Periostin and Thymic Stromal Lymphopoietin—Potential Crosstalk in Obstructive Airway Diseases
Abstract
:1. Introduction
2. Experimental Section
2.1. Overall Study Design
2.2. Study Subjects and Disease Definitions
2.3. Lung Function Parameters and Atopy Status
2.4. Sputum Induction and Processing
2.5. RNA Isolation and cDNA Synthesis
2.6. Real-Time Quantitative PCR
2.7. Cytokine Concentration Measurements
2.8. Statistical Analysis
3. Results
3.1. Patients Characteristics
3.2. Periostin, TSLP, IL-4, and IL-13 mRNA Expression and Protein Levels in Serum and Sputum in Control, Asthma, and COPD Group
3.3. Correlations between Cytokine mRNA and Protein Levels and Sputum Cellular Profile
3.4. Relationships between Sputum Eosinophilia and Increased TSLP and Periostin Concentrations in Control, Asthma, and COPD Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Masuoka, M.; Shiraishi, H.; Ohta, S.; Suzuki, S.; Arima, K.; Aoki, S.; Toda, S.; Inagaki, N.; Kurihara, Y.; Hayashida, S.; et al. Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J. Clin. Investig. 2012, 122, 2590–2600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, T.; Akashi, K.; Watanabe, M.; Ikeda, Y.; Ashizuka, S.; Motoki, T.; Suzuki, R.; Sagara, N.; Yanagida, N.; Sato, S.; et al. Periostin as a biomarker for the diagnosis of pediatric asthma. Pediatr. Allergy Immunol. 2016, 27, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Takayama, G.; Arima, K.; Kanaji, T.; Toda, S.; Tanaka, H.; Shoji, S.; McKenzie, A.N.; Nagai, H.; Hotokebuchi, T.; Izuhara, K. Periostin: A novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J. Allergy Clin. Immunol. 2006, 118, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Weili, W.; Gao, P.; Jinzhi, Y.; Xu, W.; Wu, Y.; Yin, J.; Zhang, J. Periostin: Its role in asthma and its potential as a diagnostic or therapeutic target. Respir. Res. 2015, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Matsusaka, M.; Kabata, H.; Fukunaga, K.; Suzuki, Y.; Masaki, K.; Mochimaru, T.; Sakamaki, F.; Oyamada, Y.; Inoue, T.; Oguma, T.; et al. Phenotype of asthma related with high serum periostin levels. Allergol. Int. 2015, 64, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Ishida, A.; Ohta, N.; Suzuki, Y.; Kakehata, S.; Okubo, K.; Ikeda, H.; Shiraishi, H.; Izuhara, K. Expression of Pendrin Periostin in Allergic Rhinitis Chronic Rhinosinusitis. Allergol. Int. 2012, 61, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Papazian, D.; Hansen, S.W.; Würtzen, P.A. Airway responses towards allergens—From the airway epithelium to T cells. Clin. Exp. Allergy 2015, 45, 1268–1287. [Google Scholar] [CrossRef]
- Watson, B.; Gauvreau, G.M. Thymic stromal lymphopoietin: A central regulator of allergic asthma. Expert Opin. Ther. Targets 2014, 18, 771–785. [Google Scholar] [CrossRef]
- Oyoshi, M.K.; Larson, R.P.; Ziegler, S.F.; Geha, R.S. Mechanical injury polarizes skin dendritic cells to elicit a TH2 response by inducing cutaneous thymic stromal lymphopoietin expression. J. Allergy Clin. Immunol. 2010, 126, 976–984.e5. [Google Scholar] [CrossRef] [Green Version]
- Gauvreau, G.M.; O’Byrne, P.M.; Boulet, L.-P.; Wang, Y.; Cockcroft, D.; Bigler, J.; Fitzgerald, J.M.; Boedigheimer, M.; Davis, B.E.; Dias, C.; et al. Effects of an Anti-TSLP Antibody on Allergen-Induced Asthmatic Responses. N. Engl. J. Med. 2014, 370, 2102–2110. [Google Scholar] [CrossRef]
- Wong, C.K.; Hu, S.; Cheung, P.F.Y.; Lam, C.W.K. Thymic Stromal Lymphopoietin Induces Chemotactic and Prosurvival Effects in Eosinophils. Am. J. Respir. Cell Mol. Biol. 2010, 43, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, H.; Masuoka, M.; Ohta, S.; Suzuki, S.; Arima, K.; Taniguchi, K.; Aoki, S.; Toda, S.; Yoshimoto, T.; Inagaki, N.; et al. Periostin Contributes to the Pathogenesis of Atopic Dermatitis by Inducing TSLP Production from Keratinocytes. Allergol. Int. 2012, 61, 563–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, N.; Sugaya, M.; Suga, H.; Oka, T.; Kawaguchi, M.; Miyagaki, T.; Fujita, H.; Sato, S. Thymic Stromal Chemokine TSLP Acts through Th2 Cytokine Production to Induce Cutaneous T-cell Lymphoma. Cancer Res. 2016, 76, 6241–6252. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chen, L.; Qi, H.; Sun, S. Expression and clinical significance of periostin in oral lichen planus. Exp. Ther. Med. 2018, 15, 5141–5147. [Google Scholar] [CrossRef] [PubMed]
- Górska, K.; Maskey-Warzęchowska, M.; Nejman-Gryz, P.; Korczynski, P.; Prochorec-Sobieszek, M.; Krenke, R. Comparative study of periostin expression in different respiratory samples in patients with asthma and chronic obstructive pulmonary disease. Pol. Arch. Intern. Med. 2016, 126, 124–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, H.; Konno, S.; Makita, H.; Taniguchi, N.; Kimura, H.; Goudarzi, H.; Shimizu, K.; Suzuki, M.; Shijubo, N.; Shigehara, K.; et al. Serum periostin is associated with body mass index and allergic rhinitis in healthy and asthmatic subjects. Allergol. Int. 2018, 67, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, W.; Lv, Z.; Li, Y.; Chen, Y.; Huang, K.; Corrigan, C.J.; Ying, S. Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease. J. Immunol. 2018, 200, 2253–2262. [Google Scholar] [CrossRef] [Green Version]
- Ying, S.; O’Connor, B.; Ratoff, J.; Meng, Q.; Fang, C.; Cousins, D.J.; Zhang, G.; Gu, S.; Gao, Z.; Shamji, B.; et al. Expression and Cellular Provenance of Thymic Stromal Lymphopoietin and Chemokines in Patients with Severe Asthma and Chronic Obstructive Pulmonary Disease. J. Immunol. 2008, 181, 2790–2798. [Google Scholar] [CrossRef] [Green Version]
- Górska, K.; Nejman-Gryz, P.; Paplińska-Goryca, M.; Proboszcz, M.; Krenke, R. Comparison of Thymic Stromal Lymphopoietin Concentration in Various Human Biospecimens from Asthma and COPD Patients Measured with Two Different ELISA Kits. Atherosclerosis 2016, 19–27. [Google Scholar] [CrossRef]
- 2012-GINA.pdf. Available online: https://ginasthma.org/wp-content/uploads/2019/01/2012-GINA.pdf (accessed on 11 September 2019).
- GOLDReport_April112011.pdf. Available online: http://www.goldcopd.org/uploads/users/files/GOLDReport_April-112011.pdf (accessed on 12 February 2016).
- Pellegrino, R.; Viegi, G.; Brusasco, V.; CrapoMDa, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; Van Der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crapo, R.O.; Casaburi, R.; Coates, A.L.; Enright, P.L.; Hankinson, J.L.; Irvin, C.G.; MacIntyre, N.R.; McKay, R.T.; Wanger, J.S.; Anderson, S.D.; et al. Guidelines for Methacholine and Exercise Challenge Testing. Am. J. Respir. Crit. Care Med. 2000, 161, 309–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreborg, S.; Frew, A. Position Paper: Allergen standardization and skin tests. Allergy 1993, 48, 49–54. [Google Scholar] [CrossRef]
- Djukanovic, R.; Sterk, P.J.; Fahy, J.; Hargreave, F. Standardised methodology of sputum induction and processing. Eur. Respir. J. 2002, 20, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Meguro, K.; Kawashima, H.; Kashiwakuma, D.; Kagami, S.-I.; Ohta, S.; Ono, J.; Izuhara, K.; Iwamoto, I. Serum periostin levels serve as a biomarker for both eosinophilic airway inflammation and fixed airflow limitation in well-controlled asthmatics. J. Asthma 2018, 56, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Kanemitsu, Y.; Matsumoto, H.; Izuhara, K.; Tohda, Y.; Kita, H.; Horiguchi, T.; Kuwabara, K.; Tomii, K.; Otsuka, K.; Fujimura, M.; et al. Increased periostin associates with greater airflow limitation in patients receiving inhaled corticosteroids. J. Allergy Clin. Immunol. 2013, 132, 305–312.e3. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.; Erickson, R.W.; Choy, D.F.; Mosesova, S.; Wu, L.C.; Solberg, O.D.; Shikotra, A.; Carter, R.; Audusseau, S.; Hamid, Q.; et al. Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J. Allergy Clin. Immunol. 2012, 130, 647–654.e10. [Google Scholar] [CrossRef] [Green Version]
- Bobolea, I.; Barranco, P.; Del Pozo, V.; Romero, D.; Sanz, V.; López-Carrasco, V.; Canabal, J.; Villasante, C.; Quirce, S. Sputum periostin in patients with different severe asthma phenotypes. Allergy 2015, 70, 540–546. [Google Scholar] [CrossRef]
- Carpaij, O.A.; Muntinghe, F.O.W.; Wagenaar, M.B.; Habing, J.W.; Timens, W.; Kerstjens, H.A.M.; Nawijn, M.C.; Kunz, L.I.Z.; Hiemstra, P.S.; Tew, G.W.; et al. Serum periostin does not reflect type 2-driven inflammation in COPD. Respir. Res. 2018, 19, 112. [Google Scholar] [CrossRef] [Green Version]
- Katoh, S.; Ikeda, M.; Shirai, R.; Abe, M.; Ohue, Y.; Kobashi, Y.; Oka, M. Biomarkers for differentiation of patients with asthma and chronic obstructive pulmonary disease. J. Asthma 2017, 55, 1052–1058. [Google Scholar] [CrossRef]
- Shirai, T.; Hirai, K.; Gon, Y.; Maruoka, S.; Mizumura, K.; Hikichi, M.; Holweg, C.; Itoh, K.; Inoue, H.; Hashimoto, S. Combined Assessment of Serum Periostin and YKL-40 May Identify Asthma-COPD Overlap. J. Allergy Clin. Immunol. Pr. 2019, 7, 134–145.e1. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.; O’Connor, B.; Ratoff, J.; Meng, Q.; Mallett, K.; Cousins, D.; Robinson, D.; Zhang, G.; Zhao, J.; Lee, T.H.; et al. Thymic Stromal Lymphopoietin Expression Is Increased in Asthmatic Airways and Correlates with Expression of Th2-Attracting Chemokines and Disease Severity. J. Immunol. 2005, 174, 8183–8190. [Google Scholar] [CrossRef] [PubMed]
- Berraïes, A.; Hamdi, B.; Ammar, J.; Hamzaoui, K.; Hamzaoui, A. Increased expression of thymic stromal lymphopoietin in induced sputum from asthmatic children. Immunol. Lett. 2016, 178, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Redhu, N.S.; Gounni, A.S. Function and mechanisms of TSLP/TSLPR complex in asthma and COPD. Clin. Exp. Allergy 2011, 42, 994–1005. [Google Scholar] [CrossRef]
- Bleck, B.; Kazeros, A.; Bakal, K.; Garcia-Medina, L.; Adams, A.; Liu, M.; Lee, R.A.; Tse, D.B.; Chiu, A.; Grunig, G.; et al. Coexpression of type 2 immune targets in sputum-derived epithelial and dendritic cells from asthmatic subjects. J. Allergy Clin. Immunol. 2015, 136, 619–627.e5. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Yu, Q.; Lv, J.; Di, C.; Lin, X.; Su, W.; Wu, M.; Xia, Z. Airway epithelial TSLP production of TLR2 drives type 2 immunity in allergic airway inflammation. Eur. J. Immunol. 2018, 48, 1838–1850. [Google Scholar] [CrossRef]
- Makita, K.; Mikami, Y.; Matsuzaki, H.; Miyashita, N.; Takeshima, H.; Noguchi, S.; Horie, M.; Urushiyama, H.; Iikura, M.; Hojo, M.; et al. Mechanism of Periostin Production in Human Bronchial Smooth Muscle Cells. Int. Arch. Allergy Immunol. 2018, 175, 26–35. [Google Scholar] [CrossRef]
- Nakamura, Y.; Miyata, M.; Ohba, T.; Ando, T.; Hatsushika, K.; Suenaga, F.; Shimokawa, N.; Ohnuma, Y.; Katoh, R.; Ogawa, H.; et al. Cigarette smoke extract induces thymic stromal lymphopoietin expression, leading to TH2-type immune responses and airway inflammation. J. Allergy Clin. Immunol. 2008, 122, 1208–1214. [Google Scholar] [CrossRef]
- Simpson, J.L.; A Yang, I.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; Peters, M.J.; Jia, G.; Holweg, C.T.J.; et al. Periostin levels and eosinophilic inflammation in poorly-controlled asthma. BMC Pulm. Med. 2016, 16, 67. [Google Scholar] [CrossRef] [Green Version]
- Fingleton, J.; Braithwaite, I.; Travers, J.; Bowles, D.; Strik, R.; Siebers, R.; Holweg, C.; Matthews, J.; Weatherall, M.; Beasley, R. Serum periostin in obstructive airways disease. Eur. Respir. J. 2016, 47, 1383–1391. [Google Scholar] [CrossRef] [Green Version]
- Park, H.Y.; Lee, H.; Koh, W.-J.; Kim, S.; A Jeong, I.; Koo, H.-K.; Kim, T.-H.; Kim, J.W.; Kim, W.J.; Oh, Y.-M.; et al. Association of blood eosinophils and plasma periostin with FEV1 response after 3-month inhaled corticosteroid and long-acting beta2-agonist treatment in stable COPD patients. Int. J. Chronic Obstr. Pulm. Dis. 2015, 11, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caramori, G.; Casolari, P.; Barczyk, A.; Durham, A.L.; Di Stefano, A.; Adcock, I. COPD immunopathology. Semin. Immunopathol. 2016, 38, 497–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalinauskaite-Zukauske, V.; Januskevicius, A.; Janulaityte, I.; Miliauskas, S.; Malakauskas, K. Serum Levels of Epithelial-Derived Cytokines as Interleukin-25 and Thymic Stromal Lymphopoietin after a Single Dose of Mepolizumab in Patients with Severe Non-Allergic Eosinophilic Asthma: A Short Report. Can. Respir. J. 2019, 2019, 8607657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verstraete, K.; Peelman, F.; Braun, H.; Lopez, J.; Van Rompaey, D.; Dansercoer, A.; Vandenberghe, I.; Pauwels, K.; Tavernier, J.; Lambrecht, B.N.; et al. Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nat. Commun. 2017, 8, 14937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, N.-R.; Oh, H.-A.; Nam, S.-Y.; Moon, P.-D.; Kim, D.-W.; Kim, H.-M.; Jeong, H.-J. TSLP Induces Mast Cell Development and Aggravates Allergic Reactions through the Activation of MDM2 and STAT6. J. Investig. Dermatol. 2014, 134, 2521–2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soumelis, V.; Reche, P.A.; Kanzler, H.; Yuan, W.; Edward, G.; Homey, B.; Gilliet, M.; Ho, S.; Antonenko, S.; Lauerma, A.; et al. Human epithelial cells trigger dendritic cell–mediated allergic inflammation by producing TSLP. Nat. Immunol. 2002, 3, 673–680. [Google Scholar] [CrossRef]
- Kim, D.W.; Kulka, M.; Jo, A.; Eun, K.M.; Arizmendi, N.; Tancowny, B.P.; Hong, S.-N.; Lee, J.P.; Jin, H.R.; Lockey, R.F.; et al. Cross-talk between human mast cells and epithelial cells by IgE-mediated periostin production in eosinophilic nasal polyps. J. Allergy Clin. Immunol. 2017, 139, 1692–1695.e6. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-J.; Soumelis, V.; Watanabe, N.; Ito, T.; Wang, Y.-H.; Malefyt, R.D.W.; Omori, M.; Zhou, B.; Ziegler, S.F. TSLP: An Epithelial Cell Cytokine that Regulates T Cell Differentiation by Conditioning Dendritic Cell Maturation. Annu. Rev. Immunol. 2007, 25, 193–219. [Google Scholar] [CrossRef]
- Koh, S.-J.; Choi, Y.; Kim, B.G.; Lee, K.L.; Kim, D.W.; Kim, J.H.; Kim, J.W.; Kim, J.S. Matricellular Protein Periostin Mediates Intestinal Inflammation through the Activation of Nuclear Factor κB Signaling. PLoS ONE 2016, 11, e0149652. [Google Scholar] [CrossRef]
- Shen, C.-H.; Stavnezer, J. Interaction of Stat6 and NF-κB: Direct Association and Synergistic Activation of Interleukin-4-Induced Transcription. Mol. Cell. Biol. 1998, 18, 3395–3404. [Google Scholar] [CrossRef] [Green Version]
Asthma (n = 12) | COPD (n = 16) | Control (n = 10) | p-Value | |
---|---|---|---|---|
Demographic Characteristics | ||||
Age (years) | 43.5 (27–59) | 65 (60–74.5) | 40.5 (29–63) | 0.14 |
Sex (M/F) | 7/5 | 10/6 | 3/7 | 0.25 |
BMI (kg/m2) | 27.4 (25.5–31) | 27.9 (24–30.1) | 26.2 (20.7–29.8) | 0.67 |
Current/ex-/never smokers, n (%) | 0/3/9 (0/25/75) | 7/9/0 (44/56/0) | 1/2/7 (10/20/70) | 0.0002 |
Smoking history (pack/years) | 0 (0–0.25) | 45 (34–50) | 2 (0–14) | 0.001 |
Disease duration (months) | 56.5 (33–108) | 48 (24–120) | n/a | 0.73 |
Atopy status (atopic/non-atopic) | 12/0 | 6/10 | 5/5 | 0.07 |
Pulmonary Function (Prebronchodilator Values) | ||||
FEV1 (% predicted) | 92.5 (82–106) | 71.5 (67.5–82) | 106.5 (99–109) | 0.001 |
FVC (% predicted) | 113 (98.5–127) | 103 (95.5–110) | 111.5 (108–118) | 0.03 |
FEV1/FVC (%) | 67 (62.5–72.5) | 56 (51.5–60.5) | 76 (70–83.6) | 0.001 |
Airway hyperresponsiveness (PC20 mg/mL) | 0.2 (0.08–0.5) | 0.6 (0.3–10.1) | 20 (14.2–20) | 0.001 |
Selected Laboratory Parameters | ||||
Serum total IgE (kIU/L) | 144 (76–238.5) | 40.5 (7–176.5) | 36.5 (26–77.5) | 0.05 |
Positive result of skin prick-tests, n (%) | 6 (4–10.5) | 2 (0–4) | 2 (0–5.5) | 0.071 |
Blood eosinophils (%) | 4 (2–6.5) | 2 (1–3.5) | 2.5 (1.5–4) | 0.11 |
Blood eosinophils (× 109/L) | 0.2 (0.17–0.38) | 0.15 (0.07–0.19) | 0.16 (0.09–0.22) | 0.15 |
Blood neutrophils (%) | 56 (44–61.5) | 59.5 (52.5–64) | 59.5 (51.5–63.5) | 0.6 |
Blood neutrophils (× 109/L) | 3.3 (2.5–4.7) | 4.4 (3–5.4) | 3.4 (2.8–4.1) | 0.55 |
Sputum eosinophils (%) | 10 (1–57) | 1 (0.5–3.5) | 1 (0–2) | 0.001 |
Sputum neutrophils (%) | 25 (21–38) | 75.5 (56.5–92.5) | 52.5 (43–64) | 0.006 |
Asthma (n = 12) | COPD (n = 16) | Controls (n = 10) | p-Value | |
---|---|---|---|---|
Serum Cytokine Level | ||||
Periostin (ng/mL) | 141.3 (119.2–180) | 126.2 (107.1–190.5) | 126.7 (118.4–132.9) | 0.6 |
TSLP (pg/mL) | 7.3 (4.5–23.3) | 5.4 (0–20.3) | 4.9 (0–6.9) | 0.69 |
IL-4 (pg/mL) | 46.3 (12.1–83.4) | 15.3 (8.3–21.7) | 10.4 (1.9–17.8) | 0.23 |
IL-13 (pg/mL) | 224.8 (92.7–385) | 143.8 (107.1–204.7) | 60.3(21.4–102.5) | 0.08 |
Sputum Cytokine Level | ||||
Periostin (ng/mL) | 2.5 (1.4–3.5) | 1.6 (0.26–2.2) | 1.23 (0.32–2.04) | 0.049 |
TSLP (pg/mL) | 3.5 (3–12.3) | 3.08 (0–10.2) | 0 (0–0) | 0.01 |
IL-4 (pg/mL) | 0.25 (0.125–1.25) | 0.25 (0–1.25) | 0.3 (0–1.25) | 0.76 |
IL-13 (pg/mL) | 12 (4.5–28.25) | 22 (9.5–47) | 9.5 (2–74.5) | 0.71 |
Sputum mRNA Cytokine Expression | ||||
Periostin (fold change) | 3.1 (1.8–3.9) | 1.3 (0.3–1.9) | 1 (0.4–3.9) | 0.04 |
TSLP (fold change) | 3.1 (1–13.2) | 0.95 (0.08–4) | 0.16 (0.1–0.24) | 0.01 |
IL-4 (fold change) | 0.6 (0.15–3.9) | 0.05 (0.01–14.8) | 0.17 (0.05–111.7) | 0.53 |
IL-13 (fold change) | 0.005 (0–0.09) | 0.002 (0.001–0.003) | 10.1 (4.6–12.8) | 0.06 |
Serum Periostin (ng/mL) | IS Periostin (ng/mL) | mRNA Periostin Expression | Serum TSLP (pg/mL) | IS TSLP (pg/mL) | mRNA TSLP Expression | |
---|---|---|---|---|---|---|
Asthma | ||||||
Blood eosinophils (%) | r = 0.08 p = 0.8 | r = 0.1 p = 0.73 | r = 0.05 p = 0.87 | r = 0.28 p = 0.36 | r = −0.02 p = 0.96 | r = 0.11 p = 0.72 |
IS eosinophils (%) | r = 0.27 p = 0.41 | r = 0.67 p = 0.024 | r = 0.67 p = 0.02 | r = 0.14 p = 0.66 | r = 0.73 p = 0.01 | r = 0.75 p = 0.007 |
COPD | ||||||
Blood eosinophils (%) | r = −0.07 p = 0.79 | r = 0.36 p = 0.38 | r = 0.36 p = 0.38 | r = 0.2 p = 0.44 | r = 0.16 p = 0.53 | r = −0.08 p = 0.77 |
IS eosinophils (%) | r = 0.12 p = 0.65 | r = 0.49 p = 0.048 | r = 0.5 p = 0.057 | r = −0.17 p = 0.52 | r = −0.15 p = 0.67 | r = 0.02 p = 0.93 |
Controls | ||||||
Blood eosinophils (%) | r = 0.36 p = 0.38 | r = 0.28 p = 0.49 | r = 0 p = 1 | r = 0.2 p = 0.61 | r = 0.18 p = 0.63 | r = −0.3 p = 0.45 |
IS eosinophils (%) | r = 0.15 p = 0.72 | r = −0.23 p = 0.51 | r = −0.54 p = 0.1 | r = −0.02 p = 0.95 | r = 0.17 p = 0.63 | r = −0.32 p = 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nejman-Gryz, P.; Górska, K.; Paplińska-Goryca, M.; Proboszcz, M.; Krenke, R. Periostin and Thymic Stromal Lymphopoietin—Potential Crosstalk in Obstructive Airway Diseases. J. Clin. Med. 2020, 9, 3667. https://doi.org/10.3390/jcm9113667
Nejman-Gryz P, Górska K, Paplińska-Goryca M, Proboszcz M, Krenke R. Periostin and Thymic Stromal Lymphopoietin—Potential Crosstalk in Obstructive Airway Diseases. Journal of Clinical Medicine. 2020; 9(11):3667. https://doi.org/10.3390/jcm9113667
Chicago/Turabian StyleNejman-Gryz, Patrycja, Katarzyna Górska, Magdalena Paplińska-Goryca, Małgorzata Proboszcz, and Rafał Krenke. 2020. "Periostin and Thymic Stromal Lymphopoietin—Potential Crosstalk in Obstructive Airway Diseases" Journal of Clinical Medicine 9, no. 11: 3667. https://doi.org/10.3390/jcm9113667
APA StyleNejman-Gryz, P., Górska, K., Paplińska-Goryca, M., Proboszcz, M., & Krenke, R. (2020). Periostin and Thymic Stromal Lymphopoietin—Potential Crosstalk in Obstructive Airway Diseases. Journal of Clinical Medicine, 9(11), 3667. https://doi.org/10.3390/jcm9113667