Evaluation of Suboptimal Peak Inspiratory Flow in Patients with Stable COPD
Abstract
1. Introduction
2. Methods
2.1. Process
2.2. Measurement Tools
2.3. Ethical Factors
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Área de asma de SEPAR; Área de enfermería de SEPAR; Departamento de asma ALAT. SEPAR-ALAT consensus for inhaled therapies. Arch. Bronconeumol. 2013, 49, 2–14. [Google Scholar] [CrossRef]
- Duarte-de-Araújo, A.; Teixeira, P.; Hespanhol, V.; Correia-de-Sousa, J. COPD: Misuse of inhaler devices in clinical practice. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Chung, J.H.; Shin, K.-C.; Choi, E.Y.; Jin, H.J.; Lee, M.S.; Nam, M.J.; Lee, K.H. Critical inhaler handling error is an independent risk factor for frequent exacerbations of chronic obstructive pulmonary disease: Interim results of a single center prospective study. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 2767–2775. [Google Scholar] [CrossRef] [PubMed]
- Mahler, D.A. Peak inspiratory flow rate as a criterion for dry powder inhaler use in chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 2017, 14, 1103–1107. [Google Scholar] [CrossRef]
- Loh, C.; Peters, S.P.; Lovings, T.M.; Ohar, J.A. Suboptimal inspiratory flow rates are associated with chronic obstructive pulmonary disease and all-cause readmissions. Ann. Am. Thorac. Soc. 2017, 14, 1305–1311. [Google Scholar] [CrossRef]
- Mahler, D.A. The role of inspiratory flow in selection and use of inhaled therapy for patients with chronic obstructive pulmonary disease. Respir. Med. 2020, 161, 105857. [Google Scholar] [CrossRef]
- Branco Ferreira, M.; Santos, A.; Clode, M.H.; Palma Carlos, A.G. Turbutest in the training of asthmatic Turbuhaler users. Allergy 1999, 54, 375–379. [Google Scholar] [CrossRef]
- Broeders, M.E.A.C.; Molema, J.; Vermue, N.A.; Folgering, H.T.M. In check dial: Accuracy for Diskus and Turbuhaler. Int. J. Pharm. 2003, 252, 275–280. [Google Scholar] [CrossRef]
- Sanders, M.J. Guiding inspiratory flow: Development of the in-check DIAL G16, a tool for improving inhaler technique. Pulm. Med. 2017, 2017, 1495867. [Google Scholar] [CrossRef]
- Miravitlles, M.; Soler-Cataluña, J.J.; Calle, M.; Molina, J.; Almagro, P.; Quintano, J.A.; Trigueros, J.A.; Cosio, B.G.; Casanova, C. Spanish guidelines for management of chronic obstructive pulmonary disease (GesEPOC) 2017. Pharmacological treatment of stable phase. Arch. Bronconeumol. 2017, 53, 324–335. [Google Scholar] [CrossRef]
- Singh, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Criner, G.J.; Frith, P.; Halpin, D.M.G.; Han, M.; et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: The GOLD science committee report 2019. Eur. Respir. J. 2019, 53, 1900164. [Google Scholar] [CrossRef] [PubMed]
- Agusti, A.; Fernández-Villar, A.; Capelastegui, A.; García-Losa, M.; Velasco, B.; Sánchez, G. Validity study of Catalan, Galician and Basque language versions of the COPD assessment test and equivalence with the Spanish version. Arch. Bronconeumol. 2017, 53, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Plaza, V.; Fernández-Rodríguez, C.; Melero, C.; Cosío, B.G.; Entrenas, L.M.; De Llano, L.P.; Gutiérrez-Pereyra, F.; Tarragona, E.; Palomino, R.; López-Viña, A.; et al. Validation of the test of the adherence to inhalers; (TAI) for Asthma and COPD patients. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Tordera, M.P.; Viejo, J.L.; Sanchis, J.; Badia, X.; Cobos, N.; Picado, C.; Sobradillo, V.; Del Río, J.M.G.; Duce, F.; Cabrera, L.M. Assessment of patient satisfaction and preferences with inhalers in asthma with the FSI-10 Questionnaire. Arch. Bronconeumol. 2008, 44, 346–352. [Google Scholar] [CrossRef]
- García-Río, F.; Calle, M.; Burgos, F.; Casan, P.; del Campo, F.; Galdiz, J.B.; Giner, J.; Gonzalez-Mangado, N.; Ortega, F.; Puente Maestu, L. Espirometría. Arch. Bronconeumol. 2013, 49, 388–401. [Google Scholar] [CrossRef]
- Modin, H.E.; Fathi, J.T.; Gilbert, C.R.; Wilshire, C.L.; Wilson, A.K.; Aye, R.W.; Farivar, A.S.; Louie, B.E.; Vallieres, E.; Gorden, J.A. Pack-year cigarette smoking history for determination of lung cancer screening eligibility. Comparison of the electronic medical record versus a shared decision-making conversation. Ann. Am. Thorac. Soc. 2017, 14, 1320–1325. [Google Scholar] [CrossRef]
- Chouaid, C.; Germain, N.; De Pouvourville, G.; Aballéa, S.; Korchagina, D.; Baldwin, M.; Le Lay, K.; Luciani, L.; Toumi, M.; DeVillier, P. Patient preference for chronic obstructive pulmonary disease (COPD) treatment inhalers: A discrete choice experiment in France. Curr. Med. Res. Opin. 2019, 35, 785–792. [Google Scholar] [CrossRef]
- Hira, D.; Koide, H.; Nakamura, S.; Okada, T.; Ishizeki, K.; Yamaguchi, M.; Koshiyama, S.; Oguma, T.; Ito, K.; Funayama, S.; et al. Assessment of inhalation flow patterns of soft mist inhaler co-prescribed with dry powder inhaler using inspiratory flow meter for multi inhalation devices. PLoS ONE 2018, 13, e0193082. [Google Scholar] [CrossRef]
- Ghosh, S.; Pleasants, R.A.; Ohar, J.A.; Donohue, J.F.; Drummond, M.B. Prevalence and factors associated with suboptimal peak inspiratory flow rates in COPD. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 585–595. [Google Scholar] [CrossRef]
- Soriano, J.B.; Alfageme, I.; Miravitlles, M.; De Lucas, P.; Soler-Cataluña, J.J.; García-Río, F.; Casanova, C.; González-Moro, J.M.R.; Cosío, B.G.; Sánchez, G.; et al. Prevalence and determinants of COPD in Spain: EPISCAN II. Arch. Bronconeumol. 2020. [Google Scholar] [CrossRef]
- Delgado, A.; Saletti-Cuesta, L.; López-Fernández, L.A.; Gil-Garrido, N.; Castillo, J.D.D.L.D. Gender inequalities in COPD decision-making in primary care. Respir. Med. 2016, 114, 91–96. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pérez, T.A.; Castillo, E.G.; Ancochea, J.; Sanz, M.T.P.; Almagro, P.; Martínez-Camblor, P.; Miravitlles, M.; Carballeira, M.R.-; Navarro, A.; Lamprecht, B.; et al. Sex differences between women and men with COPD: A new analysis of the 3CIA study. Respir. Med. 2020, 171. [Google Scholar] [CrossRef] [PubMed]
- Han, M.K. Chronic obstructive pulmonary disease in women: A biologically focused review with a systematic search strategy. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, L.P. Inspiratory flows through dry powder inhaler in chronic obstructive pulmonary disease: Age and gender rather than severity matters. Int. J. Chronic Obstr. Pulm. Dis. 2010, 5, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Mahler, D.A.; Mayorga, V.M.; Deering, K.L.; Harshaw, Q.; Ganapathy, V. Prevalence of low peak inspiratory flow rate at discharge in patients hospitalized for COPD exacerbation. Chronic Obstr. Pulm. Dis. J. COPD Found. 2017, 4, 217–224. [Google Scholar] [CrossRef]
- Harb, H.S.; Laz, N.I.; Rabea, H.; Abdelrahim, M.E.A. Prevalence and predictors of suboptimal peak inspiratory flow rate in COPD patients. Eur. J. Pharm. Sci. 2020, 147, 105298. [Google Scholar] [CrossRef]
- Ghosh, S.; Ohar, J.A.; Drummond, M.B. Peak Inspiratory flow rate in chronic obstructive pulmonary disease: Implications for dry powder inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2017, 30, 381–387. [Google Scholar] [CrossRef]
- Mahler, D.A.; Waterman, L.A.; Gifford, A.H. Prevalence and COPD phenotype for a suboptimal peak inspiratory flow rate against the simulated resistance of the Diskus© dry powder inhaler. J. Aerosol Med. Pulm. Drug Deliv. 2013, 26, 174–179. [Google Scholar] [CrossRef]
- Janssens, W.; Vandenbrande, P.; Hardeman, E.; De Langhe, E.; Philps, T.; Troosters, T.; Decramer, M. Inspiratory flow rates at different levels of resistance in elderly COPD patients. Eur. Respir. J. 2008, 31, 78–83. [Google Scholar] [CrossRef]
- Kawamatawong, T.; Khiawwan, S.; Pornsuriyasak, P. Peak inspiratory flow rate measurement by using in-check DIAL for the different inhaler devices in elderly with obstructive airway diseases. J. Asthma Allergy 2017, 10, 17–21. [Google Scholar] [CrossRef]
- Duarte, A.G.; Tung, L.; Zhang, W.; Hsu, E.S.; Kuo, Y.-F.; Sharma, G. Spirometry measurement of peak inspiratory flow identifies suboptimal use of dry powder inhalers in ambulatory patients with COPD. Chronic Obstr. Pulm. Dis. J. COPD Found. 2019, 6, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Bernabeu-Mora, R.; Oliveira-Sousa, S.L.; Sánchez-Martínez, M.P.; García-Vidal, J.A.; Gacto-Sánchez, M.; Medina-Mirapeix, F. Frailty transitions and associated clinical outcomes in patients with stable COPD: A longitudinal study. PLoS ONE 2020, 15, e0230116. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Huang, C.K.; Peng, H.C.; Yu, C.J.; Chien, J.Y. Inappropriate peak inspiratory flow rate with dry powder inhaler in chronic obstructive pulmonary disease. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Prime, D.; De Backer, W.; Hamilton, M.; Cahn, A.; Preece, A.; Kelleher, D.; Baines, A.; Moore, A.; Brealey, N.; Moynihan, J. Effect of disease severity in asthma and chronic obstructive pulmonary disease on inhaler-specific inhalation profiles through the ELLIPTA© dry powder inhaler. J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 486–497. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-Loyola, W.; Osadnik, C.; Phu, S.; Morita, A.A.; Duque, G.; Probst, V.S. Diagnosis, prevalence, and clinical impact of sarcopenia in COPD: A systematic review and meta-analysis. J. Cachex Sarcopenia Muscle 2020, 11, 1164–1176. [Google Scholar] [CrossRef] [PubMed]
- Scullion, J. The nurse practitioners perspective on inhaler education in asthma and chronic obstructive pulmonary disease. Can. Respir. J. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Loh, C.H.; Ohar, J.A. Personalization of device therapy—Prime time for peak inspiratory flow rate. Chronic Obstr. Pulm. Dis. J. COPD Found. 2017, 4, 172–176. [Google Scholar] [CrossRef]
Total (n = 122) | Adequate PIF (n = 88) | Sub-Optimal PIF (n = 34) | p Value * | |
---|---|---|---|---|
Males | 106 (87%) | 76 (86%) | 30 (88%) | 0.99 |
Age (years) | 68 ± 10 | 67 ± 10 | 72 ± 10 | 0.09 |
Primary education | 78 (64%) | 53 (60%) | 25 (74%) | 0.17 |
Active smoking | 49 (40%) | 34 (39%) | 15 (44%) | 0.58 |
BMI (Kg/m2) | 28.4 ± 5.6 | 28.4 ± 5.4 | 28.5 ± 6.1 | 0.9 |
Forced expiratory volume in 1 s (FEV1) (mL) | 1350 ± 528 | 1387 ± 562 | 1129 ± 371 | 0.04 |
FEV1 (%) | 47 ± 16 | 49 ± 17 | 43 ± 14 | 0.08 |
Forced vital capacity (FVC) (mL) | 2852 ± 908 | 3005 ± 982 | 2456 ± 500 | <0.01 |
FVC (%) | 77 ± 18 | 80 ± 19 | 70 ± 12 | <0.01 |
Resistance * | Number of Patients | PIF (L/min) | Sub-Optimal PIF |
---|---|---|---|
R1 | 49 | 95 (21) | 5 (10.2%) |
R2 | 33 | 74 (18) | 6 (18.1%) |
R3 | 17 | 74 (19) | 2 (11.7%) |
R4 | 65 | 62 (14) | 26 (40%) |
R5 | 22 | 40 (12) | 3 (13.6%) |
Total (n = 122) | Adequate PIF (n = 88) | Sub-Optimal PIF (n = 34) | p Value * | |
---|---|---|---|---|
Some critical error in inhalation technique | 73 (60%) | 47 (53%) | 26 (77%) | 0.02 |
Intermediate or bad adherence (TAI) | 32 (26%) | 27 (31%) | 5 (15%) | 0.07 |
Erratic non-compliance | 21 (17%) | 19 (22%) | 2 (6%) | 0.04 |
Deliberate non-compliance | 11 (9%) | 11 (13%) | 0 (0%) | 0.03 |
Unconscious non-compliance | 74 (61%) | 47 (53%) | 27 (79%) | <0.01 |
FSI-10 (score) | 44.7 ± 5.8 | 45.3 ± 5.6 | 43.5 ± 6.1 | 0.13 |
Medium/low satisfaction (FSI-10) | 25 (21%) | 17 (19%) | 9 (27%) | 0.39 |
Number of exacerbations in last year | 1.2 ± 1.4 | 1.06 ± 1.3 | 1.56 ± 1.3 | 0.06 |
≥2 exacerbations in last year | 38 (31%) | 22 (25%) | 16 (47%) | 0.02 |
No exacerbations in last year | 46 (38%) | 37 (42%) | 9 (27%) | 0.11 |
Dyspnea score (mMRC) | 1.6 ± 1 | 1.63 ± 1 | 1.73 ± 1.1 | 0.63 |
3–4 mMRC dyspnea score | 20 (16%) | 14 (16%) | 6 (18%) | 0.81 |
CAT score | 15 ± 7 | 15 ± 8 | 15 ± 6 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Represas-Represas, C.; Aballe-Santos, L.; Fernández-García, A.; Priegue-Carrera, A.; López-Campos, J.-L.; González-Montaos, A.; Botana-Rial, M.; Fernández-Villar, A. Evaluation of Suboptimal Peak Inspiratory Flow in Patients with Stable COPD. J. Clin. Med. 2020, 9, 3949. https://doi.org/10.3390/jcm9123949
Represas-Represas C, Aballe-Santos L, Fernández-García A, Priegue-Carrera A, López-Campos J-L, González-Montaos A, Botana-Rial M, Fernández-Villar A. Evaluation of Suboptimal Peak Inspiratory Flow in Patients with Stable COPD. Journal of Clinical Medicine. 2020; 9(12):3949. https://doi.org/10.3390/jcm9123949
Chicago/Turabian StyleRepresas-Represas, Cristina, Luz Aballe-Santos, Alberto Fernández-García, Ana Priegue-Carrera, José-Luis López-Campos, Almudena González-Montaos, Maribel Botana-Rial, and Alberto Fernández-Villar. 2020. "Evaluation of Suboptimal Peak Inspiratory Flow in Patients with Stable COPD" Journal of Clinical Medicine 9, no. 12: 3949. https://doi.org/10.3390/jcm9123949
APA StyleRepresas-Represas, C., Aballe-Santos, L., Fernández-García, A., Priegue-Carrera, A., López-Campos, J.-L., González-Montaos, A., Botana-Rial, M., & Fernández-Villar, A. (2020). Evaluation of Suboptimal Peak Inspiratory Flow in Patients with Stable COPD. Journal of Clinical Medicine, 9(12), 3949. https://doi.org/10.3390/jcm9123949