Age-Related Improvements in Peak Cardiorespiratory Fitness among Coronary Heart Disease Patients Following Cardiac Rehabilitation
Abstract
:1. Introduction
2. Methods
2.1. General Study Procedures
2.2. Inclusion/Exclusion Criteria
2.3. Cardiorespiratory Fitness Assessment
2.4. Cardiac Rehabilitation Exercise Prescription and Program
2.5. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Cardiorespiratory Fitness Following CR Program
4. Discussion
4.1. Cardiorespiratory Fitness, Exercise Training, and Aging
4.2. Clinical Implications in the Cardiac Rehabilitation Setting
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chodzko-Zajko, W.J.; Proctor, D.N.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. American college of sports medicine position stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Brown, A.; Ebrahim, S.; Jolliffe, J.; Noorani, H.; Rees, K.; Skidmore, B.; Stone, J.A.; Thompson, D.R.; Oldridge, N. Exercise-based rehabilitation for patients with coronary heart disease: Systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 2004, 116, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Maines, T.Y.; Lavie, C.J.; Milani, R.V.; Cassidy, M.M.; Gilliland, Y.E.; Murgo, J.P. Effects of cardiac rehabilitation and exercise programs on exercise capacity, coronary risk factors, behavior, and quality of life in patients with coronary artery disease. South. Med. J. 1997, 90, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Dunlay, S.M.; Pack, Q.R.; Thomas, R.J.; Killian, J.M.; Roger, V.L. Participation in cardiac rehabilitation, readmissions, and death after acute myocardial infarction. Am. J. Med. 2014, 127, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; Milani, R.V. Effects of cardiac rehabilitation and exercise training on exercise capacity, coronary risk factors, behavioral characteristics, and quality of life in women. Am. J. Cardiol. 1995, 75, 340–343. [Google Scholar] [CrossRef]
- Balady, G.J.; Jette, D.; Scheer, J.; Downing, J. Changes in exercise capacity following cardiac rehabilitation in patients stratified according to age and gender. Results of the Massachusetts Association of Cardiovascular and Pulmonary Rehabilitation Multicenter Database. J. Cardiopulm. Rehabil. 1996, 16, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P.D. Estimated cardiorespiratory fitness assessment as a patient vital sign. Mayo Clin. Proc. 2018, 93, 821–823. [Google Scholar] [CrossRef] [PubMed]
- Blair, S.N.; Kampert, J.B.; Kohl, H.W., 3rd; Barlow, C.E.; Macera, C.A.; Paffenbarger, R.S., Jr.; Gibbons, L.W. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. Jama 1996, 276, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Colella, T.J.; Gravely, S.; Marzolini, S.; Grace, S.L.; Francis, J.A.; Oh, P.; Scott, L.B. Sex bias in referral of women to outpatient cardiac rehabilitation? A meta-analysis. Eur. J. Prev. Cardiol. 2015, 22, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Samayoa, L.; Grace, S.L.; Gravely, S.; Scott, L.B.; Marzolini, S.; Colella, T.J. Sex differences in cardiac rehabilitation enrollment: A meta-analysis. Can. J. Cardiol. 2014, 30, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Hermann, M.; Witassek, F.; Erne, P.; Radovanovic, D.; Rickli, H. Referral for cardiac rehabilitation after acute myocardial infarction: Insights from nationwide AMIS Plus registry 2005–2017. Int. J. Cardiol. 2018, 261, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Reibis, R.; Salzwedel, A.; Buhlert, H.; Wegscheider, K.; Eichler, S.; Voller, H. Impact of training methods and patient characteristics on exercise capacity in patients in cardiovascular rehabilitation. Eur. J. Prev. Cardiol. 2016, 23, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Layne, A.S.; Hsu, F.C.; Blair, S.N.; Chen, S.H.; Dungan, J.; Fielding, R.A.; Glynn, N.W.; Hajduk, A.M.; King, A.C.; Manini, T.M.; et al. Predictors of change in physical function in older adults in response to long-term, structured physical activity: The LIFE study. Arch. Phys. Med. Rehabil. 2017, 98, 11–24.e3. [Google Scholar] [CrossRef] [PubMed]
- Kohrt, W.M.; Malley, M.T.; Coggan, A.R.; Spina, R.J.; Ogawa, T.; Ehsani, A.A.; Bourey, R.E.; Martin, W.H., 3rd; Holloszy, J.O. Effects of gender, age, and fitness level on response of VO2max to training in 60–71 yr olds. J. Appl. Physiol. 1991, 71, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Karavirta, L.; Hakkinen, K.; Kauhanen, A.; Arija-Blazquez, A.; Sillanpaa, E.; Rinkinen, N.; Hakkinen, A. Individual responses to combined endurance and strength training in older adults. Med. Sci. Sports Exerc. 2011, 43, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.D. Exercise prescription and proscription for patients with coronary artery disease. Circulation 2005, 112, 2354–2363. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, C.; Rankinen, T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 2001, 33, S446–S451, discussion S452–S453. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, C.; Sarzynski, M.A.; Rice, T.K.; Kraus, W.E.; Church, T.S.; Sung, Y.J.; Rao, D.C.; Rankinen, T. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J. Appl. Physiol. 2011, 110, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.; Lundby, C. Refuting the myth of non-response to exercise training: ‘non-responders’ do respond to higher dose of training. J. Physiol. 2017, 595, 3377–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable of Interest | Pre-CR | Post-CR |
---|---|---|
Age (years) | 62 ± 10 | - |
Sex (n, % males) | 1234 (85%) | - |
Body Mass Index (BMI, kg/m2) | 28 ± 4 | 27 ± 4 * |
Prescribed Exercise Distance (kilometers) | 2.4 ± 1.6 | 4.2 ± 1.3 * |
Prescribed Exercise Time (hours) | 0.43 ± 0.17 | 0.68 ± 0.27 * |
Resting HR (beats per minute) | 68 ± 12 | 66 ± 11 * |
Resting SBP (mm Hg) | 124 ± 16 | 123 ± 15 * |
Resting DBP (mm Hg) | 75 ± 9 | 74 ± 9 |
Peak HR (beats per minute) | 124 ± 31 | 134 ± 22 * |
Peak SBP (mm Hg) | 168 ± 24 | 174 ± 23 * |
Peak DBP (mm Hg) | 76 ± 10 | 75 ± 9 * |
Peak Oxygen Consumption (mL/kg/min) | 21.1 ± 6.3 | 26.5 ± 7.9 * |
Peak Respiratory Exchange Ratio | 1.15 ± 0.08 | 1.17 ± 0.08 * |
Total Cholesterol (mmol/L) | 3.35 ± 0.84 (n = 928) | 3.40 ± 0.81 (n = 572) |
High-Density Lipoprotein (mmol/L) | 1.11 ± 0.30 | 1.28 ± 1.24 * |
Low-Density Lipoprotein (LDL) Cholesterol (mmol/L) | 1.68 ± 0.64 (n = 917) | 1.66 ± 0.63 (n = 562) |
Triglyceride (mmol/L) | 1.29 ± 0.64 (n = 686) | 1.17 ± 0.62 (n = 357) |
Fasting Blood Glucose (mmol/L) | 5.76 ± 1.18 (n = 833) | 5.78 ± 1.28 (n = 547) |
Glycosylated Hemoglobin (A1C, %) | 5.9 ± 0.7 (n = 716) | 5.9 ± 0.7 (n = 466) |
Age Category | 1 (30–39 Years Old) (n = 30) | 2 (40–49 Years Old) (n = 129) | 3 (50–59 Years Old) (n = 392) | 4 (60–69 Years Old) (n = 541) | 5 (70–79 Years Old) (n = 292) | 6 (80–90 Years Old) (n = 66) |
---|---|---|---|---|---|---|
Patient Demographics | ||||||
Age (years) | 35.9 ± 2.9 | 45.5 ± 3.1 | 55.1 ± 2.8 | 64.6 ± 2.8 | 73.8 ± 2.7 | 82.6 ± 2.5 |
Sex, n (% males) | 27 (90) | 118 (92) | 349 (89) | 460 (85) | 228 (78) | 54 (82) |
Cardiorespiratory Fitness Assessment Prior to Cardiac Rehabilitation (Pre-CR) | ||||||
Body Mass Index (kg/m2) | 28.7 ± 9.2 | 28.1 ± 5.0 | 27.7 ± 4.4 | 27.6 ± 4.3 | 27.0 ± 4.2 | 26.1 ± 3.5 |
Resting HR (beats per minute) | 70 ± 12 | 71 ± 12 | 69 ± 12 | 68 ± 12 | 67 ± 12 | 65 ± 12 |
Resting SBP (mm Hg) | 113 ± 13 | 116 ± 15 | 121 ± 15 | 125 ± 15 | 128 ± 17 | 131 ± 17 |
Resting DBP (mm Hg) | 74 ± 10 | 76 ± 9 | 76 ± 9 | 75 ± 9 | 73 ± 9 | 71 ± 9 |
Prescribed Exercise Distance (kilometers) | 2.85 ± 1.28 | 2.60 ± 0.96 | 2.66 ± 1.88 | 2.38 ± 1.79 | 1.99 ± 0.94 | 1.68 ± 0.70 |
Prescribed Exercise Time (hours) | 0.66 ± 0.15 | 0.76 ± 0.64 | 0.89 ± 0.18 | 0.69 ± 0.20 | 0.64 ± 0.22 | 0.58 ± 0.19 |
Prescribed Exercise Speed (km/hour) | 5.78 ± 0.72 | 5.69 ± 0.79 | 5.50 ± 0.70 | 5.23 ± 0.78 | 4.73 ± 0.93 | 4.22 ± 0.83 |
Peak HR (beats per minute) | 141 ± 22 | 136 ± 19 | 131 ± 20 | 122 ± 19 | 113 ± 19 | 101 ± 17 |
Peak SBP (mm Hg) | 160 ± 23 | 163 ± 27 | 170 ± 21 | 169 ± 23 | 168 ± 26 | 164 ± 22 |
Peak DBP (mm Hg) | 75 ± 8 | 78 ± 10 | 78 ± 10 | 79 ± 10 | 78 ± 9 | 71 ± 10 |
Peak Oxygen Consumption (mL/kg/min) | 26.3 ± 8.9 | 24.6 ± 6.0 | 23.3 ± 6.2 | 21.0 ± 5.7 | 17.6 ± 5.3 | 15.4 ± 3.9 |
Peak Respiratory Exchange Ratio | 1.16 ± 0.08 | 1.16 ± 0.08 | 1.15 ± 0.07 | 1.16 ± 0.10 | 1.14 ± 0.09 | 1.13 ± 0.07 |
Cardiorespiratory Fitness Assessment Following Cardiac Rehabilitation (Post-CR) | ||||||
Body Mass Index (kg/m2) | 28.1 ± 8.2 | 27.8 ± 5.0 | 27.5 ± 4.6 | 27.4 ± 4.3 | 26.7 ± 3.7 | 25.7 ± 3.1 |
Resting HR (beats per minute) | 70 ± 11 | 69 ± 11 | 67 ± 12 | 65 ± 11 | 65 ± 11 | 62 ± 10 |
Resting SBP (mmHg) | 118 ± 11 | 116 ± 14 | 121 ± 15 | 124 ± 15 | 127 ± 15 | 127 ± 17 |
Resting DBP (mmHg) | 75 ± 8 | 75 ± 9 | 76 ± 8 | 74 ± 9 | 72 ± 9 | 70 ± 9 |
Prescribed Exercise Distance (kilometers) | 4.53 ± 1.22 | 4.60 ± 1.03 | 4.38 ± 1.09 | 4.15 ± 1.16 | 3.53 ± 1.26 | 2.90 ± 0.95 |
Prescribed Exercise Time (hours) | 0.47 ± 0.21 | 0.45 ± 0.14 | 0.46 ± 0.17 | 0.43 ± 0.16 | 0.40 ± 0.16 | 0.38 ± 0.13 |
Prescribed Exercise Speed (km/hour) | 6.56 ± 1.05 | 6.43 ± 0.91 | 6.12 ± 0.92 | 5.71 ± 0.93 | 5.08 ± 0.94 | 4.55 ± 0.682 |
Peak HR (beats per minute) | 158 ± 15 | 152 ± 17 | 143 ± 18 | 132 ± 19 | 125 ± 55 | 106 ± 16 |
Peak SBP (mm Hg) | 160 ± 23 | 171 ± 24 | 177 ± 23 | 175 ± 22 | 173 ± 22 | 166 ± 25 |
Peak DBP (mm Hg) | 74 ± 9 | 76 ± 9 | 77 ± 8 | 78 ± 10 | 77 ± 9 | 85 ± 11 |
Peak Respiratory Exchange Ratio | 1.19 ± 0.09 | 1.17 ± 0.08 | 1.17 ± 0.08 | 1.17 ± 0.08 | 1.16 ± 0.08 | 1.17 ± 0.08 |
Peak Oxygen Consumption (mL/kg/min) | 35.9 ± 8.9 * | 32.3 ± 7.6 * | 29.5 ± 7.4 * | 26.3 ± 6.8 * | 21.3 ± 5.8 * | 18.4 ± 4.2 * |
Percent Change in Relative VO2peak | 42 ± 31 | 35 ± 31 | 29 ± 24 | 27 ± 23 | 24 ± 21 | 21 ± 18 |
Characteristics (n = 1450) | Mean ± SD or % | Association with ΔVO2peak (β) | Sig. (p) |
---|---|---|---|
Baseline VO2peak (mL/kg/min) | 21.1 ± 6.3 | −0.456 | 0.000 |
Change in Prescribed Exercise Speed (km/hr) | 0.1 ± 0.1 | 0.254 | 0.000 |
Age (years) | 62 ± 10 | −0.286 | 0.000 |
BMI (kg/m2) | 28 ± 4 | −0.172 | 0.000 |
Male Sex (%) | 85% | 0.153 | 0.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banks, L.; Cacoilo, J.; Carter, J.; Oh, P.I. Age-Related Improvements in Peak Cardiorespiratory Fitness among Coronary Heart Disease Patients Following Cardiac Rehabilitation. J. Clin. Med. 2019, 8, 310. https://doi.org/10.3390/jcm8030310
Banks L, Cacoilo J, Carter J, Oh PI. Age-Related Improvements in Peak Cardiorespiratory Fitness among Coronary Heart Disease Patients Following Cardiac Rehabilitation. Journal of Clinical Medicine. 2019; 8(3):310. https://doi.org/10.3390/jcm8030310
Chicago/Turabian StyleBanks, Laura, Joseph Cacoilo, Jasmine Carter, and Paul I. Oh. 2019. "Age-Related Improvements in Peak Cardiorespiratory Fitness among Coronary Heart Disease Patients Following Cardiac Rehabilitation" Journal of Clinical Medicine 8, no. 3: 310. https://doi.org/10.3390/jcm8030310
APA StyleBanks, L., Cacoilo, J., Carter, J., & Oh, P. I. (2019). Age-Related Improvements in Peak Cardiorespiratory Fitness among Coronary Heart Disease Patients Following Cardiac Rehabilitation. Journal of Clinical Medicine, 8(3), 310. https://doi.org/10.3390/jcm8030310