Remote Monitoring of Cardiac Implantable Electronic Devices in Patients Undergoing Hybrid Comprehensive Telerehabilitation in Comparison to the Usual Care. Subanalysis from Telerehabilitation in Heart Failure Patients (TELEREH-HF) Randomised Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Alerts in the Study Groups
3.3. Factors Associated with Occurence of Alerts in RM of CIEDs
3.4. Deaths and Hospitalisations
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [PubMed]
- Anderson, L.; Taylor, R.S. Cardiac rehabilitation for people with heart disease: An overview of Cochrane systematic reviews. Cochrane Database Syst. Rev. 2014, 2014, Cd011273. [Google Scholar]
- Piepoli, M.F.; Corrà, U.; Adamopoulos, S.; Benzer, W.; Bjarnason-Wehrens, B.; Cupples, M.; Dendale, P.; Doherty, P.; Gaita, D.; Höfer, S.; et al. Secondary prevention in the clinical management of patients with cardiovascular diseases. Core components, standards and outcome measures for referral and delivery: A policy statement from the cardiac rehabilitation section of the European Association for Cardiovascular Prevention & Rehabilitation. Endorsed by the Committee for Practice Guidelines of the European Society of Cardiology. Eur. J. Prev. Cardiol. 2014, 21, 664–681. [Google Scholar] [PubMed]
- Sears, S.F.; Todaro, J.F.; Urizar, G.; Lewis, T.S.; Sirois, B.; Wallace, R.; Sotile, W.; Curtis, A.B.; Conti, J.B. Assessing the psychosocial impact of the ICD: A national survey of implantable cardioverter defibrillator health care providers. Pacing Clin. Electrophysiol. 2000, 23, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Van Ittersum, M.; de Greef, M.; van Gelder, I.; Coster, J.; Brügemann, J.; van der Schans, C. Fear of exercise and health-related quality of life in patients with an implantable cardioverter defibrillator. Int. J. Rehabil. Res. 2003, 26, 117–122. [Google Scholar] [PubMed] [Green Version]
- Dougherty, C.M.; Glenny, R.W.; Burr, R.L.; Flo, G.L.; Kudenchuk, P.J. Prospective randomized trial of moderately strenuous aerobic exercise after an implantable cardioverter defibrillator. Circulation 2015, 131, 1835–1842. [Google Scholar] [CrossRef] [Green Version]
- Piotrowicz, E.; Zieliński, T.; Bodalski, R.; Rywik, T.; Dobraszkiewicz-Wasilewska, B.; Sobieszczańska-Małek, M.; Stepnowska, M.; Przybylski, A.; Browarek, A.; Szumowski, Ł.; et al. Home-based telemonitored Nordic walking training is well accepted, safe, effective and has high adherence among heart failure patients, including those with cardiovascular implantable electronic devices: A randomised controlled study. Eur. J. Prev. Cardiol. 2015, 22, 1368–1377. [Google Scholar] [CrossRef]
- Piccini, J.P.; Hellkamp, A.S.; Whellan, D.J.; Ellis, S.J.; Keteyian, S.J.; Kraus, W.E.; Hernandez, A.F.; Daubert, J.P.; Piña, l.L.; O’Connor, C.M.; et al. Exercise training and implantable cardioverter-defibrillator shocks in patients with heart failure: Results from HF-ACTION (Heart Failure and A Controlled Trial Investigating Outcomes of Exercise TraiNing). JACC Heart Fail. 2013, 1, 142–148. [Google Scholar] [CrossRef]
- Dan, G.A.; Martinez-Rubio, A.; Agewall, S.; Boriani, G.; Borggrefe, M.; Gaita, F.; van Gelder, I.; Gorenek, B.; Kaski, J.C.; Kjeldsen, K.; et al. Antiarrhythmic drugs-clinical use and clinical decision making: A consensus document from the European Heart Rhythm Association (EHRA) and European Society of Cardiology (ESC) Working Group on Cardiovascular Pharmacology, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and International Society of Cardiovascular Pharmacotherapy (ISCP). Europace 2018, 20, 731–732. [Google Scholar]
- Guédon-Moreau, L.; Lacroix, D.; Sadoul, N.; Clémenty, J.; Kouakam, C.; Hermida, J.S.; Aliot, E.; Boursier, M.; Bizeau, O.; Kacet, S. A randomized study of remote follow-up of implantable cardioverter defibrillators: Safety and efficacy report of the ECOST trial. Eur. Heart J. 2013, 34, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Varma, N.; Epstein, A.E.; Irimpen, A.; Schweikert, R.; Love, C. Efficacy and safety of automatic remote monitoring for implantable cardioverter-defibrillator follow-up: The Lumos-T Safely Reduces Routine Office Device Follow-up (TRUST) trial. Circulation 2010, 122, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossley, G.H.; Boyle, A.; Vitense, H.; Chang, Y.; Mead, R.H. The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: The value of wireless remote monitoring with automatic clinician alerts. J. Am. Coll. Cardiol. 2011, 57, 1181–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landolina, M.; Perego, G.B.; Lunati, M.; Curnis, A.; Guenzati, G.; Vicentini, A.; Parati, G.; Borghi, G.; Zanaboni, P.; Valsecchi, S.; et al. Remote monitoring reduces healthcare use and improves quality of care in heart failure patients with implantable defibrillators: The evolution of management strategies of heart failure patients with implantable defibrillators (EVOLVO) study. Circulation 2012, 125, 2985–2992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxon, L.A.; Hayes, D.L.; Gilliam, F.R.; Heidenreich, P.A.; Day, J.; Seth, M.; Meyer, T.E.; Jones, P.W.; Boehmer, J.P. Long-term outcome after ICD and CRT implantation and influence of remote device follow-up: The ALTITUDE survival study. Circulation 2010, 122, 2359–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hindricks, G.; Varma, N.; Kacet, S.; Lewalter, T.; Søgaard, P.; Guédon-Moreau, L.; Proff, J.; Gerds, T.A.; Anker, S.D.; Torp-Pedersen, C. Daily remote monitoring of implantable cardioverter-defibrillators: Insights from the pooled patient-level data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur. Heart J. 2017, 38, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, E.; Piotrowicz, R.; Opolski, G.; Pencina, M.; Banach, M.; Zaręba, W. Hybrid comprehensive telerehabilitation in heart failure patients (TELEREH-HF): A randomized, multicenter, prospective, open-label, parallel group controlled trial-Study design and description of the intervention. Am. Heart J. 2019, 217, 148–158. [Google Scholar] [CrossRef]
- Piotrowicz, E.; Pencina, M.J.; Opolski, G.; Zaręba, W.; Banach, M.; Kowalik, I.; Orzechowski, P.; Szalewska, D.; Pluta, S.; Główczyńska, R.; et al. Effects of a 9-Week Hybrid Comprehensive Telerehabilitation Program on Long-term Outcomes in Patients With Heart Failure: The Telerehabilitation in Heart Failure Patients (TELEREH-HF) Randomized Clinical Trial. JAMA Cardiol. 2020, 5, 300–308. [Google Scholar] [CrossRef]
- Zeng, W.-T.; Liu, Z.-H.; Li, Z.-Y.; Zhang, M.; Cheng, Y.-J. Digoxin Use and Adverse Outcomes in Patients with Atrial Fibrillation. Medicine 2016, 95, e2949. [Google Scholar] [CrossRef]
- Kang, S.H.; Choi, E.K.; Han, K.D.; Lee, S.R.; Lim, W.H.; Cha, M.J.; Cho, Y.; Oh, I.Y.; Oh, S. Underweight is a risk factor for atrial fibrillation: A nationwide population-based study. Int. J. Cardiol. 2016, 215, 449–456. [Google Scholar] [CrossRef]
- Macheret, F.; Bartz, T.M.; Djousse, L.; Ix, J.H.; Mukamal, K.J.; Zieman, S.J.; Siscovick, D.S.; Tracy, R.P.; Heckbert, S.R.; Psaty, B.M.; et al. Higher circulating adiponectin levels are associated with increased risk of atrial fibrillation in older adults. Heart 2015, 101, 1368–1374. [Google Scholar] [CrossRef]
- Rosenberg, M.A.; Das, S.; Pinzon, P.Q.; Knight, A.C.; Sosnovik, D.E.; Ellinor, P.T.; Rosenzweig, A. A novel transgenic mouse model of cardiac hypertrophy and atrial fibrillation. J. Atr. Fibrillation 2012, 2, 1–15. [Google Scholar]
- Yu, C.M.; Wang, L.; Chau, E.; Chan, R.H.; Kong, S.L.; Tang, M.O.; Christensen, J.; Stadler, R.W.; Lau, C.P. Intrathoracic impedance monitoring in patients with heart failure: Correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation 2005, 112, 841–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, W.T.; Compton, S.; Haas, G.; Foreman, B.; Canby, R.C.; Fishel, R.; McRae, S.; Toledo, G.B.; Sarkar, S.; Hettrick, D.A. Intrathoracic impedance vs daily weight monitoring for predicting worsening heart failure events: Results of the Fluid Accumulation Status Trial (FAST). Congest. Heart Fail. 2011, 17, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Conraads, V.M.; Tavazzi, L.; Santini, M.; Oliva, F.; Gerritse, B.; Yu, C.M.; Cowie, M.R. Sensitivity and positive predictive value of implantable intrathoracic impedance monitoring as a predictor of heart failure hospitalizations: The SENSE-HF trial. Eur. Heart J. 2011, 32, 2266–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, S.K.G.; Paule, S.; Jung, W.; Koller, M.; Ventura, R.; Quesada, A.; Bordachar, P.; García-Fernández, F.J.; Schumacher, B.; Lobitz, N.; et al. Evaluation of thoracic impedance trends for implant-based remote monitoring in heart failure patients—Results from the (J-)HomeCARE-II Study. J. Electrocardiol. 2019, 53, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Giallauria, F.; De Lorenzo, A.; Pilerci, F.; Manakos, A.; Lucci, R.; Psaroudaki, M.; D’Agostino, M.; Del Forno, D.; Vigorito, C. Reduction of N terminal-pro-brain (B-type) natriuretic peptide levels with exercise-based cardiac rehabilitation in patients with left ventricular dysfunction after myocardial infarction. Eur. J. Cardiovasc. Prev. Rehabil. 2006, 13, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Billebeau, G.; Vodovar, N.; Sadoune, M.; Launay, J.M.; Beauvais, F.; Cohen-Solal, A. Effects of a cardiac rehabilitation programme on plasma cardiac biomarkers in patients with chronic heart failure. Eur. J. Prev. Cardiol. 2017, 24, 1127–1135. [Google Scholar] [CrossRef]
- Piotrowicz, E.; Mierzyńska, A.; Banach, M.; Jaworska, I.; Pencina, M.; Kowalik, I.; Pluta, S.; Szalewska, D.; Opolski, G.; Zaręba, W.; et al. Quality of life in heart failure patients undergoing hybrid comprehensive telerehabilitation versus usual care—Results of the Telerehabilitation in Heart Failure Patients (TELEREH-HF) Randomized Clinical Trial. Arch. Med. Sci. 2020, 16. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Fu, T.-C.; Yuan, S.-S.; Wang, C.-H.; Liu, M.-H.; Shyu, Y.-C.; Cherng, W.-J.; Wang, J.-S. High-Intensity Interval Training is Associated with Improved Long-Term Survival in Heart Failure Patients. J. Clin. Med. 2019, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Ricci, R.P.; Morichelli, L.; D’Onofrio, A.; Calò, L.; Vaccari, D.; Zanotto, G.; Curnis, A.; Buja, G.; Rovai, N.; Gargaro, A. Effectiveness of remote monitoring of CIEDs in detection and treatment of clinical and device-related cardiovascular events in daily practice: The HomeGuide Registry. Europace 2013, 15, 970–977. [Google Scholar] [CrossRef]
- Malmo, V.; Nes, B.M.; Amundsen, B.H.; Tjonna, A.E.; Stoylen, A.; Rossvoll, O.; Wisloff, U.; Loennechen, J.P. Aerobic Interval Training Reduces the Burden of Atrial Fibrillation in the Short Term: A Randomized Trial. Circulation 2016, 133, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Rienstra, M.; Hobbelt, A.H.; Alings, M.; Tijssen, J.G.P.; Smit, M.D.; Brügemann, J.; Geelhoed, B.; Tieleman, R.G.; Hillege, H.L.; Tukkie, R.; et al. Targeted therapy of underlying conditions improves sinus rhythm maintenance in patients with persistent atrial fibrillation: Results of the RACE 3 trial. Eur. Heart J. 2018, 39, 2987–2996. [Google Scholar] [CrossRef] [PubMed]
- Luo, N.; Merrill, P.; Parikh, K.S.; Whellan, D.J.; Piña, I.L.; Fiuzat, M.; Kraus, W.E.; Kitzman, D.W.; Keteyian, S.J.; O’Connor, C.M.; et al. Exercise Training in Patients With Chronic Heart Failure and Atrial Fibrillation. J. Am. Coll. Cardiol. 2017, 69, 1683–1691. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Nattel, S.; Kalman, J.M.; Sanders, P. Modifiable Risk Factors and Atrial Fibrillation. Circulation 2017, 136, 583–596. [Google Scholar] [CrossRef]
- Cichoń, M.; Mizia-Szubryt, M.; Olszanecka-Glinianowicz, M.; Bożentowicz-Wikarek, M.; Owczarek, A.J.; Rafał Michalik, R.; Mizia-Stec, K. Biomarkers of left atrial overload in obese and non-obese patients with atrial fibrillation qualified for electrical cardioversion. Kardiol. Pol. 2020. [Google Scholar] [CrossRef]
- Pathak, R.K.; Elliott, A.; Middeldorp, M.E.; Meredith, M.; Mehta, A.B.; Mahajan, R.; Hendriks, J.M.; Twomey, D.; Kalman, J.M.; Abhayaratna, W.P.; et al. Impact of CARDIOrespiratory FITness on Arrhythmia Recurrence in Obese Individuals with Atrial Fibrillation: The CARDIO-FIT Study. J. Am. Coll. Cardiol. 2015, 66, 985–996. [Google Scholar] [CrossRef]
- Xi, Y.; Cheng, J. Dysfunction of the autonomic nervous system in atrial fibrillation. J. Thorac. Dis. 2015, 7, 193–198. [Google Scholar]
- Coumel, P. Paroxysmal atrial fibrillation: A disorder of autonomic tone? Eur. Heart J. 1994, 15 (Suppl. SA), 9–16. [Google Scholar] [CrossRef]
- Roveda, F.; Middlekauff, H.R.; Rondon, M.U.; Reis, S.F.; Souza, M.; Nastari, L.; Barretto, A.C.; Krieger, E.M.; Negrão, C.E. The effects of exercise training on sympathetic neural activation in advanced heart failure: A randomized controlled trial. J. Am. Coll. Cardiol. 2003, 42, 854–860. [Google Scholar] [CrossRef] [Green Version]
Type of Alert | HCTR-RM Group (n = 208) | UC-RM Group (n = 62) | Relative Risk (95%CI) HCTR-RM vs. UC-RM | p | Relative Risk (95%CI) *** | p *** |
---|---|---|---|---|---|---|
AF, n (%) | 9 (4.3) | 8 (12.9) | 0.335 (0.135; 0.832) | 0.031 * | 0.293 (0.103; 0.829) | 0.018 |
Lead impedance out of range, n (%) | 2 (1.0) | 2 (3.2) | 0.298 (0.049; 2.073) | 0.227 * | 0.346 (0.051; 2.356) | 0.209 |
VT/VF, n (%) | 13 (6.2) | 7 (11.3) | 0.554 (0.231; 1.327) | 0.179 * | 0.535 (0.205; 1.478) | 0.204 |
nsVT, n (%) | 4 (1.9) | 0 | NA | 0.577 * | 2.536 (0.243; 343.770) | 0.503 |
ERI/EOS, n (%) | 1 (0.5) | 1 (1.6) | 0.298 (0.019; 4.697) | 0.407 * | 0.128 (0.005; 2.174) | 0.100 |
TI out of range, n (%) | 2 (1.0) | 7 (11.3) | 0.085 (0.018; 0.399) | <0.001 * | 0.125 (0.023; 0.489) | 0.003 |
Low BIV-P, n (%) | 5/77 (6.5) | 5/31 (16.1) | 0.403 (0.125; 1.294) | 0.146 * | 0.452 (0.125; 1.628) | 0.213 |
Other, n (%) | 3 (1.4) | 2 (3.2) | 0.447 (0.076; 2.616) | 0.324 * | 0.497 (0.086; 3.216) | 0.398 |
Number of patients with alerts recorded, n (%) | 36 (17.3%) | 22 (35.5%) | 0.488 (0.312; 0.764) | 0.002 ** | 0.409 (0.214; 0.786) | 0.007 |
HCTR-RM Group (n = 208) | UC-RM Group (n = 62) | p | |
---|---|---|---|
Gender, male, n (%) | 189 (90.9) | 59 (95.2) | 0.278 |
Age, mean (SD), years | 61.3 ± 11 | 62.2 ± 9 | 0.563 |
Left ventricular ejection fraction, mean (SD), % | 29.3 ± 6.9 | 27.9 ± 6.6 | 0.142 |
Atrial fibrillation/atrial flutter, n (%) | 44 (21.1) | 15 (24.2) | 0.611 |
Body mass index, mean (SD), kg/m2 | 29.2 ± 4.6 | 29.2 ± 4.9 | 0.997 |
QRS, mean (SD), ms | 140.5 ± 34.8 | 148.2 ± 34.6 | 0.130 |
Etiology of heart failure, n (%) | |||
Ischaemic | 135 (64.9) | 35 (56.4) | 0.226 |
Non-ischaemic | 73 (35.1) | 27 (43.5) | |
Previous medical history, n (%) | |||
Myocardial infarction | 126 (60.6) | 28 (45.2) | 0.031 |
Percutaneous coronary intervention | 100 (48.1) | 24 (38.7) | 0.194 |
Coronary artery bypass grafting | 34 (16.4) | 7 (11.3) | 0.330 |
Valve surgery | 11 (5.3) | 5 (8.1) | 0.376 |
Hypertension | 115 (55.3) | 37 (59.7) | 0.541 |
Stroke | 15 (7.2) | 3 (4.8) | 0.772 |
Diabetes | 71 (34.1%) | 22 (35.5) | 0.844 |
Chronic kidney disease | 34 (16.4) | 7 (11.3) | 0.330 |
Hyperlipidaemia | 106 (51.0) | 24 (38.7) | 0.090 |
Depression, BDI II > 13 | 40 (23.4) | 13 (30.2) | 0.353 |
Functional status, n (%) | |||
NYHA I, n (%) | 21 (10.1) | 7 (11.3) | 0.058 |
NYHA II, n (%) | 151 (72.6) | 36 (58.1) | |
NYHA III, n (%) | 36 (17.3) | 19 (30.6) | |
NT-pro-BNP, mean (pg/mL) | 979.5 (377.7–2235.5) | 879.8 (306,3–2325) | 0.633 |
Peak VO2 (mL/kg/min) | 16.5 ± 5.1 | 14.9 ± 4.6 | 0.024 |
Treatment, n (%) | |||
Beta blocker | 203 (97.6) | 61 (98.4) | 1.00 |
ACEI/ARB | 199 (95.7) | 59 (95.2) | 1.00 |
Digoxin | 34 (16.4) | 9 (14.5) | 0.730 |
Loop diuretics | 163 (78.4) | 51 (82.3) | 0.507 |
Spironolactone/eplerenone | 178 (85.6) | 60 (96.8) | 0.017 |
Aspirin/clopidogrel | 111 (53.4) | 29 (46.8) | 0.362 |
Anticoagulants | 65 (31.2) | 24 (38.7) | 0.273 |
NOAC | 40 (19.2) | 8 (12.9) | 0.253 |
Statins | 166 (79.8) | 54 (87.1) | 0.195 |
Implantable cardioverter–defibrillator | 131 (62.8) | 31 (50.0) | 0.111 |
CRT-P | 1 (0.5) | 1 (1.6) | |
CRT-D | 76 (36.7) | 30 (48.4) |
Number of Alerts in: | Mean Number of Alerts per Patient | |||||
---|---|---|---|---|---|---|
HCTR-RM Group | UC-RM Group | p | HCTR-RM Group | UC-RM Group | p | |
Overall alerts | n = 73 | n = 46 | - | 0.35 (0.20; 0.50) | 0.74 (0.40; 1.08) | 0.001 |
AF | 32 (43.8) | 10 (21.7) | 0.014 | 0.15 (0.03; 0.27) | 0.16 (0.05; 0.28) | 0.019 |
Lead impedance out of range | 2 (2.7) | 3 (6.5) | 0.01 (0.00; 0.02) | 0.05 (−0.02; 0.12) | 0.195 | |
VT/VF | 20 (27.4) | 11 (23.9) | 0.10 (0.02; 0.17) | 0.18 (0.00; 0.35) | 0.185 | |
nsVT | 4 (5.5) | 0 (0.0) | 0.02 (0.00; 0.04) | 0.00 | 0.274 | |
ERI/EOS | 1 (1.4) | 1 (2.2) | 0.005 (−0.005; 0.014) | 0.02 (−0.02; 0.05) | 0.366 | |
TI out of range | 2 (2.7) | 8 (17.4) | 0.01 (0.00; 0.02) | 0.13 (0.03; 0.23) | <0.0001 | |
Low BIV-P | 6 (8.2) | 9 (19.6) | 0.08 (0.01; 0.16) | 0.29 (0.02; 0.56) | 0.105 | |
Other | 6 (8.2) | 4 (8.7) | 0.03 (0.00; 0.06) | 0.06 (−0.03; 0.16) | 0.364 |
Step: | Variable | OR (95%CI) | p |
---|---|---|---|
1 | Group (HCTR-RM vs. UC-RM) | 0.360 (0.189–0.686) | 0.002 |
2 | Digoxin | 2.398 (1.158–4.967) | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pluta, S.; Piotrowicz, E.; Piotrowicz, R.; Lewicka, E.; Zaręba, W.; Kozieł, M.; Kowalik, I.; Pencina, M.J.; Oręziak, A.; Cacko, A.; et al. Remote Monitoring of Cardiac Implantable Electronic Devices in Patients Undergoing Hybrid Comprehensive Telerehabilitation in Comparison to the Usual Care. Subanalysis from Telerehabilitation in Heart Failure Patients (TELEREH-HF) Randomised Clinical Trial. J. Clin. Med. 2020, 9, 3729. https://doi.org/10.3390/jcm9113729
Pluta S, Piotrowicz E, Piotrowicz R, Lewicka E, Zaręba W, Kozieł M, Kowalik I, Pencina MJ, Oręziak A, Cacko A, et al. Remote Monitoring of Cardiac Implantable Electronic Devices in Patients Undergoing Hybrid Comprehensive Telerehabilitation in Comparison to the Usual Care. Subanalysis from Telerehabilitation in Heart Failure Patients (TELEREH-HF) Randomised Clinical Trial. Journal of Clinical Medicine. 2020; 9(11):3729. https://doi.org/10.3390/jcm9113729
Chicago/Turabian StylePluta, Sławomir, Ewa Piotrowicz, Ryszard Piotrowicz, Ewa Lewicka, Wojciech Zaręba, Monika Kozieł, Ilona Kowalik, Michael J. Pencina, Artur Oręziak, Andrzej Cacko, and et al. 2020. "Remote Monitoring of Cardiac Implantable Electronic Devices in Patients Undergoing Hybrid Comprehensive Telerehabilitation in Comparison to the Usual Care. Subanalysis from Telerehabilitation in Heart Failure Patients (TELEREH-HF) Randomised Clinical Trial" Journal of Clinical Medicine 9, no. 11: 3729. https://doi.org/10.3390/jcm9113729
APA StylePluta, S., Piotrowicz, E., Piotrowicz, R., Lewicka, E., Zaręba, W., Kozieł, M., Kowalik, I., Pencina, M. J., Oręziak, A., Cacko, A., Szalewska, D., Główczyńska, R., Banach, M., Opolski, G., Orzechowski, P., Irzmański, R., & Kalarus, Z. (2020). Remote Monitoring of Cardiac Implantable Electronic Devices in Patients Undergoing Hybrid Comprehensive Telerehabilitation in Comparison to the Usual Care. Subanalysis from Telerehabilitation in Heart Failure Patients (TELEREH-HF) Randomised Clinical Trial. Journal of Clinical Medicine, 9(11), 3729. https://doi.org/10.3390/jcm9113729