjects with early-stage of the disease (H & Y stage 1) from non-PD controls (H & Y stage 0) with an area under the curve of 76% (95% CI: 63–90); at the arbitrary cut-off of 4.5 ng/mL, sensitivity was 75% (95% CI: 54–96) and specificity amounted to 70% (95% CI: 5881) for H&Y stage 1 versus controls |
Sabbagh et al. 2018 | study group: 15 patients with AD (mean age 77.8, mean MMSE 19.0); control group: 7 healthy subjects (mean age 60.4, mean MMSE 29.0) | N.A/No | NWS | N.A | N.A | N.A | β amyloid (Aβ42) (ELISA) | ↑ salivary Aβ42 levels in AD patients than in controls (51.7± 1.6 pg/mL for AD patients and 21.1±0.3 pg/mL for controls, p<0.05); intra assay coefficient of variation (CV) was 3.10 for AD and 1.34 for controls; more development is required, including multi-laboratory validation, test-retest validity, and identification of confounders of diurnal variations; given the strength of the results from the study of Sabbagh et al., salivary Aβ42 warrants further investigation as a potential biomarker for mild to moderate AD |
Bermejo-Pareja et al. 2010 | study group: 70 patients with AD (mean age 77.20, mean MMSE 17); study group: 51 patients with PD (mean age 72.96, mean MMSE 28); control group: 56 elderly nondemented controls without neurological disease or cognitive impairment (mean age 74.35) | N.A./Yes | NWS | 1 PM | 1500 rpm,5 min. | −80 oC | β amyloid (Aβ40, Aβ42) (highly sensitive ELISA) | ↑ salivary Aβ42 in AD patients compared with PD and control groups (not statistically significant); ↑ salivary Aβ42 levels in mild AD patients; whereas the severe AD stage, had similar level than those observed in control group; no differences in saliva concentration of Aβ42 between patients with PD and healthy controls; unchanged Aβ40 between AD patients and healthy subjects; unchanged saliva Aβ40 expression within all the studied samples; ↑ ratio between saliva Aβ42 and Aβ40 (but not statistically significant) in mild and moderate AD patients in comparison to control subjects, whereas it was unchanged in severe AD patients; ↑ salivary Aβ42 in older AD patients; association between saliva Aβ42 levels and AD was independent of established risk factors, including age or Apo E, but was dependent on sex and functional capacity; ↑ levels of Aβ42 (not statistically significant) in patients with AD and without the Apo E ε4 allele in comparison to those with the allele; levels of Aβ42 were similar in controls with and without Apo E ε4 allele; levels of Aβ40 and Aβ42 in plasma did not differ significantly between AD patients and controls (259 ± 91.9 pg/mL vs. 225.1 ± 77.3 pg/mL, and 42.4 ± 92.7 pg/mL vs. 52.4 ± 68.9 pg/mL, respectively); Spearman rank analysis of saliva and plasma levels was not significant for Aβ40 as well as Aβ42 levels; authors showed the remarkable reproducibility of the saliva Aβ in different series of repetitive measurements |
Reference | Study Population | Salivary Biomarker | Analytical Method | Endpoints |
---|---|---|---|---|
Lau et al. 2015 | 20 patients with AD, 20 with PD, and 20 healthy controls | Aβ42 t-tau p-tau trehalose | ELISA, EG-IDFET biosensor | ↑ trehalose and ↑ p-tau vs controls Aβ42 not detected t-tau unchanged |
Shi et al. 2011 | 21 patients with AD and 38 healthy controls | Aβ42 t-tau p-tau | ELISA (Luminex assay) | Aβ42 not detected ↑t-tau and ↑p-tau vs controls p < 0.05 |
Ashton et al. 2018 | 53 patients with AD and 160 healthy controls | t-tau | Single molecule array (SIMOA) | t-tau unchanged |
Pekels et al. 2019 | 46 patients with AD and 47 healthy controls | t-tau p-tau | Western Blot | ↑ p-tau, ↑t-tau at phosphorylation site S396, S404, S400, T403, T404 vs controls |
Bakhtiari et al. 2017 | 15 patients with AD and 15 healthy controls | AChE activity | Ellman’s colorimetric method | AChE activity unchanged |
Boston et al. 2008 | 15 patients with AD and 13 healthy controls | AChE activity | Ellman’s colorimetric method | AChE activity unchanged |
Sayer et al. 2004 | 22 AD responders to AChE inhibitor, 14 AD no responders to AChE inhibitor, 11 healthy controls | AChE activity | Ellman’s colorimetric method | ↓ AChE activity in the saliva of AD no responders vs controls (p < 0.005) AChE activity in the saliva of AD responders and AD no responders did not statistically different |
Carro et al. 2017 | 80 patients with AD and 91 healthy controls | lactoferrin | ELISA | ↓ lactoferrin in the saliva of AD patients vs healthy controls (p < 0.001) |
Liang et al. 2015 | 256 patients with AD and 218 healthy controls | sphinganine-1-phosphate ornithine phenyllactic acid inosine 3-dehydrocarnitine hypoxantine | UPLC-MS | ↑ sphinganine-1-phosphate,↑ ornithine, ↑ phenyllactic acid ↓ inosine, ↓3-dehydrocarnitine ↓ hypoxantine in the saliva of AD vs controls (p < 0.01) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejczyk, M.; Zalewska, A.; Gerreth, K. Salivary Redox Biomarkers in Selected Neurodegenerative Diseases. J. Clin. Med. 2020, 9, 497. https://doi.org/10.3390/jcm9020497
Maciejczyk M, Zalewska A, Gerreth K. Salivary Redox Biomarkers in Selected Neurodegenerative Diseases. Journal of Clinical Medicine. 2020; 9(2):497. https://doi.org/10.3390/jcm9020497
Chicago/Turabian StyleMaciejczyk, Mateusz, Anna Zalewska, and Karolina Gerreth. 2020. "Salivary Redox Biomarkers in Selected Neurodegenerative Diseases" Journal of Clinical Medicine 9, no. 2: 497. https://doi.org/10.3390/jcm9020497
APA StyleMaciejczyk, M., Zalewska, A., & Gerreth, K. (2020). Salivary Redox Biomarkers in Selected Neurodegenerative Diseases. Journal of Clinical Medicine, 9(2), 497. https://doi.org/10.3390/jcm9020497