Heart Rate Variability in Sport Performance: Do Time of Day and Chronotype Play A Role?
Abstract
:1. Introduction
2. Chronobiology, Biological Rhythms, and Chronotype
3. HRV Assessment
4. HRV Circadian Rhythm
5. HRV and Physical Exercise
6. Time-of-Day and Chronotype Effect on HRV in Response to Acute PA
7. Limitations
8. Practical Applications
9. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Aubert, A.E.; Seps, B.; Beckers, F. Heart rate variability in athletes. Sports Med. 2003, 33, 889–919. [Google Scholar] [PubMed]
- Fagard, R.H. Impact of different sports and training on cardiac structure and function. Cardiol. Clin. 1992, 10, 241–256. [Google Scholar] [CrossRef]
- Vitale, J.A.; Weydahl, A. Chronotype, physical activity, and sport performance: A systematic review. Sports Med. 2017, 47, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Billiard, M. Sleep Physiology, Investigations, and Medicine; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003. [Google Scholar]
- Halberg, F.; Carandente, F.; Cornelissen, G.; Katinas, G.S. Glossary of chronobiology (author’s transl). Chronobiologia 1977, 4, 1–189. [Google Scholar] [PubMed]
- Vitale, J.A.; Banfi, G.; Sias, M.; La Torre, A. Athletes’ rest-activity circadian rhythm differs in accordance with the sport discipline. Chronobiol. Int. 2019, 36, 578–586. [Google Scholar] [PubMed]
- Vitale, J.A.; Lombardi, G.; Weydahl, A.; Banfi, G. Biological rhythms, chronodisruption and chrono-enhancement: The role of physical activity as synchronizer in correcting steroids circadian rhythm in metabolic dysfunctions and cancer. Chronobiol. Int. 2018, 35, 1185–1197. [Google Scholar] [PubMed]
- Lombardi, G.; Vitale, J.A.; Logoluso, S.; Logoluso, G.; Cocco, N.; Cocco, G.; Cocco, A.; Banfi, G. Circannual rhythm of plasmatic vitamin D levels and the association with markers of psychophysical stress in a cohort of Italian professional soccer players. Chronobiol. Int. 2017, 34, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Vitale, J.A.; Lombardi, G.; Cavaleri, L.; Graziani, R.; Schoenhuber, H.; Torre, A.; Banfi, G. Rates of insufficiency and deficiency of vitamin D levels in elite professional male and female skiers: A chronobiologic approach. Chronobiol. Int. 2018, 35, 441–449. [Google Scholar] [PubMed]
- Koukkari, W.L.; Southern, R.B. Introducing Biological Rhythms/a Primer on the Temporal Organization of Life, with Implications for Health, Societies, Reproduction and the Natural Environment; Springer: New York, NY, USA, 2006. [Google Scholar]
- Deprins, J.; Cornelissen, G.; Halberg, F. Harmonic interpolation on equispaced series. Chronobiologia 1977, 4, 173. [Google Scholar]
- Reilly, T.; Waterhouse, J. Sports performance: Is there evidence that the body clock plays a role? Eur. J. Appl. Physiol. 2009, 106, 321–332. [Google Scholar] [CrossRef]
- Moore, R.Y.; Eichler, V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972, 42, 201–206. [Google Scholar] [CrossRef]
- Yoo, S.H.; Yamazaki, S.; Lowrey, P.L.; Shimomura, K.; Ko, C.H.; Buhr, E.D.; Siepka, S.M.; Hong, H.K.; Oh, W.J.; Yoo, O.J.; et al. PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 2004, 101, 5339–5346. [Google Scholar] [CrossRef] [PubMed]
- Mrosovsky, N.; Reebs, S.G.; Honrado, G.I.; Salmon, P.A. Behavioural entrainment of circadian rhythms. Experientia 1989, 45, 696–702. [Google Scholar] [CrossRef]
- Castel, M.; Belenky, M.; Cohen, S.; Ottersen, O.P.; Storm-Mathisen, J. Glutamate-like immunoreactivity in retinal terminals of the mouse suprachiasmatic nucleus. Eur. J. Neurosci. 1993, 5, 368–381. [Google Scholar] [CrossRef]
- Filaire, E.; Ferreira, J.P.; Oliveira, M.; Massart, A. Diurnal patterns of salivary alpha-amylase and cortisol secretion in female adolescent tennis players after 16 weeks of training. Psychoneuroendocrinology 2013, 38, 1122–1132. [Google Scholar] [CrossRef]
- Haus, E.; Smolensky, M. Biological clocks and shift work: Circadian dysregulation and potential long-term effects. Cancer Causes Control 2006, 17, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian typology: A comprehensive review. Chronobiol. Int. 2012, 29, 1153–1175. [Google Scholar] [CrossRef] [PubMed]
- Roveda, E.; Vitale, J.A.; Montaruli, A.; Galasso, L.; Carandente, F.; Caumo, A. Predicting the actigraphy-based acrophase using the Morningness-Eveningness Questionnaire (MEQ) in college students of North Italy. Chronobiol. Int. 2017, 34, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Montaruli, A.; Galasso, L.; Carandente, F.; Vitale, J.A.; Roveda, E.; Caumo, A. If the Morning-Evening Questionnaire (MEQ) is able to predict the actigraphy-based acrophase, how does its reduced, five-item version (rMEQ) perform? Chronobiol. Int. 2017, 34, 443–444. [Google Scholar] [CrossRef]
- Smith, C.S.; Reilly, C.; Midkiff, K. Evaluation of three circadian rhythm questionnaires with suggestions for an improved measure of morningness. J. Appl. Psychol. 1989, 74, 728–738. [Google Scholar] [CrossRef]
- Kim, K.L.; Weissman, A.B.; Puzia, M.E.; Cushman, G.K.; Seymour, K.E.; Wegbreit, E.; Carskadon, M.A.; Dickstein, D.P. Circadian phase preference in pediatric bipolar disorder. J. Clin. Med. 2014, 3, 255–266. [Google Scholar] [CrossRef]
- Horne, J.A.; Ostberg, O. A self-assessment questionnaire to determine morningness–eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–111. [Google Scholar] [PubMed]
- Fischer, D.; Lombardi, D.A.; Marucci-Wellman, H.; Roenneberg, T. Chronotypes in the US—Influence of age and sex. PLoS ONE 2017, 6, e0178782. [Google Scholar] [CrossRef]
- Kim, S.; Dueker, G.L.; Hasher, L.; Goldstein, D. Children’s time of day preference: Age, gender, and ethnic differences. Personal. Individ. Differ. 2002, 33, 1083–1090. [Google Scholar] [CrossRef]
- Vitale, J.A.; Roveda, E.; Montaruli, A.; Galasso, L.; Weydahl, A.; Caumo, A.; Carandente, F. Chronotype influences activity circadian rhythm and sleep: Differences in sleep quality between weekdays and weekend. Chronobiol. Int. 2015, 3, 405–415. [Google Scholar] [CrossRef]
- Taillard, J.; Philip, P.; Chastang, J.F.; Bioulac, B. Validation of Horne and Östberg Morningness–Eveningness questionnaire in a middleaged population of French workers. J. Biol. Rhythms 2004, 19, 76–86. [Google Scholar] [CrossRef]
- Baehr, E.; Revelle, W.; Eastman, C.I. Individual differences in the phase and amplitude of the human circadian temperature rhythm: With an emphasis on morningness–eveningness. J. Sleep Res. 2000, 9, 117–127. [Google Scholar] [CrossRef]
- Bailey, S.L.; Heitkemper, M.M. Circadian rhythmicity of cortisol and body temperature: Morningness–eveningness effects. Chronobiol. Int. 2001, 18, 249–261. [Google Scholar] [CrossRef]
- Vitale, J.A.; La Torre, A.; Baldassarre, R.; Piacentini, M.F.; Bonato, M. Ratings of perceived exertion and self-reported mood state in response to high intensity interval training. A crossover study on the effect of chronotype. Front. Psychol. 2017, 8, 1232. [Google Scholar] [CrossRef] [PubMed]
- Adan, A. Influence of morningness–eveningness preference in the relationship between body temperature and performance: A diurnal study. Personal. Individ. Differ. 1991, 12, 1159–1169. [Google Scholar] [CrossRef]
- Rae, D.E.; Stephenson, K.J.; Roden, L.C. Factors to consider when assessing diurnal variation in sports performance: The influence of chronotype and habitual training time-of-day. Eur. J. Appl. Physiol. 2015, 115, 1339–1349. [Google Scholar] [CrossRef]
- Henst, R.H.P.; Jaspers, R.T.; Roden, L.C.; Rae, D.E. A chronotype comparison of South African and Dutch marathon runners: The role of scheduled race start times and effects on performance. Chronobiol. Int. 2015, 32, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Formenti, D.; Vitale, J.A.; Calogiuri, G.; Weydahl, A. The effect of chronotype on psychophysiological responses during aerobic self-paced exercises. Percept. Mot. Ski. 2015, 121, 840–855. [Google Scholar] [CrossRef] [PubMed]
- Vitale, J.A.; Calogiuri, G.; Weydahl, A. Influence of chronotype on responses to a standardized, self-paced walking task in the morning vs afternoon: A pilot study. Percept. Mot. Ski. 2013, 116, 1020–1028. [Google Scholar] [CrossRef]
- Bonato, M.; La Torre, A.; Saresella, M.; Marventano, I.; Merati, G.; Vitale, J.A. Salivary cortisol concentration after high-intensity interval exercise: Time of day and chronotype effect. Chronobiol. Int. 2017, 34, 698–707. [Google Scholar] [CrossRef]
- Vitale, J.A.; Banfi, G.; La Torre, A.; Bonato, M. Effect of a habitual late-evening physical task on sleep quality in neither-type soccer players. Front. Physiol. 2018, 9, 1582. [Google Scholar] [CrossRef]
- Makivić, B.; Nikić Djordjević, M.; Willis, M.S. Heart Rate Variability (HRV) as a tool for diagnostic and monitoring performance in sport and physical activities. J. Exerc. Physiol. Online 2013, 16, 103–131. [Google Scholar]
- Levy, M.N. Cardiac sympathetic-parasympathetic interactions. Fed. Proc. 1984, 43, 2598–2602. [Google Scholar]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Sunkaria, R.K. Recent trends in nonlinear methods of HRV analysis: A review. World Acad. Sci. Eng. Technol. 2011, 51, 565–570. [Google Scholar]
- Massaro, S.; Pecchia, L. Heart Rate Variability (HRV) analysis: A methodology for organizational neuroscience. Organ. Res. Methods 2019, 22, 354–393. [Google Scholar] [CrossRef]
- Melillo, P.; Izzo, R.; Orrico, A.; Scala, P.; Attanasio, M.; Mirra, M.; De Luca, N.; Pecchia, L. Automatic prediction of cardiovascular and cerebrovascular events using heart rate variability analysis. PLoS ONE 2015, 10, e0118504. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, 2039–2049. [Google Scholar] [CrossRef]
- Carvajal, R.; Wessel, N.; Vallverdú, M.; Caminal, P.; Voss, A. Correlation dimension analysis of heart rate variability in patients with dilated cardiomyopathy. Comput. Methods Programs Biomed. 2005, 78, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Kantelhardt, J.W.; Grote, L.; Peter, J.H.; Bunde, A. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 2003, 50, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Trulla, L.L.; Giuliani, A.; Zbilut, J.P.; Webber, C.L. Recurrence quantification analysis of the logistic equation with transients. Phys. Lett. A 1996, 223, 255–260. [Google Scholar] [CrossRef]
- Melillo, P.; Bracale, M.; Pecchia, L. Nonlinear Heart Rate Variability features for real-life stress detection. Case study: Students under stress due to university examination. Biomed. Eng. Online 2011, 10, 96. [Google Scholar] [CrossRef]
- Pecchia, L.; Melillo, P.; Sansone, M.; Bracale, M. Discrimination power of short-term heart rate variability measures for CHF assessment. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Cooke, H.M.; Lynch, A. Biorhythms and chronotherapy in cardiovascular disease. Am. J. Hosp. Pharm. 1994, 51, 2569–2580. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.F.; Stein, P.K. Circadian rhythm in the cardiovascular system: Considerations in non-invasive electrophysiology. Card. Electrophysiol. Rev. 2003, 6, 267–272. [Google Scholar] [CrossRef]
- Gander, P.H.; Connell, L.J.; Graeber, R.C. Masking of the circadian rhythms of heart rate and core temperature by the rest-activity cycle in man. J. Biol. Rhythms 1986, 1, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, Y.; Kodama, M.; Matsuhisa, M.; Kishimoto, M.; Ozaki, H.; Tani, A.; Ueda, N.; Ishida, Y.; Kamada, T. Diurnal heart rate variability in healthy subjects: Effects of aging and sex difference. Am. J. Physiol. 1996, 271, H303–H310. [Google Scholar] [CrossRef]
- Lombardi, F.; Sandrone, G.; Mortara, A.; la Rovere, M.T.; Colombo, E.; Guzzetti, S.; Malliani, A. Circadian variation of spectral indices of heart rate variability after myocardial infarction. Am. Heart J. 1992, 123, 1521–1529. [Google Scholar] [CrossRef]
- Kristal-Boneh, E.; Raifel, M.; Froom, P.; Ribak, J. Heart rate variability in health and disease. Scand. J. Work Environ. Health 1995, 21, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massin, M.M.; Maeyns, K.; Withofs, N.; Ravet, F.; Gerard, P. Circadian rhythm of heart rate and heart rate variability. Arch. Dis. Child. 2000, 83, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Korpelainen, J.T.; Sotaniemi, K.A.; Huiluri, H.V.; Myllyla, V.V. Circadian rhythm of heart rate variability is reversibly abolished in ischemic stroke. Stroke 1997, 28, 2150–2154. [Google Scholar] [CrossRef]
- Shimizu, K.; Hirose, N.; Yonemoto, T.; Wakida, Y. Circadian heart rate rhythms in Japanese Centenarians. J. Am. Geriatr. Soc. 1999, 47, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Ewing, D.J.; Neilson, J.M.M.; Travis, P. New methods for assessing cardiac parasympathetic activity using 24-hour electrocardiograms. Br. Heart J. 1984, 52, 396–402. [Google Scholar] [CrossRef]
- Molgaard, H.; Sorensen, K.E.; Bjerregaard, P. Circadian variation and influence of risk factors on heart rate variability in healthy subjects. Am. J. Cardiol. 1991, 68, 777–784. [Google Scholar] [CrossRef]
- Pagani, M.; Lombardi, F.; Guzzetti, S.; Rirnoldi, O.; Furlan, R.; Pizzinelli, P.; Sandrone, G.; Malfatto, G.; Dell’Orto, S.; Piccaluga, E. Power spectral analysis heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ. Res. 1986, 59, 178–193. [Google Scholar] [CrossRef]
- O’Brien, I.A.D.; O’Hare, P.; Corrall, R.J.M. Heart rate variability in healthy subjects: Effect of age and the derivation of normal ranges for tests of autonomic function. Br. Heart J. 1986, 55, 348–354. [Google Scholar] [CrossRef] [PubMed]
- White, N.K.; Edward, J.E.; Dry, T.J. The relationship of the degree of coronary atherosclerosis with age in men. Circulation 1950, 1, 645–654. [Google Scholar] [CrossRef]
- Port, S.; Cobb, F.R.; Coleman, R.E.; Jones, R.H. Effect of age on the response of the left ventricular fraction to exercise. N. Engl. J. Med. 1982, 133, 1137. [Google Scholar] [CrossRef]
- Nixon, J.V.; Hallmark, H.; Page, K.; Raveu, P.R.; Mitchell, J.H. Ventricular performance in human hearts aged 61 to 73 years. Am. J. Cardiol. 1985, 56, 932–937. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Niemela, M.J.; Ojala, S.; Rantala, A.; Ikaheimo, M.J.; Airaksinen, K.E. Circadian rhythms of frequency domain measures of heart rate variability in healthy subjects and patients with coronary artery disease. Effects of arousal and upright posture. Circulation 1994, 90, 121–126. [Google Scholar] [CrossRef]
- Aronson, D.; Weinrauch, L.; D’Elia, J.A.; Tofler, G.H.; Burger, A.J. Circadian patterns of heart rate variability, fibrinolytic activity, and haemostatic factors in type I diabetes mellitus with cardiac autonomic neuropathy. Am. J. Cardiol. 1999, 84, 449–453. [Google Scholar] [CrossRef]
- Furlan, R.; Guzzetti, S.; Crivellaro, W.; Dessi, S.; Tinelli, M.; Baselli, G.; Cerutti, S.; Lombardi, F.; Pagani, M.; Malliani, A. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation 1990, 81, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Huikuri, H.V.; Kessler, K.M.; Terracall, E.; Castellanos, A.; Linnaluoto, M.K.; Myerburk, R.J. Reproducibility and circadian rhythm of heart rate variability in healthy subjects. Am. J. Cardiol. 1990, 65, 391–393. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Linnaluoto, M.K.; Seppanen, T.; Airaksinen, K.E.J.; Kesler, K.M.; Takkunen, J.T.; Myerburg, R.J. Heart rate variability and its circadian rhythm in survivors of cardiac arrest. Am. J. Cardiol. 1992, 70, 610–615. [Google Scholar] [CrossRef]
- Mulcahy, D.A.; Quyyumi, A.A. Clinical implications of circadian rhythms detected by ambulatory monitoring techniques. In Non-Invasive Electrocardiology-Clinical Aspects of Holter Monitoring; Moss, A.J., Stern, S., Eds.; WB Saunders and Co.: London, UK, 1996; pp. 493–508. [Google Scholar]
- Otzenberger, H.; Gronfier, C.; Simon, C.; Charloux, A.; Ehrhart, J.; Piquard, F.; Brandenberger, G. Dynamic heart rate variability: A tool for exploring sympathovagal balance continuously during sleep in men. Am. J. Physiol. 1998, 275, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Busek, P.; Vankova, J.; Opavsky, J.; Salinger, J.; Nevsimalova, S. Spectral analysis of the heart rate variability in sleep. Physiol. Res. 2005, 2005 54, 369–376. [Google Scholar]
- Vigo, D.E.; Dominguez, J.; Guinjoan, S.M.; Scaramal, M.; Ruffa, E.; Solernó, J.; Siri, L.N.; Cardinali, D.P. Nonlinear analysis of heart rate variability within independent frequency components during the sleep-wake cycle. Auton. Neurosci. 2010, 154, 84–88. [Google Scholar] [CrossRef]
- Borresen, J.; Lambert, M.I. Autonomic control of heart rate during and after exercise: Measurements and implications for monitoring training status. Sports Med. 2008, 38, 633–646. [Google Scholar] [CrossRef]
- Plews, D.J.; Laursen, P.B.; Stanley, J.; Kilding, A.E.; Buchheit, M. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Med. 2013, 43, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Perini, R.; Veicsteinas, A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur. J. Appl. Physiol. 2003, 90, 317–325. [Google Scholar] [CrossRef]
- Arai, Y.; Saul, J.P.; Albrecht, P.; Hartley, L.H.; Lilly, L.S.; Cohen, R.J.; Colucci, W.S. Modulation of cardiac autonomic activity during and immediately after exercise. Am. J. Physiol. 1989, 256, H132–H141. [Google Scholar] [CrossRef] [PubMed]
- Baselli, G.; Cerutti, S.; Interdonato, T.; Orizio, C.; Perini, R.; Veicsteinas, A. Heart rate variability during exercise in sedentary subjects and athletes. In Proceedings of the Computers in Cardiology, Washington, DC, USA, 25–28 September 1988; IEEE Computer Society: Washington, DC, USA, 1989; pp. 319–322. [Google Scholar]
- Gronwald, T.; Hoos, O.; Hottenrott, K. Effects of a short-term cycling interval session and active recovery on non-linear dynamics of cardiac autonomic activity in endurance trained cyclists. J. Clin. Med. 2019, 8, 194. [Google Scholar] [CrossRef]
- Hautala, A.; Tulppo, M.P.; Makikallio, T.H.; Laukkanen, R.; Nissila, S.; Huikuri, H.V. Changes in cardiac autonomic regulation after prolonged maximal exercise. Clin. Physiol. 2001, 21, 238–245. [Google Scholar] [CrossRef]
- Myllymäki, T.; Rusko, H.; Syväoja, H.; Juuti, T.; Kinnunen, M.L.; Kyröläinen, H. Effects of exercise intensity and duration on nocturnal heart rate variability and sleep quality. Eur. J. Appl. Physiol. 2012, 112, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Al Haddad, H.; Laursen, P.B.; Ahmaidi, S.; Buchheit, M. Nocturnal heart rate variability following supramaximal intermittent exercise. Int. J. Sports Physiol. Perform. 2009, 4, 435–447. [Google Scholar] [PubMed]
- Bonato, M.; Meloni, A.; Merati, G.; la Torre, A.; Agnello, L.; Vernillo, G. Effect of repeated-sprints on the reliability of short-term parasympathetic reactivation. PLoS ONE 2018, 13, e0192231. [Google Scholar] [CrossRef]
- Imai, K.; Sato, H.; Hori, M.; Kusuoka, H.; Ozaki, H.; Yokoyama, H.; Takeda, H.; Inoue, M.; Kamada, T. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J. Am. Coll. Cardiol. 1994, 24, 1529–1535. [Google Scholar] [CrossRef] [Green Version]
- Bosquet, L.; Merkari, S.; Arvisais, D.; Aubert, A.E. Is heart rate a convenient tool to monitor over-reaching? A systematic review of the literature. Br. J. Sports Med. 2008, 42, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Gisselman, A.S.; Baxter, G.D.; Wright, A.; Hegedus, E.; Tumilty, S. Musculoskeletal overuse injuries and heart rate variability: Is there a link? Med. Hypotheses 2016, 87, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Barger, L.K.; Wright, K.P.J.; Hughes, R.J.; Czeisler, C.A. Daily exercise facilitates phase delays of circadian melatonin rhythm in very dim light. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R1077–R1084. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Hashimoto, S.; Masubuchi, S.; Honma, S.; Honma, K. Phase advance shifts of human circadian pacemaker are accelerated by daytime physical exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R197–R205. [Google Scholar] [CrossRef]
- Yamanaka, Y.; Hashimoto, S.; Takasu, N.N.; Tanahashi, Y.; Nishide, S.Y.; Honma, S.; Honma, K. Morning and evening physical exercise differentially regulate the autonomic nervous system during nocturnal sleep in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R1112–R1121. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.G.; Kenny, G.P.; Green, G.; Seely, A.J. Diurnal variation in heart rate variability before and after maximal exercise testing. Chronobiol. Int. 2011, 28, 344–351. [Google Scholar] [CrossRef]
- Prodel, E.; Peçanha, T.; Silva, L.P.D.; Paula, R.B.; Martinez, D.G.; Lima, J.R.P.; Laterza, M.C. Different times of day do not change heart rate variability recovery after light exercise in sedentary subjects: 24 hours Holter monitoring. Chronobiol. Int. 2017, 34, 1354–1365. [Google Scholar] [CrossRef] [PubMed]
- Nebel, L.E.; Howell, R.H.; Krantz, D.S.; Falconer, J.J.; Gottdiener, J.S.; Gabbay, F.H. The circadian variation of cardiovascular stress levels and reactivity: Relationship to individual differences in morningness/eveningness. Psychophysiology 1996, 33, 273–281. [Google Scholar] [CrossRef]
- Willis, T.A.; O’Connor, D.B.; Smith, L. The influence of morningness–eveningness on anxiety and cardiovascular responses to stress. Physiol. Behav. 2005, 85, 125–133. [Google Scholar] [CrossRef]
- Roeser, K.; Obergfell, F.; Meule, A.; Vögele, C.; Schlarb, A.A.; Kübler, A. Of larks and hearts-morningness/eveningness, heart rate variability and cardiovascular stress response at different times of day. Physiol. Behav. 2012, 106, 151–157. [Google Scholar] [CrossRef]
- Sugawara, J.; Hamada, Y.; Nishijima, T.; Matsuda, M. Diurnal variations of post-exercise parasympathetic nervous reactivation in different chronotypes. Jpn. Heart J. 2001, 42, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Bonato, M.; Agnello, L.; Galasso, L.; Montaruli, A.; Roveda, E.; Merati, G.; la Torre, A.; Vitale, J.A. Acute modification of cardiac autonomic function of high-intensity interval training in collegiate male soccer players with different chronotype: A cross-over study. J. Sports Sci. Med. 2017, 16, 286–294. [Google Scholar] [PubMed]
- Vitale, J.A.; Bonato, M.; Galasso, L.; la Torre, A.; Merati, G.; Montaruli, A.; Roveda, E.; Carandente, F. Sleep quality and high intensity interval training at two different times of day: A crossover study on the influence of the chronotype in male collegiate soccer players. Chronobiol. Int. 2017, 34, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Vitale, J.A.; Banfi, G.; Galbiati, A.; Ferini-Strambi, L.; la Torre, A. Effect of a night game on actigraphy-based sleep quality and perceived recovery in top-level volleyball athletes. Int. J. Sports Physiol. Perform. 2019, 14, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Vitale, J.A.; la Torre, A.; Banfi, G. If RAR’s acrophase is influenced by the sport discipline, how actigraphy-based sleep parameters vary in triathlon, volleyball and soccer athletes? Chronobiol. Int. 2019, 36, 735–738. [Google Scholar] [CrossRef]
Study | Participants | Intervention | Outcome Measure |
---|---|---|---|
Arai et al. [80] | 43 healthy subjects 8 patients with severe congestive heart failure 6 patients with post cardiac transplantation | Graded-work load exercise on a cycle ergometer. | ↓ of autonomic modulation of HR in patients with CVD ↑ vagal activity during exercise and recovery in healthy subjects |
Baselli et al. [81] | 9 sedentary males 8 professional cyclists | Muscular exercises at different intensities on a cycle ergometer. | ↓ of LF power and ↑ of VLF power at the higher exercise level |
Gronwald et al. [82] | 16 well-trained cyclists | Interval sessions with active recovery periods. | ↓ in the overall variability ↓ in the complexity of the R-R interval fluctuations |
Hautala et al. [83] | 10 cross country skiers | 75-km cross-country skiing race. | Cardiac vagal outflow blunted for several hours after the race. The recovery time of reduced vagal outflow depends on athlete cardiorespiratory fitness. ↑ of altered autonomic modulation during the second day after the race |
Myllymäki et al. [84] | 14 male healthy subjects | 5 different running exercises on separate occasions starting at 18:00 h. | ↑ exercise intensity and/or duration cause delayed recovery of nocturnal cardiac autonomic modulation. |
Al Haddad et al. [85] | 11 healthy subjects | Series of two consecutive intermittent 15-s runs at 95% MAV interspersed with 15 s of active recovery at 45% MAV until exhaustion | Influence of exercise intensity on short- and long-term post exercise HRV recovery |
Bonato et al. [86] | 14 healthy subjects | 5 × 30 m sprints with 25-s recovery | ↑ post-exercise parasympathetic function Short-term reliability of post-exercise parasympathetic reactivation indices showed large discrepancies in markers of reliability. |
Imai, et al. [87] | 8 healthy subjects 20 patients with CVD 9 cross-country skiers | HR decay for the first 30 s and the first 120 s after six levels of exercise | Vagally mediated HR recovery after exercise is accelerated in well trained athletes but blunted in patients with chronic heart failure |
Study | Participants | Intervention | Outcome Measure |
---|---|---|---|
Yamanaka et al. [92] | 22 healthy male subjects | 2-h intermittent physical exercise on cycle ergometer at different times of the day for four consecutive days | ↑ of parasympathetic activity after morning exercise ↓ of sympathetic activity during evening exercise |
Armstrong et al. [93] | 12 young adults and 12 middle-aged healthy subjects | Maximal aerobic capacity test | The change in HRV from sleep to morning with exercise is greater in younger subjects. |
Prodel et al. [94] | 9 sedentary healthy males | 35 min of cycling exercise, at an intensity of first anaerobic threshold, at 07:00 h, 14:00 h, and 23:00 h | Morning exercise did not delay HR and HRV recovery after light aerobic cycling exercise. Exercise performed in the night changed autonomic control during sleep. |
Sugawara et al. [98] | 6 M-type and 6 E-type healthy male subjects | 3-min exercise on cycle ergometer at 80% VT performed in the morning (07:00–08:00 h and in the evening (17:00–18:00 h) | Diurnal variation in post-exercise vagal reactivation is different between the morning-type and evening-type |
Bonato et al. [99] | 6 M-type and 6 E-type soccer players | Four bouts of 4 minutes at 90–95% HRpeak with 3 min of active recovery at 50–60% HRpeak performed in the morning (08:00 h) or in the evening (20:00 h) | E-types showed lower parasympathetic tone that returned to the rest values after 24 hours of the cessation of exercise |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitale, J.A.; Bonato, M.; La Torre, A.; Banfi, G. Heart Rate Variability in Sport Performance: Do Time of Day and Chronotype Play A Role? J. Clin. Med. 2019, 8, 723. https://doi.org/10.3390/jcm8050723
Vitale JA, Bonato M, La Torre A, Banfi G. Heart Rate Variability in Sport Performance: Do Time of Day and Chronotype Play A Role? Journal of Clinical Medicine. 2019; 8(5):723. https://doi.org/10.3390/jcm8050723
Chicago/Turabian StyleVitale, Jacopo Antonino, Matteo Bonato, Antonio La Torre, and Giuseppe Banfi. 2019. "Heart Rate Variability in Sport Performance: Do Time of Day and Chronotype Play A Role?" Journal of Clinical Medicine 8, no. 5: 723. https://doi.org/10.3390/jcm8050723
APA StyleVitale, J. A., Bonato, M., La Torre, A., & Banfi, G. (2019). Heart Rate Variability in Sport Performance: Do Time of Day and Chronotype Play A Role? Journal of Clinical Medicine, 8(5), 723. https://doi.org/10.3390/jcm8050723