The Role of Ribonuclease 1 and Ribonuclease Inhibitor 1 in Acute Kidney Injury after Open and Endovascular Thoracoabdominal Aortic Aneurysm Repair
Abstract
1. Introduction
2. Experimental Section
2.1. Study Approval and Design
2.2. Surgery
2.3. Serum Sampling
2.4. Human RNase Inhibitor 1 (RNH1) Enzyme-Linked Immunosorbent Assay
2.5. Human Ribonuclease (RNase) 1 Enzyme-Linked Immunosorbent Assay
2.6. Endpoints
2.7. Statistical Analysis
3. Results
3.1. Study Population
3.2. Ribonuclease (RNase) 1 Serum Levels
3.3. RNase Inhibitor 1 (RNH1) Serum Levels
3.4. Correlation of RNase 1 and RNH1 with Acute Kidney Injury (AKI)
3.5. Correlation of RNase 1 and RNH1 with In-Hospital Mortality
3.6. Correlation of RNase 1 and RNH1 with Perioperative Variables
4. Discussion
5. Limitation and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Riambau, V.; Bockler, D.; Brunkwall, J.; Cao, P.; Chiesa, R.; Coppi, G.; Czerny, M.; Fraedrich, G.; Haulon, S.; Jacobs, M.J.; et al. Editor’s choice—Management of descending thoracic aorta diseases: Clinical practice guidelines of the european society for vascular surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2017, 53, 4–52. [Google Scholar] [CrossRef]
- Greenberg, R.K.; Lu, Q.; Roselli, E.E.; Svensson, L.G.; Moon, M.C.; Hernandez, A.V.; Dowdall, J.; Cury, M.; Francis, C.; Pfaff, K.; et al. Contemporary analysis of descending thoracic and thoracoabdominal aneurysm repair: A comparison of endovascular and open techniques. Circulation 2008, 118, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Thakar, C.V. Perioperative acute kidney injury. Adv. Chronic Kidney Dis. 2013, 20, 67–75. [Google Scholar] [CrossRef]
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef]
- Drews, J.D.; Patel, H.J.; Williams, D.M.; Dasika, N.L.; Deeb, G.M. The impact of acute renal failure on early and late outcomes after thoracic aortic endovascular repair. Ann. Thorac. Surg. 2014, 97, 2027–2033. [Google Scholar] [CrossRef]
- Nickolas, T.L.; Schmidt-Ott, K.M.; Canetta, P.; Forster, C.; Singer, E.; Sise, M.; Elger, A.; Maarouf, O.; Sola-Del Valle, D.A.; O’Rourke, M.; et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: A multicenter prospective cohort study. J. Am. Coll. Cardiol. 2012, 59, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Moran, S.M.; Myers, B.D. Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int. 1985, 27, 928–937. [Google Scholar] [CrossRef]
- Kellum, J.A.; Prowle, J.R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 2018, 14, 217–230. [Google Scholar] [CrossRef]
- Lamb, E.J.; Levey, A.S.; Stevens, P.E. The kidney disease improving global outcomes (kdigo) guideline update for chronic kidney disease: Evolution not revolution. Clin. Chem. 2013, 59, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Koczera, P.; Martin, L.; Marx, G.; Schuerholz, T. The ribonuclease a superfamily in humans: Canonical rnases as the buttress of innate immunity. Int. J. Mol. Sci. 2016, 17, 1278. [Google Scholar] [CrossRef]
- Martin, L.; Koczera, P.; Simons, N.; Zechendorf, E.; Hoeger, J.; Marx, G.; Schuerholz, T. The human host defense ribonucleases 1, 3 and 7 are elevated in patients with sepsis after major surgery—A pilot study. Int. J. Mol. Sci. 2016, 17, 294. [Google Scholar] [CrossRef]
- Futami, J.; Tsushima, Y.; Murato, Y.; Tada, H.; Sasaki, J.; Seno, M.; Yamada, H. Tissue-specific expression of pancreatic-type rnases and rnase inhibitor in humans. DNA Cell Biol. 1997, 16, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Dickson, K.A.; Haigis, M.C.; Raines, R.T. Ribonuclease inhibitor: Structure and function. Prog. Nucleic Acid Res. Mol. Biol. 2005, 80, 349–374. [Google Scholar] [PubMed]
- Zechendorf, E.; O’Riordan, C.E.; Stiehler, L.; Wischmeyer, N.; Chiazza, F.; Collotta, D.; Denecke, B.; Ernst, S.; Muller-Newen, G.; Coldewey, S.M.; et al. Ribonuclease 1 attenuates septic cardiomyopathy and cardiac apoptosis in a murine model of polymicrobial sepsis. JCI Insight 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Averdunk, L.; Rückbeil, M.V.; Zarbock, A.; Martin, L.; Marx, G.; Jalaie, H.; Jacobs, M.J.; Stoppe, C.; Gombert, A. Slpi—A biomarker of acute kidney injury after open and endovascular thoracoabdominal aortic aneurysm (taaa) repair. Sci. Rep. 2020, 10, 3453. [Google Scholar] [CrossRef]
- Mommertz, G.; Sigala, F.; Langer, S.; Koeppel, T.A.; Mess, W.H.; Schurink, G.W.; Jacobs, M.J. Thoracoabdominal aortic aneurysm repair in patients with marfan syndrome. Eur. J. Vasc. Endovasc. Surg. 2008, 35, 181–186. [Google Scholar] [CrossRef]
- Jacobs, M.J.; Schurink, G.W. Open repair in chronic type b dissection with connective tissue disorders. Ann. Cardiothorac. Surg. 2014, 3, 325–328. [Google Scholar]
- Jacobs, M.J.; Elenbaas, T.W.; Schurink, G.W.; Mess, W.H.; Mochtar, B. Assessment of spinal cord integrity during thoracoabdominal aortic aneurysm repair. Ann. Thorac. Surg. 2002, 74, S1864–S1866. [Google Scholar] [CrossRef]
- Tshomba, Y.; Baccellieri, D.; Mascia, D.; Kahlberg, A.; Rinaldi, E.; Melissano, G.; Chiesa, R. Open treatment of extent iv thoracoabdominal aortic aneurysms. J. Cardiovasc. Surg. 2015, 56, 687–697. [Google Scholar]
- Canyigit, M.; Cetin, L.; Uguz, E.; Algin, O.; Kucuker, A.; Arslan, H.; Sener, E. Reduction of iodinated contrast load with the renal artery catheterization technique during endovascular aortic repair. Diagn. Interv. Radiol. 2013, 19, 244–250. [Google Scholar] [CrossRef]
- Thiele, R.H.; Isbell, J.M.; Rosner, M.H. Aki associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 2015, 10, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Feng, Y.; Zou, L.; Wang, L.; Chen, H.H.; Cai, J.Y.; Xu, J.M.; Sosnovik, D.E.; Chao, W. Role of extracellular rna and tlr3-trif signaling in myocardial ischemia-reperfusion injury. J. Am. Heart Assoc. 2014, 3, e000683. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Chen, H.; Cai, J.; Zou, L.; Yan, D.; Xu, G.; Li, D.; Chao, W. Cardiac rna induces inflammatory responses in cardiomyocytes and immune cells via toll-like receptor 7 signaling. J. Biol. Chem. 2015, 290, 26688–26698. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, J. Extracellular rna in renal diseases. ExRNA 2019, 1, 5. [Google Scholar] [CrossRef]
- Abtin, A.; Eckhart, L.; Mildner, M.; Ghannadan, M.; Harder, J.; Schroder, J.M.; Tschachler, E. Degradation by stratum corneum proteases prevents endogenous rnase inhibitor from blocking antimicrobial activities of rnase 5 and rnase 7. J. Investig. Dermatol. 2009, 129, 2193–2201. [Google Scholar] [CrossRef]
Open TAAA Repair (n = 14) | Endovascular TAAA Repair (n = 19) | p-Value | |
---|---|---|---|
Age (year) (IQR) | 51 (37–65) | 74 (69–78) | <0.001 |
Male sex (%) | 8 (57.1) | 9 (47.4) | 0.593 |
BMI (kg/m2) (IQR) | 25.7 (20.6–30.6) | 25.4 (21.5–27.1) | 0.600 |
Diabetes mellitus (%) | 2 (14.3) | 4 (21.1) | 0.685 |
Smoker (%) | 4 (28.6) | 8 (42.1) | 0.440 |
Operation time (min) (IQR) | 312.5 (295.5–474.5) | 392.0 (280.0-460.0) | 0.908 |
LOS ICU (days) (IQR) | 5 (4–21) | 3 (6–2) | 0.075 |
LOS in-hospital (days) (IQR) | 27 (19–38) | 15 (9–35) | 0.190 |
In-hospital mortality (%) | 2 (14.3) | 4 (21.1) | 0.631 |
Pre-operative renal insufficiency (%) | 3 (21.4) | 2 (10.5) | 0.4039 |
Post-operative acute kidney injury (%) | 10 (71.4) | 7 (36.8) | 0.051 |
Time of Measurement | Optimal Cut-Off (Youden Index) | AUC | ||||
---|---|---|---|---|---|---|
Cut-Off (ng/mL) | Sensitivity (%) | Specificity (%) | LR+ | LR− | ||
0 days n = 20 | ≥57.64 | 75.00 [19.4, 99.4] | 81.25 [54.4, 96.0] | 4.00 | 0.31 | 0.828 [0.595, 0.957] |
Admission on ICU n = 20 | ≥31.00 | 100.00 [39.8, 100.0] | 50.00 [24.7, 75.3] | 2.00 | - | 0.672 [0.429, 0862] |
12 h n = 19 | ≥61.42 | 75.00 [19.4, 99.4] | 86.67 [59.5, 98.3] | 5.63 | 0.29 | 0.817 [0.575, 0.954] |
24 h n = 20 | ≥32.81 | 100.00 [39.8, 100.0] | 62.50 [35.4, 84.8] | 2.67 | - | 0.797 [0.560, 0.941] |
48 h n = 20 | ≥67.81 | 100.00 [39.8, 100.0] | 87.50 [61.7, 98.4] | 8.00 | - | 0.969 [0.779, 1.000] |
72 h n = 17 | ≥62.28 | 100.00 [39.8, 100.0] | 69.23 [38.6, 90.9] | 3.25 | - | 0.904 [0.663, 0.992] |
Before Surgery | After Surgery | 12 h After Surgery | 24 h After Surgery | 48 h After Surgery | 72 h After Surgery | |
---|---|---|---|---|---|---|
SOFA Score | x | 0.20292 | 0.22965 | 0.25394 | 0.57451 | 0.73193 |
(n = 6) | (n = 31) | (n = 29) | (n = 15) | (n = 8) | ||
(p = 0.0251) | (p = 0.0390) | |||||
Leucocytes | −0.03862 | 0.14354 | −0.07718 | −0.02492 | 0.37221 | 0.40294 |
(n = 33) | (n = 30) | (n = 32) | (n = 28) | (n = 22) | (n = 16) | |
PCT | −0.86603 | 0.00000 | 0.20843 | 0.24527 | 0.33636 | 0.26190 |
(n = 3) | (n = 9) | (n = 20) | (n = 24) | (n = 11) | (n = 8) | |
CRP | 0.22086 | 0.10000 | 0.00351 | −0.01342 | 0.01072 | 0.20000 |
(n = 32) | (n = 9) | (n = 19) | (n = 18) | (n = 15) | (n = 15) | |
IL-6 | −0.08571 | 0.54545 | 0.00000 | 0.54286 | ||
(n = 1) | (n = 6) | (n = 12) | (n = 12) | (n = 6) | (n = 1) | |
LOS ICU | 0.04169 | 0.11124 | 0.05597 | 0.22260 | 0.46103 | 0.36988 |
(n = 33) | (n = 31) | (n = 32) | (n = 32) | (n = 30) | (n = 26) | |
(p = 0.0103) |
Before Surgery | After Surgery | 12 h After Surgery | 24 h After Surgery | 48 h After Surgery | 72 h After Surgery | |
---|---|---|---|---|---|---|
SOFA Score | x | −0.72471 | 0.31193 | 0.41576 | 0.32676 | −0.11119 |
(n = 6) | (n = 32) | (n = 29) | (n = 15) | (n = 7) | ||
(p = 0.0249) | ||||||
Leukocytes | −0.03996 | −0.15045 | −0.32879 | −0.36971 | −0.04123 | 0.27857 |
(n = 33) | (n = 31) | (n = 33) | (n = 28) | (n = 22) | (n = 15) | |
PCT | 0.86603 | 0.69457 | 0.41986 | 0.52142 | 0.60000 | 0.60714 |
(n = 3) | (n = 9) | (n = 20) | (n = 24) | (n = 11) | (n = 7) | |
(p = 0.0379) | (p = 0.0090) | |||||
CRP | −0.05668 | −0.13333 | −0.43333 | 0.23220 | 0.54334 | 0.43736 |
(n = 32) | (n = 9) | (n = 19) | (n = 18) | (n = 15) | (n = 14) | |
(p = 0.0363) | ||||||
IL-6 | 0.54286 | 0.23776 | 0.75524 | 0.08571 | ||
(n = 1) | (n = 6) | (n = 12) | (n = 12) | (n = 6) | (n = 1) | |
(p = 0.0045) | ||||||
LOS ICU | 0.20422 | 0.18342 | 0.20371 | 0.21947 | 0.40419 | 0.44018 |
(n = 33) | (n = 32) | (n = 33) | (n = 31) | (n = 30) | (n = 26) | |
(p = 0.0267) | (p = 0.0244) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zechendorf, E.; Gombert, A.; Bülow, T.; Frank, N.; Beckers, C.; Peine, A.; Kotelis, D.; Jacobs, M.J.; Marx, G.; Martin, L. The Role of Ribonuclease 1 and Ribonuclease Inhibitor 1 in Acute Kidney Injury after Open and Endovascular Thoracoabdominal Aortic Aneurysm Repair. J. Clin. Med. 2020, 9, 3292. https://doi.org/10.3390/jcm9103292
Zechendorf E, Gombert A, Bülow T, Frank N, Beckers C, Peine A, Kotelis D, Jacobs MJ, Marx G, Martin L. The Role of Ribonuclease 1 and Ribonuclease Inhibitor 1 in Acute Kidney Injury after Open and Endovascular Thoracoabdominal Aortic Aneurysm Repair. Journal of Clinical Medicine. 2020; 9(10):3292. https://doi.org/10.3390/jcm9103292
Chicago/Turabian StyleZechendorf, Elisabeth, Alexander Gombert, Tanja Bülow, Nadine Frank, Christian Beckers, Arne Peine, Drosos Kotelis, Michael J. Jacobs, Gernot Marx, and Lukas Martin. 2020. "The Role of Ribonuclease 1 and Ribonuclease Inhibitor 1 in Acute Kidney Injury after Open and Endovascular Thoracoabdominal Aortic Aneurysm Repair" Journal of Clinical Medicine 9, no. 10: 3292. https://doi.org/10.3390/jcm9103292
APA StyleZechendorf, E., Gombert, A., Bülow, T., Frank, N., Beckers, C., Peine, A., Kotelis, D., Jacobs, M. J., Marx, G., & Martin, L. (2020). The Role of Ribonuclease 1 and Ribonuclease Inhibitor 1 in Acute Kidney Injury after Open and Endovascular Thoracoabdominal Aortic Aneurysm Repair. Journal of Clinical Medicine, 9(10), 3292. https://doi.org/10.3390/jcm9103292