Modelling the Effects of MCM7 Variants, Somatic Mutations, and Clinical Features on Acute Myeloid Leukemia Susceptibility and Prognosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. Genotyping Investigation
2.3. Statistical Analysis
3. Results
3.1. Description of AML and Control Groups
3.2. MCM7 SNPs rs2070215, rs1527423, and rs1534309 and AML Risk
3.3. MCM7 SNPs rs2070215, rs1527423, and rs1534309, Somatic Mutations (FLT3, NPM1, DNMT3A), and the Clinical Features of AML Patients
3.4. MCM7 SNPs rs2070215, rs1527423, and rs1534309, Somatic Mutations (FLT3, NPM1, DNMT3A), and Overall Survival of AML Patients
3.5. Aditional Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arber, D.A. Acute myeloid leukemia. In Hematopathology, 3rd ed.; His, E.D., Ed.; Elsevier: Philadelphia, Pennsylvania, 2018; Volume 3, pp. 429–466. [Google Scholar]
- Giannopoulos, K. Targeting Immune Signaling Checkpoints in Acute Myeloid Leukemia. J. Clin. Med. 2019, 8, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lussana, F.; Caprioli, C.; Stefanoni, P.; Pavoni, C.; Spinelli, O.; Buklijas, K.; Michelato, A.; Borleri, G.; Algarotti, A.; Micò, C.; et al. Molecular Detection of Minimal Residual Disease before Allogeneic Stem Cell Transplantation Predicts a High Incidence of Early Relapse in Adult Patients with NPM1 Positive Acute Myeloid Leukemia. Cancers 2019, 11, 1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodská, B.; Otevřelová, P.; Šálek, C.; Fuchs, O.; Gašová, Z.; Kuželová, K. High PD-L1 Expression Predicts for Worse Outcome of Leukemia Patients with Concomitant NPM1 and FLT3 Mutations. Int. J. Mol. Sci. 2019, 20, 2823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papayannidis, C.; Sartor, C.; Marconi, G.; Fontana, M.C.; Nanni, J.; Cristiano, G.; Parisi, S.; Paolini, S.; Curti, A. Acute Myeloid Leukemia Mutations: Therapeutic Implications. Int. J. Mol. Sci. 2019, 20, e2721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banescu, C. Do we really need genetic tests in current practice? Rev. Romana Med. Lab. 2019, 27, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Canaani, J.; Labopin, M.; Itälä-Remes, M.; Blaise, D.; Socié, G.; Forcade, E.; Maertens, J.; Wu, D.; Malladi, R.; Cornelissen, J.J.; et al. Prognostic significance of recurring chromosomal abnormalities in transplanted patients with acute myeloid leukemia. Leukemia 2019, 33, 1944–1952. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, H.; Thiede, C.; Glauche, I.; Kramer, M.; Röllig, C.; Ehninger, G.; Bornhäuser, M.; Roeder, I. The prognostic potential of monitoring disease dynamics in NPM1-positive acute myeloid leukemia. Leukemia 2019, 33, 1531–1534. [Google Scholar] [CrossRef]
- Hackl, H.; Astanina, K.; Wieser, R. Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. J. Hematol. Oncol. 2017, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Banescu, C.; Skrypnyc, C. The Value of FLT3, NPM1 and DNMT3A Gene Mutation Analysis in Acute Myeloid Leukemia Diagnosis. Rev. Romana Med. Lab. 2019, 27, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Tripon, F.; Crauciuc, G.A.; Moldovan, V.G.; Bogliș, A.; Benedek, I.J.; Lázár, E.; Banescu, C. Simultaneous FLT3, NPM1 and DNMT3A mutations in adult patients with acute myeloid leukemia–case study. Rev. Romana Med. Lab. 2019, 27, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Tien, F.M.; Hou, H.A.; Tsai, C.H.; Tang, J.L.; Chen, C.Y.; Kuo, Y.Y.; Li, C.C.; Lin, C.T.; Yao, M.; Huang, S.Y.; et al. Hyperleukocytosis is associated with distinct genetic alterations and is an independent poor-risk factor in de novo acute myeloid leukemia patients. Eur. J. Haematol. 2018, 101, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Walaa Fikry, M.E. Lactate Dehydrogenase (LDH) as Prognostic Marker in Acute Leukemia Quantitative Method. J. Blood Disord. Transfus. 2017, 8, 375. [Google Scholar] [CrossRef]
- Hu, W.; Wang, X.; Yang, R. Evaluation of D-dimer and lactate dehydrogenase plasma levels in patients with relapsed acute leukemia. Oncol. Lett. 2016, 12, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Cheong, H.S.; Koh, Y.; Ahn, K.S.; Shin, H.D.; Yoon, S.S. MCM7 polymorphisms associated with the AML relapse and overall survival. Ann. Hematol. 2017, 96, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Verboon, L.J.; Obulkasim, A.; de Rooij, J.D.; Katsman-Kuipers, J.E.; Sonneveld, E.; Baruchel, A.; Trka, J.; Reinhardt, D.; Pieters, R.; Cloos, J.; et al. MicroRNA-106b~25 cluster is upregulated in relapsed MLL-rearranged pediatric acute myeloid leukemia. Oncotarget 2016, 7, 48412–48422. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Liu, J.; Xia, G.H.; Chen, B.A. RNAi-mediated knockdown of MCM7 gene on CML cells and its therapeutic potential for leukemia. Med. Oncol. 2017, 34, 21. [Google Scholar] [CrossRef]
- Mertz, T.M.; Harcy, V.; Roberts, S.A. Risks at the DNA Replication Fork: Effects upon Carcinogenesis and Tumor Heterogeneity. Genes (Basel) 2017, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Bănescu, C.; Iancu, M.; Trifa, A.P.; Dobreanu, M.; Moldovan, V.G.; Duicu, C.; Tripon, F.; Crauciuc, A.; Skypnyk, C.; Bogliș, A.; et al. Influence of XPC, XPD, XPF, and XPG gene polymorphisms on the risk and the outcome of acute myeloid leukemia in a Romanian population. Tumour Biol. 2016, 37, 9357–9366. [Google Scholar] [CrossRef]
- Espinosa-Parrilla, Y.; Muñoz, X.; Bonet, C.; Garcia, N.; Venceslá, A.; Yiannakouris, N.; Naccarati, A.; Sieri, S.; Panico, S.; Huerta, J.M.; et al. Genetic association of gastric cancer with miRNA clusters including the cancer-related genes MIR29, MIR25, MIR93 and MIR106: Results from the EPIC-EURGAST study. Int. J. Cancer 2014, 135, 2065–2076. [Google Scholar] [CrossRef]
- Nan, Y.L.; Hu, Y.L.; Liu, Z.K.; Duan, F.F.; Xu, Y.; Li, S.; Li, T.; Chen, D.F.; Zeng, X.Y. Relationships between cell cycle pathway gene polymorphisms and risk of hepatocellular carcinoma. World J. Gastroenterol. 2016, 22, 5558–5567. [Google Scholar] [CrossRef]
- Zhang, F.; Li, D.; Zhu, F.; Tang, S.; Ye, L. Expression of mini chromosome maintenance protein 7 in esophageal carcinoma and clinical implications. Int. J. Clin. Exp. Pathol. 2016, 9, 2637–2642. [Google Scholar]
- Jankowska-Konsur, A.; Kobierzycki, C.; Reich, A.; Grzegrzolka, J.; Maj, J.; Dziegiel, P. Expression of MCM-3 and MCM-7 in Primary Cutaneous T-cell Lymphomas. Anticancer Res. 2015, 35, 6017–6026. [Google Scholar] [PubMed]
- Yeh, C.H.; Moles, R.; Nicot, C. Clinical significance of microRNAs in chronic and acute human leukemia. Mol. Cancer 2016, 15, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milani, L.; Gupta, M.; Andersen, M.; Dhar, S.; Fryknäs, M.; Isaksson, A.; Larsson, R.; Syvänen, A.C. Allelic imbalance in gene expression as a guide to cisacting regulatory single nucleotide polymorphisms in cancer cells. Nucleic Acids Res. 2007, 35, e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, B.; Yu, G.; Tseng, G.C.; Cieply, K.; Gavel, T.; Nelson, J.; Michalopoulos, G.; Yu, Y.P.; Luo, J.H. MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene 2006, 25, 1090–1098. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, VA, Austria; Available online: https://www.R-project.org/ (accessed on 30 October 2019).
- Schaid, D.J.; Rowland, C.M.; Tines, D.E.; Jacobson, R.M.; Poland, G.A. Score tests for association of traits with haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet. 2002, 70, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Lake, S.L.; Lyon, H.; Tantisira, K.; Silverman, E.K.; Weiss, S.T.; Laird, N.M.; Schaid, D.J. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Hum. Hered. 2003, 55, 56–65. [Google Scholar] [CrossRef]
- Bănescu, C.; Tripon, F.; Trifa, A.P.; Crauciuc, A.G.; Moldovan, V.G.; Bogliş, A.; Benedek, I.; Dima, D.; Cândea, M.; Duicu, C.; et al. Cytokine rs361525, rs1800750, rs1800629, rs1800896, rs1800872, rs1800795, rs1800470, and rs2430561 SNPs in relation with prognostic factors in acute myeloid leukemia. Cancer Med. 2019, 8, 5492–5506. [Google Scholar] [CrossRef] [Green Version]
- Bănescu, C.; Tripon, F.; Trifa, A.P.; Crauciuc, A.G.; Bogliş, A.; Lazar, E.; Dima, D.; Macarie, I.; Duicu, C.; Iancu, M. Presence of copy number aberration and clinical prognostic factors in patients with acute myeloid leukemia: An analysis of effect modification. Pol. Arch. Intern. Med. 2019, in press. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Huang, M.; Pan, Y.; Liu, Y.; Liu, J.; Wen, J.; Xie, K.; Shen, H.; Ma, H.; Miao, Y.; et al. A genetic variant in the promoter region of miR-106b-25 cluster predict clinical outcome of HBV-related hepatocellular carcinoma in Chinese. PLoS ONE 2014, 9, e85394. [Google Scholar] [CrossRef]
- De Jonge, H.J.; Valk, P.J.; de Bont, E.S.; Schuringa, J.J.; Ossenkoppele, G.; Vellenga, E.; Huls, G. Prognostic Impact of White Blood Cell Count in Intermediate Risk Acute Myeloid Leukemia: Relevance of Mutated NPM1 And FLT3-ITD. Haematologica 2011, 96, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Dobreanu, M.; Oprea, O.R. Laboratory medicine in the era of precision medicine—Dream or reality? Rev. Romana Med. Lab. 2019, 27, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.; Karp, J.E.; Hourigan, C.S. Precision medicine for acute myeloid leukemia. Expert. Rev. Hematol. 2016, 9, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greiner, J. The Important Role of Immunotherapies in Acute Myeloid Leukemia. J. Clin. Med. 2019, 8, 2054. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.A.; Law, A.; Hunyadkurti, J.; Desilets, S.; Leyton, J.V.; Keating, A. Antibody Therapies for Acute Myeloid Leukemia: Unconjugated, Toxin-Conjugated, Radio-Conjugated and Multivalent Formats. J. Clin. Med. 2019, 8, 1261. [Google Scholar] [CrossRef] [Green Version]
- Bohl, S.R.; Bullinger, L.; Rücker, F.G. New Targeted Agents in Acute Myeloid Leukemia: New Hope on the Rise. Int. J. Mol. Sci. 2019, 20, 1983. [Google Scholar] [CrossRef] [Green Version]
Studied Genetic Models (Additive, Dominant, Allelic) | AML Patients n (%) | Controls n (%) | Crude OR (a) (95% CI: Lower Limit to Upper Limit) | p(a) | pBH(b) |
---|---|---|---|---|---|
MCM7 rs1534309 | |||||
CC | 13 (4.6) | 12 (3) | Reference | 0.247 | 0.257 |
GC | 99 (35.2) | 127 (31.4) | 0.72 (0.32–1.65) | ||
GG | 169 (60.1) | 266 (65.7) | 0.59 (0.26–1.32) | ||
GC + GG | 268 (95.4) | 393 (97) | 0.63 (0.28–0.283) | 0.257 | 0.257 |
C allele | 125 (22.2) | 151 (18.6) | Reference | ||
G allele | 437 (77.8) | 659 (81.4) | 0.80 (0.61–1.05) | 0.102 | 0.257 |
MCM7 rs1527423 | |||||
GG | 76 (27) | 88 (21.7) | Reference | 0.238 | 0.238 |
AG | 140 (49.8) | 209 (51.6) | 0.78 (0.53–1.13) | ||
AA | 65 (23.1) | 108 (26.7) | 0.70 (0.45–1.08) | ||
AG + AA | 205 (73) | 317 (78.3) | 0.75 (0.53–1.07) | 0.109 | 0.164 |
G allele | 292 (52) | 385 (47.5) | Reference | ||
A allele | 270 (48) | 425 (52.5) | 0.84 (0.68–1.04) | 0.107 | 0.164 |
MCM7 rs2070215 | |||||
TT | 157 (55.9) | 226 (55.8) | Reference | 0.993 | 1.00 |
CT | 104 (37) | 151 (37.3) | 0.99 (0.72–1.37) | ||
CC | 20 (7.1) | 28 (6.9) | 1.03 (0.56–1.89) | ||
CT + CC | 124 (44.1) | 179 (44.2) | 0.99 (0.73–1.36) | 0.986 | 1.00 |
T allele | 418 (68) | 603 (74.4) | Reference | ||
C allele | 197 (32) | 207 (25.6) | 1.37 (1.09–1.73) | 0.007 ** | 0.021 * |
Haplo-Type No. | Estimated Haplotypes rs1534309/rs1527423/rs2070215 | Relative Frequencies in Controls | Relative Frequencies in AML Patients | p(a) | Crude OR | 95% CI | Adjusted OR (b) | 95% CI |
---|---|---|---|---|---|---|---|---|
1 | GAT | 0.28 | 0.23 | 0.028 * | 0.53 | 0.72–0.99 | 0.71 | 0.52–0.97 |
2 | GAC | 0.24 | 0.23 | 0.834 | 0.91 | 0.67–1.22 | 0.89 | 0.66–1.20 |
3 | GGC | 0.012 | 0.015 | 0.631 | 1.03 | 0.35–1.03 | 0.99 | 0.34–2.92 |
4 | GGT | 0.28 | 0.31 | 0.484 | Ref. | Ref. | ||
5 | CGT | 0.18 | 0.20 | 0.258 | 1.03 | 0.74–1.43 | 1.02 | 0.71–1.36 |
6 | CAT | 0.002 | 0.017 | 0.012 * | 9.53 | 1.13–80.32 | 9.55 | 1.13–80.40 |
7 | GAC | 0.00 | 0.003 | NC | NC | NC | NC | NC |
8 | CGC | 0.0031 | NC | NC | NC | NC | NC |
MCM7 rs1534309 CC | MCM7 rs1534309 GC + GG | p(a) | MCM7 rs1527423 GG | MCM7 rs1527423 AG + AA | p(a) | MCM7 rs2070215 TT | MCM7 rs2070215 CT + CC | p(a) | |
---|---|---|---|---|---|---|---|---|---|
Age (years) | |||||||||
<65 years | 8 (4.3) | 177 (95.7) | 0.205 | 52 (28.1) | 133 (71.9) | 0.671 | 100 (54.1) | 85 (45.9) | 0.448 |
≥65 years | 5 (5.2) | 91 (94.8) | 24 (25) | 72 (75) | 57 (59.4) | 39 (40.6) | |||
Gender | |||||||||
Woman | 7 (5.3) | 125 (94.7) | 0.611 | 43 (32.6) | 89 (67.4) | 0.05 | 83 (62.9) | 49 (37.1) | 0.026 * |
Man | 6 (4) | 143 (96) | 33 (22.1) | 116 (77.9) | 74 (49.7) | 75 (50.3) | |||
WBC (cells/mm3) | |||||||||
<10,000 | 4 (2.9) | 135 (97.1) | 0.167 | 40 (28.8) | 99 (71.2) | 0.518 | 80 (57.6) | 59 (42.4) | 0.574 |
≥10,000 | 9 (6.3) | 133 (93.7) | 36 (25.4) | 106 (74.6) | 77 (54.2) | 65 (45.8) | |||
PLT (cells/mm3) | |||||||||
<40,000 | 5 (3.8) | 125 (96.2) | 0.563 | 33 (25.4) | 97 (74.6) | 0.561 | 72 (55.4) | 58 (44.6) | 0.879 |
≥40,000 | 8 (13) | 143 (94.7) | 43 (28.5) | 108 (71.5) | 85 (56.3) | 66 (43.7) | |||
Hgb (g/dL) | |||||||||
<10 | 2 (2.7) | 72 (97.3) | 0.524 | 19 (25.7) | 55 (74.3) | 0.757 | 42 (56.8) | 32 (43.2) | 0.858 |
≥10 | 11 (5.3) | 196 (94.7) | 57 (27.5) | 150 (72.5) | 115 (55.6) | 92 (44.4) | |||
LDH level (IU/L) | |||||||||
<600 | 5 (4.4) | 108 (95.6) | 0.895 | 34 (30.1) | 79 (69.9) | 0.346 | 66 (58.4) | 47 (41.6) | 0.483 |
≥600 | 8 (4.8) | 160 (95.2) | 42 (25) | 126 (75) | 91 (54.2) | 77 (45.8) | |||
Blast (in bone marrow, %) | |||||||||
<70 | 7 (3.9) | 172 (96.1) | 0.557 | 49 (27.4) | 130 (72.6) | 0.870 | 100 (55.9) | 79 (44.1) | 0.998 |
≥70 | 6 (5.9) | 96 (94.1) | 27 (26.5) | 75 (73.5) | 57 (55.9) | 45 (44.1) | |||
AML subtype | |||||||||
De novo | 11 (4.8) | 217 (95.2) | 1 | 60 (26.3) | 168 (73.7) | 0.678 | 127 (55.7) | 101 (44.3) | 0.592 |
Secondary AML | 2 (4.2) | 46 (95.8) | 14 (29.2) | 34 (70.8) | 26 (54.2) | 22 (45.8) | |||
Therapy related AML | 0 (0) 1 | 5 (100) 11 | 2 (40) | 3 (60) | 4 (80) | 1 (20) | |||
Response | |||||||||
Complete remission | 2 (4.7) | 41 (95.3) | 0.799 | 12 (27.9) | 31 (72.1) | 0.699 | 25 (58.1) | 18 (41.9) | 0.184 |
Partial remission | 1 (2) | 48 (98) | 16 (32.7) | 33 (67.3) | 23 (46.9) | 26 (53.1) | |||
Resistance | 3 (4.2) | 68 (95.8) | 18 (25.4) | 53 (74.6) | 35 (49.3) | 36 (50.7) | |||
No response/Induction death | 5 (7.2) | 64 (92.8) | 15 (21.7) | 54 (78.3) | 46 (66.7) | 23 (33.3) | |||
Relapse | 2 (4.1) | 47 (95.9) | 15 (30.6) | 34 (69.4) | 28 (57.1) | 21 (42.9) | |||
ELN 2017 RISK | |||||||||
Low risk | 3 (5.5) | 52 (94.5) | 0.120 | 18 (32.7) | 37 (67.3) | 0.061 | 34 (61.8) | 21 (38.2) | 0.270 |
Intermediate | 5 (3.4) | 141 (96.6) | 40 (27.4) | 106 (72.6) | 84 (57.5) | 62 (42.5) | |||
High risk | 3 (4.2) | 68 (95.8) | 13 (18.3) | 58 (81.7) | 33 (46.5) | 38 (53.5) | |||
NA (Not available) | 2 (22.2) | 7 (77.8) | 5 (55.6) | 4 (44.4) | 6 (66.7) | 3 (33.3) | |||
FLT3 ITD− | 10 (4.3) | 220 (95.7) | 0.711 | 64 (27.8) | 166 (72.2) | 0.532 | 129 (56.1) | 101 (43.9) | 0.877 |
FLT3 ITD+ | 3 (5.9) | 48 (94.1) | 12 (23.5) | 39 (76.5) | 28 (54.9) | 23 (45.1) | |||
FLT3 D835− | 12 (4.5) | 254 (95.5) | 0.518 | 70 (26.3) | 196 (73.7) | 0.245 | 148 (55.6) | 118(44.4) | 0.741 |
FLT3 D835+ | 1 (6.7) | 14 (93.3) | 6 (40) | 9 (60) | 9 (60) | 6 (40) | |||
FLT3 (ITD + D835)− | 10 (4.5) | 211 (95.5) | 1 | 61 (27.6) | 160 (72.4) | 0.687 | 124 (56.1) | 97 (43.9) | 0.878 |
FLT3 (ITD + D835)+ | 3 (5) | 57 (95) | 15 (25) | 45 (75) | 33 (55) | 27 (45) | |||
NPM1− | 9 (3.9) | 219 (96.1) | 0.276 | 60 (26.3) | 168 (73.7) | 0.567 | 123 (53.9) | 105 (46.1) | 0.178 |
NPM1+ | 4 (7.5) | 49 (92.5) | 16 (30.2) | 37 (69.8) | 34 (64.2) | 19 (35.8) | |||
DNMT3A− | 11 (4.5) | 236 (95.5) | 0.662 | 65 (26.3) | 182 (73.7) | 0.457 | 135 (54.7) | 112 (45.3) | 0.269 |
DNMT3A+ | 2 (5.9) | 32 (94.1) | 11 (32.4) | 23 (67.6) | 22 (64.7) | 12 (35.3) | |||
Treatment | |||||||||
HD | 3 (23.1%) | 140 (52.2%) | 0.090 | 33 (43.4%) | 110 (53.7%) | 0.300 | 71 (45.2%) | 72 (58.1%) | 0.087 |
HD + HSCT | 1 (7.69%) | 15 (5.60%) | 5 (6.58%) | 11 (5.37%) | 11 (7.01%) | 5 (4.03%) | |||
LD | 9 (69.2%) | 113(42.2%) | 38 (50.0%) | 84 (41.0%) | 75 (47.8%) | 47 (37.9%) | |||
Toxicity | |||||||||
Yes | 6 (46.2%) | 154 (57.5%) | 0.605 | 41 (53.9%) | 119 (58.0%) | 0.630 | 92 (58.6%) | 68 (54.8%) | 0.610 |
No | 7 (53.8%) | 114 (42.5%) | 35 (46.1%) | 86 (42.0%) | 65 (41.4%) | 56 (45.2%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripon, F.; Iancu, M.; Trifa, A.; Crauciuc, G.A.; Boglis, A.; Dima, D.; Lazar, E.; Bănescu, C. Modelling the Effects of MCM7 Variants, Somatic Mutations, and Clinical Features on Acute Myeloid Leukemia Susceptibility and Prognosis. J. Clin. Med. 2020, 9, 158. https://doi.org/10.3390/jcm9010158
Tripon F, Iancu M, Trifa A, Crauciuc GA, Boglis A, Dima D, Lazar E, Bănescu C. Modelling the Effects of MCM7 Variants, Somatic Mutations, and Clinical Features on Acute Myeloid Leukemia Susceptibility and Prognosis. Journal of Clinical Medicine. 2020; 9(1):158. https://doi.org/10.3390/jcm9010158
Chicago/Turabian StyleTripon, Florin, Mihaela Iancu, Adrian Trifa, George Andrei Crauciuc, Alina Boglis, Delia Dima, Erzsebet Lazar, and Claudia Bănescu. 2020. "Modelling the Effects of MCM7 Variants, Somatic Mutations, and Clinical Features on Acute Myeloid Leukemia Susceptibility and Prognosis" Journal of Clinical Medicine 9, no. 1: 158. https://doi.org/10.3390/jcm9010158
APA StyleTripon, F., Iancu, M., Trifa, A., Crauciuc, G. A., Boglis, A., Dima, D., Lazar, E., & Bănescu, C. (2020). Modelling the Effects of MCM7 Variants, Somatic Mutations, and Clinical Features on Acute Myeloid Leukemia Susceptibility and Prognosis. Journal of Clinical Medicine, 9(1), 158. https://doi.org/10.3390/jcm9010158