Increased Omega-3 Fatty Acid Intake is Inversely Associated with Sarcopenic Obesity in Women but not in Men, Based on the 2014–2018 Korean National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions of Sarcopenic Obesity, Handgrip Strength, Obesity, and ω3FA Ratio
2.3. Definitions of Other Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saini, A.; Sharples, A.P.; Al-Shanti, N.; Stewart, C.E. Omega-3 fatty acid EPA improves regenerative capacity of mouse skeletal muscle cells exposed to saturated fat and inflammation. Biogerontology 2017, 18, 109–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.N.; Yang, S.J.; Yoo, H.J.; Lim, K.I.; Kang, H.J.; Song, W.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; et al. Prevalence of sarcopenia and sarcopenic obesity in Korean adults: The Korean Sarcopenic Obesity Study (KSOS). Nat. Précéd. 2009, 33, 885–892. [Google Scholar] [CrossRef]
- Riechman, S.E.; Schoen, R.E.; Weissfeld, J.L.; Thaete, F.L.; Hamman, R.F. Association of Physical Activity and Visceral Adipose Tissue in Older Women and Men. Obes. Res. 2002, 10, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Wannamethee, S.G.; Atkins, J.L. Muscle loss and obesity: The health implications of sarcopenia and sarcopenic obesity. In Proceedings of the Nutrition Society; Cambridge University Press (CUP): Cambridge, UK, 2015; Volume 74, pp. 405–412. [Google Scholar]
- Gingras, A.-A.; White, P.J.; Chouinard, P.Y.; Julien, P.; Davis, T.A.; Dombrowski, L.; Couture, Y.; Dubreuil, P.; Myre, A.; Bergeron, K.; et al. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J. Physiol. 2007, 579, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisani, D.F.; Amri, E.-Z.; Ailhaud, G. Disequilibrium of polyunsaturated fatty acids status and its dual effect in modulating adipose tissue development and functions. OCL 2015, 22, D405. [Google Scholar] [CrossRef] [Green Version]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Baillie, R.; Takada, R.; Nakamura, M.; Clarke, S. Coordinate induction of peroxisomal acyl-CoA oxidase and UCP-3 by dietary fish oil: A mechanism for decreased body fat deposition. Prostaglandins Leukot. Essent. Fat. Acids 1999, 60, 351–356. [Google Scholar] [CrossRef]
- Ukropec, J.; Reseland, J.E.; Gašperíková, D.; Demcáková, E.; Madsen, L.; Berge, R.K.; Rustan, A.C.; Klimes, I.; Drevon, C.A.; Sebokova, E. The hypotriglyceridemic effect of dietary n-3 FA is associated with increased β-oxidation and reduced leptin expression. Lipids 2003, 38, 1023–1029. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Miller, S.L. The Recommended Dietary Allowance of Protein: A misunderstood concept. JAMA 2008, 299, 2891–2893. [Google Scholar] [CrossRef]
- Pepersack, T.; Corretge, M.; Beyer, I.; Namias, B.; Andre, S.; Benoit, F.; Mergam, A.; Simonetti, C. Examining the effect of intervention to nutritional problems of hospitalized elderly: A pilot project. J. Nutr. Health Aging 2002, 6, 306–310. [Google Scholar] [PubMed]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B.; et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y. The Korea National Health and Nutrition Examination Survey (KNHANES): Current Status and Challenges. Epidemiol. Health 2014, 36, e2014002. [Google Scholar] [CrossRef] [Green Version]
- Kweon, S.; Kim, Y.; Jang, M.-J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.H.; Park, H.A.; Cho, Y.-G.; Kim, K.; Kim, N.H. Different Associations of Socioeconomic Status on Protein Intake in the Korean Elderly Population: A Cross-Sectional Analysis of the Korea National Health and Nutrition Examination Survey. Nutrients 2019, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-C.; Shook, R.P.; Drenowatz, C.; Blair, S.N. Physical activity and sarcopenic obesity: Definition, assessment, prevalence and mechanism. Futur. Sci. OA 2016, 2, FSO127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, J.-I.; Choi, H.; Ha, Y.-C. Mean Hand Grip Strength and Cut-off Value for Sarcopenia in Korean Adults Using KNHANES VI. J. Korean Med. Sci. 2017, 32, 868–872. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Hsu, P.-S.; Krairit, O.; Lee, J.S.; et al. Sarcopenia in Asia: Consensus Report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Paik, D.W.; Han, K.; Kang, S.W.; Ham, D.-I.; Kim, S.J.; Chung, T.-Y.; Lim, D.H. Differential effect of obesity on the incidence of retinal vein occlusion with and without diabetes: A Korean nationwide cohort study. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Guide for Monitoring Alcohol Consumption and Related Harm; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zúñiga, C.; Arai, H.; Boirie, Y.; Chen, L.-K.; Fielding, R.A.; Martin, F.C.; Michel, J.-P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Rabenda, V.; Simmons, M.; Geerinck, A.; De Carvalho, I.A.; Reginster, J.-Y.; Thiyagarajan, J.A.; Bruyère, O. Effects of Protein, Essential Amino Acids, B-Hydroxy B-Methylbutyrate, Creatine, Dehydroepiandrosterone and Fatty Acid Supplementation on Muscle Mass, Muscle Strength and Physical Performance in Older People Aged 60 Years and Over. A Systematic Review of the Literature. J. Nutr. Health Aging 2018, 22, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Beaudart, C.; Dawson, A.; Shaw, S.C.; Harvey, N.C.; Kanis, J.A.; Binkley, N.; Reginster, J.Y.; Chapurlat, R.; Chan, D.C.; Bruyère, O.; et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: Systematic review. Osteoporos. Int. 2017, 28, 1817–1833. [Google Scholar] [CrossRef] [Green Version]
- Dupont, J.; Dedeyne, L.; Dalle, S.; Koppo, K.; Gielen, E.E. The role of omega-3 in the prevention and treatment of sarcopenia. Aging Clin. Exp. Res. 2019, 31, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Jiang, W.; Spinetti, T.; Tardivel, A.; Castillo, R.; Bourquin, C.; Guarda, G.; Tian, Z.; Tschopp, J.; Zhou, R. Omega-3 Fatty Acids Prevent Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome Activation. Immunity 2013, 38, 1154–1163. [Google Scholar] [CrossRef] [Green Version]
- Di Girolamo, F.G.; Situlin, R.; Mazzucco, S.; Valentini, R.; Toigo, G.; Biolo, G. Omega-3 fatty acids and protein metabolism: Enhancement of anabolic interventions for sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 145–150. [Google Scholar] [CrossRef]
- Aubert, J.; Saint-Marc, P.; Belmonte, N.; Dani, C.; Negrel, R.; Ailhaud, G. Prostacyclin IP receptor up-regulates the early expression of C/EBPβ and C/EBPδ in preadipose cells. Mol. Cell. Endocrinol. 2000, 160, 149–156. [Google Scholar] [CrossRef]
- Vassaux, G.; Gaillard, D.; Ailhaud, G.; Negrel, R. Prostacyclin is a specific effector of adipose cell differentiation. Its dual role as a cAMP- and Ca(2+)-elevating agent. J. Biol. Chem. 1992, 267, 11092–11097. [Google Scholar] [PubMed]
- Ide, T.; Kobayashi, H.; Ashakumary, L.; Rouyer, I.A.; Takahashi, Y.; Aoyama, T.; Hashimoto, T.; Mizugaki, M. Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2000, 1485, 23–35. [Google Scholar] [CrossRef]
- Couet, C.; Delarue, J.; Ritz, P.; Antoine, J.-M.; Lamisse, F. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int. J. Obes. 1997, 21, 637–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Boit, M.; Sibson, R.; Sivasubramaniam, S.; Meakin, J.R.; Greig, C.A.; Aspden, R.M.; Thies, F.; Jeromson, S.; Hamilton, D.L.; Speakman, J.R.; et al. Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: A randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Da Boit, M.; Sibson, R.; Meakin, J.R.; Aspden, R.M.; Thies, F.; Mangoni, A.A.; Gray, S.R. Sex differences in the response to resistance exercise training in older people. Physiol. Rep. 2016, 4, e12834. [Google Scholar] [CrossRef] [PubMed]
- Neder, J.A.; Nery, L.E.; Andreoni, S.; Whipp, B.J. Maximal aerobic power and leg muscle mass and strength related to age in non-athletic males and females. Graefe’s Arch. Clin. Exp. Ophthalmol. 1999, 79, 522–530. [Google Scholar] [CrossRef]
- Greeves, J.P.; Cable, N.T.; Reilly, T.; Kingsland, C. Changes in muscle strength in women following the menopause: A longitudinal assessment of the efficacy of hormone replacement therapy. Clin. Sci. 1999, 97, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Fratesi, J.A.; Hogg, R.C.; Young-Newton, G.S.; Patterson, A.C.; Charkhzarin, P.; Thomas, K.B.; Sharratt, M.T.; Stark, K.D. Direct quantitation of omega-3 fatty acid intake of Canadian residents of a long-term care facility. Appl. Physiol. Nutr. Metab. 2009, 34, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Patterson, A.C.; Metherel, A.H.; Hanning, R.M.; Stark, K.D. The percentage of DHA in erythrocytes can detect non-adherence to advice to increase EPA and DHA intakes. Br. J. Nutr. 2013, 111, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, J.N. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef]
- Sinclair, M.; Chapman, B.; Hoermann, R.; Angus, P.W.; Testro, A.; Scodellaro, T.; Gow, P.J. Handgrip Strength Adds More Prognostic Value to the Model for End-Stage Liver Disease Score Than Imaging-Based Measures of Muscle Mass in Men with Cirrhosis. Liver Transplant. 2019, 25, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Males | Females | p-Value |
---|---|---|---|
Number | 1960 | 1855 | |
Age, years | 68.8 ± 0.2 | 68.5 ± 0.2 | 0.159 |
BMI, Kg/m2 | 23.5 ± 0.1 | 23.6 ± 0.1 | 0.173 |
Energy intake, Kcal/day | 2423.1 ± 18.8 | 2013.3 ± 17.0 | <0.001 |
Carbohydrate intake, g/day | 381.6 ± 3.4 | 339.0 ± 3.4 | <0.001 |
Protein intake, g/day | 88.3 ± 0.8 | 73.1 ± 0.6 | <0.001 |
Fat intake, g/day | 44.6 ± 0.8 | 38.1 ± 0.6 | <0.001 |
Daily omega-3/energy intake, % | 0.9 ± 0.0 | 0.9 ± 0.0 | 0.254 |
Total cholesterol, mg/dL | 182.4 ± 1.0 | 194.6 ± 1.1 | <0.001 |
Systolic blood pressure, mmHg | 125.0 ± 0.4 | 127.3 ± 0.6 | <0.001 |
Fasting plasma glucose, mg/dL | 108.6 ± 0.7 | 104.1 ± 0.7 | <0.001 |
AST, IU/L | 24.6 ± 0.3 | 23.0 ± 0.2 | <0.001 |
hsCRP, mg/L | 1.5 ± 0.1 | 1.3 ± 0.1 | 0.082 |
Current smoking, % | 21.7 ± 1.0 | 2.4 ± 0.4 | <0.001 |
Heavy alcohol intake, % | 12.9 ± 0.9 | 1.8 ± 0.3 | <0.001 |
Economic status, % | 0.006 | ||
Low | 26.6 ± 1.2 | 31.9 ± 1.3 | |
Middle–low | 29.2 ± 1.2 | 27.8 ± 1.3 | |
Middle–high | 23.7 ± 1.0 | 20.8 ± 1.1 | |
High | 20.5 ± 1.1 | 19.6 ± 1.3 | |
Marital status, % | <0.001 | ||
Married and not separated | 90.9 ± 0.7 | 62.2 ± 1.4 | |
Single | 9.1 ± 0.7 | 37.8 ± 1.4 | |
Education duration, % | <0.001 | ||
<6 years | 30.8 ± 1.3 | 52.9 ± 1.5 | |
6–<9 years | 17.8 ± 1.1 | 16.8 ± 1.0 | |
9–<12 years | 29.2 ± 1.3 | 18.6 ± 1.1 | |
≥12 years | 22.2 ± 1.2 | 11.6 ± 1.0 | |
Occupation, % | <0.001 | ||
Office workers | 11.4 ± 0.9 | 4.0 ± 0.6 | |
Manual workers | 40.9 ± 1.4 | 30.5 ± 1.3 | |
Other | 47.7 ± 1.4 | 65.5 ± 1.3 | |
Sufficient physical activity, % | 46.5 ± 1.4 | 36.8 ± 1.4 | <0.001 |
History of diabetes mellitus, % | 17.0 ± 1.0 | 13.0 ± 0.9 | 0.002 |
History of hypertension, % | 42.1 ± 1.3 | 41.5 ± 1.4 | 0.782 |
Males | Q1 | Q2 | Q3 | Q4 | p-Value |
---|---|---|---|---|---|
(<0.4) | (0.4–<0.7) | (0.7–<1.1) | (≥1.1) | ||
Number | 517 | 483 | 485 | 475 | |
Age, years | 68.8 ± 0.3 | 69.4 ± 0.3 | 68.3 ± 0.3 | 68.8 ± 0.3 | 0.087 |
BMI, Kg/m2 | 23.3 ± 0.1 | 23.3 ± 0.1 | 23.7 ± 0.1 | 23.6 ± 0.1 | 0.061 |
Energy intake, Kcal/day | 2495.8 ± 36.6 | 2458.4 ± 36.8 | 2360.2 ± 32.6 | 2378.4 ± 39.8 | 0.024 |
Carbohydrate intake, g/day | 403.0 ± 7.3 | 401.7 ± 6.3 | 366.2 ± 5.3 | 355.7 ± 5.9 | <0.001 |
Protein intake, g/day | 82.7 ± 1.3 | 86.5 ± 1.4 | 88.6 ± 1.3 | 95.5 ± 1.9 | <0.001 |
Fat intake, g/day | 38.6 ± 1.3 | 42.6 ± 1.4 | 43.8 ± 1.3 | 53.2 ± 1.7 | <0.001 |
Daily omega-3/energy intake, % | 0.3 ± 0.0 | 0.5 ± 0.0 | 0.9 ± 0.0 | 2.0 ± 0.1 | <0.001 |
Total cholesterol, mg/dL | 185.4 ± 1.9 | 181.8 ± 1.8 | 183.0 ± 2.1 | 179.3 ± 2.1 | 0.223 |
Systolic blood pressure, mmHg | 126.8 ± 0.8 | 126.2 ± 0.8 | 123.4 ± 0.7 | 123.7 ± 0.9 | 0.002 |
Fasting plasma glucose, mg/dL | 111.1 ± 1.5 | 106.7 ± 1.3 | 109.1 ± 1.5 | 107.6 ± 1.3 | 0.170 |
AST, IU/L | 25.7 ± 0.7 | 24.2 ± 0.4 | 24.3 ± 0.4 | 24.2 ± 0.5 | 0.283 |
hsCRP, mg/L | 1.8 ± 0.2 | 1.5 ± 0.2 | 1.6 ± 0.1 | 1.2 ± 0.1 | 0.013 |
Current smoking, % | 26.3 ± 2.3 | 20.0 ± 2.0 | 21.5 ± 2.2 | 19.2 ± 2.1 | 0.113 |
Heavy alcohol intake, % | 16.3 ± 1.8 | 12.0 ± 1.6 | 13.0 ± 1.8 | 10.4 ± 1.6 | 0.082 |
Economic status, % | 0.037 | ||||
Low | 32.2 ± 2.4 | 26.1 ± 2.4 | 22.1 ± 2.1 | 25.9 ± 2.3 | |
Middle–low | 29.4 ± 2.2 | 29.0 ± 2.4 | 28.9 ± 2.4 | 29.4 ± 2.4 | |
Middle–high | 19.5 ± 2.0 | 22.4 ± 2.1 | 27.2 ± 2.2 | 25.8 ± 2.1 | |
High | 18.9 ± 2.1 | 22.5 ± 2.4 | 21.8 ± 2.2 | 18.9 ± 1.9 | |
Marital status, % | 0.038 | ||||
Married and not separated | 87.7 ± 1.6 | 90.9 ± 1.5 | 93.4 ± 1.2 | 91.5 ± 1.5 | |
Single | 12.3 ± 1.6 | 9.1 ± 1.5 | 6.6 ± 1.2 | 8.5 ± 1.5 | |
Education duration, % | <0.001 | ||||
<6 years | 39.7 ± 2.4 | 29.5 ± 2.3 | 28.7 ± 2.3 | 25.1 ± 2.4 | |
6–<9 years | 17.8 ± 1.9 | 18.1 ± 2.0 | 17.3 ± 2.1 | 18.0 ± 2.2 | |
9–<12 years | 25.2 ± 2.1 | 28.4 ± 2.4 | 32.3 ± 2.5 | 31.1 ± 2.6 | |
≥12 years | 17.4 ± 2.1 | 24.0 ± 2.3 | 21.7 ± 2.1 | 25.7 ± 2.2 | |
Occupation, % | 0.450 | ||||
Office workers | 10.7 ± 1.6 | 10.9 ± 1.7 | 12.7 ± 1.9 | 11.3 ± 1.6 | |
Manual workers | 46.4 ± 2.6 | 41.3 ± 2.7 | 38.8 ± 2.6 | 37.1 ± 2.4 | |
Other | 42.9 ± 2.6 | 47.7 ± 2.7 | 48.4 ± 2.7 | 51.6 ± 2.7 | |
Sufficient physical activity, % | 44.7 ± 2.5 | 49.0 ± 2.8 | 47.3 ± 2.6 | 44.8 ± 2.6 | 0.633 |
History of diabetes mellitus, % | 14.4 ± 1.7 | 15.9 ± 1.9 | 20.4 ± 2.2 | 17.3 ± 1.8 | 0.172 |
History of hypertension, % | 41.8 ± 2.4 | 44.5 ± 2.6 | 39.2 ± 2.5 | 42.8 ± 2.7 | 0.523 |
Females | Q1 | Q2 | Q3 | Q4 | p-Value |
(<0.4) | (0.4–<0.7) | (0.7–<1.2) | (≥1.2) | ||
Number | 460 | 479 | 454 | 462 | |
Age, years | 69.5 ± 0.4 | 68.9 ± 0.3 | 68.0 ± 0.4 | 67.6 ± 0.3 | <0.001 |
BMI, Kg/m2 | 23.5 ± 0.2 | 23.7 ± 0.1 | 23.7 ± 0.1 | 23.7 ± 0.1 | 0.704 |
Energy intake, Kcal/day | 2138.0 ± 40.5 | 1975.8 ± 30.0 | 1945.5 ± 31.7 | 1994.2 ± 34.4 | 0.002 |
Carbohydrate intake, g/day | 388.5 ± 8.7 | 337.8 ± 5.8 | 317.4 ± 5.6 | 312.6 ± 6.7 | <0.001 |
Protein intake, g/day | 69.5 ± 1.5 | 69.4 ± 1.0 | 74.8 ± 1.3 | 78.7 ± 1.3 | <0.001 |
Fat intake, g/day | 30.1 ± 1.1 | 34.7 ± 1.1 | 40.3 ± 1.2 | 47.2 ± 1.4 | <0.001 |
Daily omega-3/energy intake, % | 0.3 ± 0.0 | 0.6 ± 0.0 | 0.9 ± 0.0 | 2.0 ± 0.1 | <0.001 |
Total cholesterol, mg/dL | 194.9 ± 2.1 | 195.1 ± 2.2 | 193.9 ± 2.0 | 194.4 ± 2.2 | 0.979 |
Systolic blood pressure, mmHg | 129.2 ± 1.2 | 127.1 ± 0.8 | 126.1 ± 0.9 | 126.9 ± 1.1 | 0.211 |
Fasting plasma glucose, mg/dL | 102.9 ± 1.3 | 106.4 ± 1.9 | 101.6 ± 1.1 | 105.5 ± 1.3 | 0.062 |
AST, IU/L | 22.6 ± 0.4 | 23.2 ± 0.7 | 23.1 ± 0.4 | 23.1 ± 0.4 | 0.702 |
hsCRP, mg/L | 1.3 ± 0.1 | 1.4 ± 0.2 | 1.4 ± 0.2 | 1.2 ± 0.1 | 0.863 |
Current smoking, % | 4.0 ± 1.2 | 2.6 ± 0.9 | 1.2 ± 0.5 | 2.0 ± 0.9 | 0.129 |
Heavy alcohol intake, % | 2.9 ± 0.9 | 1.9 ± 0.7 | 1.6 ± 0.7 | 0.8 ± 0.3 | 0.084 |
Economic status, % | <0.001 | ||||
Low | 36.1 ± 2.6 | 36.9 ± 2.5 | 24.6 ± 2.4 | 29.8 ± 2.3 | |
Middle–low | 32.9 ± 2.5 | 25.9 ± 2.3 | 26.3 ± 2.2 | 26.0 ± 2.3 | |
Middle–high | 17.7 ± 2.3 | 18.7 ± 2.0 | 26.1 ± 2.6 | 20.6 ± 2.2 | |
High | 13.4 ± 2.1 | 18.4 ± 2.4 | 23.0 ± 2.2 | 23.7 ± 2.5 | |
Marital status, % | <0.001 | ||||
Married and not separated | 55.3 ± 2.7 | 56.7 ± 2.7 | 67.6 ± 2.6 | 69.2 ± 2.5 | |
Single | 44.7 ± 2.7 | 43.3 ± 2.7 | 32.4 ± 2.6 | 30.8 ± 2.5 | |
Education duration, % | <0.001 | ||||
<6 years | 64.2 ± 3.1 | 55.0 ± 2.7 | 45.9 ± 2.6 | 47.2 ± 2.8 | |
6–<9 years | 15.2 ± 2.1 | 16.3 ± 1.9 | 17.7 ± 1.9 | 17.9 ± 2.4 | |
9–<12 years | 13.8 ± 2.3 | 18.8 ± 2.2 | 22.0 ± 2.3 | 19.5 ± 2.0 | |
≥12 years | 6.8 ± 1.6 | 9.8 ± 1.5 | 14.3 ± 1.9 | 15.3 ± 1.8 | |
Occupation, % | 0.782 | ||||
Office workers | 2.9 ± 1.1 | 2.9 ± 0.9 | 5.1 ± 1.2 | 4.9 ± 1.0 | |
Manual workers | 31.8 ± 2.5 | 34.7 ± 2.3 | 26.3 ± 2.3 | 29.3 ± 2.2 | |
Other | 65.4 ± 2.5 | 62.4 ± 2.4 | 68.5 ± 2.4 | 65.9 ± 2.3 | |
Sufficient physical activity, % | 34.6 ± 2.7 | 35.5 ± 2.4 | 39.9 ± 2.7 | 36.9 ± 2.6 | 0.547 |
History of diabetes mellitus, % | 13.0 ± 1.9 | 13.5 ± 1.9 | 10.5 ± 1.5 | 14.9 ± 1.7 | 0.327 |
History of hypertension, % | 41.1 ± 2.6 | 41.3 ± 2.5 | 40.1 ± 2.6 | 43.6 ± 2.6 | 0.804 |
Ratio of Daily Total Fat and Fatty Acids Intake to Energy Intake (%) | Sarcopenic Obesity | Non-Sarcopenic Obesity | p-Value |
---|---|---|---|
Males | |||
Total fat | 16.5 ± 0.6 | 16.3 ± 0.2 | 0.741 |
SFA | 4.7 ± 0.2 | 4.7 ± 0.1 | 0.853 |
MUFA | 5.0 ± 0.2 | 5.0 ± 0.1 | 0.922 |
PUFA | 4.9 ± 0.2 | 4.6 ± 0.1 | 0.177 |
Omega-3 FA | 1.0 ± 0.1 | 0.9 ± 0.0 | 0.271 |
Omega-6 FA | 3.9 ± 0.2 | 3.7 ± 0.1 | 0.270 |
Females | |||
Total fat | 16.8 ± 0.6 | 17.1 ± 0.2 | 0.633 |
SFA | 4.9 ± 0.2 | 4.9 ± 0.1 | 0.879 |
MUFA | 5.2 ± 0.2 | 5.2 ± 0.1 | 0.995 |
PUFA | 4.6 ± 0.2 | 5.0 ± 0.1 | 0.121 |
Omega-3 FA | 0.8 ± 0.0 | 1.0 ± 0.0 | 0.017 |
Omega-6 FA | 3.8 ± 0.2 | 4.0 ± 0.1 | 0.334 |
Males | Q1 | Q2 | Q3 | Q4 |
---|---|---|---|---|
(<0.4) | (0.4–<0.7) | (0.7–<1.1) | (≥1.1) | |
Model 1 | 1 (ref) | 1.288 (0.776–2.138) | 1.298 (0.804–2.097) | 1.118 (0.701–1.782) |
Model 2 | 1 (ref) | 1.668 (0.868–3.205) | 1.160 (0.592–2.272) | 1.000 (0.512–1.953) |
Model 3 | 1 (ref) | 1.563 (0.802–3.047) | 1.246 (0.611–2.542) | 0.924 (0.458–1.864) |
Females | Q1 | Q2 | Q3 | Q4 |
(<0.4) | (0.4–<0.7) | (0.7–<1.2) | (≥1.2) | |
Model 1 | 1 (ref) | 0.807 (0.534–1.221) | 0.847 (0.552–1.299) | 0.603 (0.376–0.967) |
Model 2 | 1 (ref) | 0.604 (0.355–1.028) | 0.649 (0.394–1.072) | 0.282 (0.129–0.617) |
Model 3 | 1 (ref) | 0.663 (0.379–1.160) | 0.640 (0.372–1.102) | 0.246 (0.113–0.534) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Lee, J.-w.; Kim, Y.; Lee, J.H.; Kang, H.-T. Increased Omega-3 Fatty Acid Intake is Inversely Associated with Sarcopenic Obesity in Women but not in Men, Based on the 2014–2018 Korean National Health and Nutrition Examination Survey. J. Clin. Med. 2020, 9, 3856. https://doi.org/10.3390/jcm9123856
Yang W, Lee J-w, Kim Y, Lee JH, Kang H-T. Increased Omega-3 Fatty Acid Intake is Inversely Associated with Sarcopenic Obesity in Women but not in Men, Based on the 2014–2018 Korean National Health and Nutrition Examination Survey. Journal of Clinical Medicine. 2020; 9(12):3856. https://doi.org/10.3390/jcm9123856
Chicago/Turabian StyleYang, Woojung, Jae-woo Lee, Yonghwan Kim, Jong Hun Lee, and Hee-Taik Kang. 2020. "Increased Omega-3 Fatty Acid Intake is Inversely Associated with Sarcopenic Obesity in Women but not in Men, Based on the 2014–2018 Korean National Health and Nutrition Examination Survey" Journal of Clinical Medicine 9, no. 12: 3856. https://doi.org/10.3390/jcm9123856
APA StyleYang, W., Lee, J.-w., Kim, Y., Lee, J. H., & Kang, H.-T. (2020). Increased Omega-3 Fatty Acid Intake is Inversely Associated with Sarcopenic Obesity in Women but not in Men, Based on the 2014–2018 Korean National Health and Nutrition Examination Survey. Journal of Clinical Medicine, 9(12), 3856. https://doi.org/10.3390/jcm9123856