Association between Negatively Charged Low-Density Lipoprotein L5 and Subclinical Atherosclerosis in Rheumatoid Arthritis Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population.
2.2. Determination of Plasma Lipid Profiles and Atherogenic index (AI)
2.3. Measurement of 10-Year Risk of CVD (QRISK-2 Score)
2.4. Isolation and Fractionation of LDL-C
2.5. Anion-Exchange Chromatography Purification of LDL-C Subfractions
2.6. Agarose Gel Electrophoresis of LDL-C Subfractions
2.7. Determination of Protein Expression with Immunoblotting
2.8. Cell Culture
2.9. LOX-1 and LDLR Protein Expression in THP-1 Cells Treated with L1 or L5
2.10. Ultrasound Vascular Imaging of Carotid Arteries
2.11. Statistical Analysis
3. Results
3.1. Clinical Characteristics of RA Patients
3.2. Comparison of Lipid Profiles, QRISK-2 Scores, and AI among RA Patients with or without Subclinical Atherosclerosis and Healthy Controls
3.3. Increased Plasma L5% and L5 Levels in RA Patients
3.4. The Change of Plasma L5% and L5 Levels in RA Patients after 6-Month Therapy
3.5. Increased Expression of LOX-1 in the PBMCs from RA Patients
3.6. Correlation of Plasma L5% and L5 Levels with the Extent of Atherosclerosis, LOX-1 Expression or RA Disease Activity
3.7. Multivariate Logistic Regression and ROC Curve Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2045–2051. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.H.; Panayi, G.S. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 2001, 344, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature 2003, 423, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Avina-Zubieta, J.A.; Thomas, J.; Sadatsafavi, M.; Lehman, A.J.; Lacaille, D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann. Rheum. Dis. 2012, 71, 1524–1529. [Google Scholar] [CrossRef] [PubMed]
- Symmons, D.P.; Gabriel, S.E. Epidemiology of CVD in rheumatic disease, with a focus on RA and SLE. Nat. Rev. Rheumatol. 2011, 7, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.; Ganeshalingam, K.; Semb, A.G.; Szekanecz, Z.; Nurmohamed, M. Cardiovascular risk in rheumatoid arthritis: recent advances in the understanding of the pivotal role of inflammation, risk predictors and the impact of treatment. Rheumatology 2014, 53, 2143–2154. [Google Scholar] [CrossRef]
- Im, C.H.; Kim, N.R.; Kang, J.W.; Kim, J.H.; Kang, J.Y.; Bae, G.B.; Nam, E.J.; Kang, Y.M. Inflammatory burden interacts with conventional cardiovascular risk factors for carotid plaque formation in rheumatoid arthritis. Rheumatology 2015, 54, 808–815. [Google Scholar] [CrossRef]
- Myasoedova, E.; Crowson, C.S.; Kremers, H.M.; Roger, V.L.; Fitz-Gibbon, P.D.; Therneau, T.M.; Gabriel, S.E. Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann. Rheum. Dis. 2011, 70, 482–487. [Google Scholar] [CrossRef]
- Chen, D.Y.; Chen, Y.M.; Hsieh, T.Y.; Hsieh, C.W.; Lin, C.C.; Lan, J.L. Significant effects of biologic therapy on lipid profiles and insulin resistance in patients with rheumatoid arthritis. Arthritis. Res. Ther. 2015, 17, 52. [Google Scholar] [CrossRef]
- Avogaro, P.; Bon, G.B.; Cazzolato, G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis 1988, 8, 79–87. [Google Scholar] [CrossRef]
- Niccoli, G.; Baca, M.; De Spirito, M.; Parasassi, T.; Cosentino, N.; Greco, G.; Conte, M.; Montone, R.A.; Arcovito, G.; Crea, F. Impact of electronegative low-density lipoprotein on angiographic coronary atherosclerotic burden. Atherosclerosis 2012, 223, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Jiang, T.; Yang, J.H.; Jiang, W.; Lu, J.; Marathe, G.K.; Pownall, H.J.; Ballantyne, C.M.; McIntyre, T.M.; Henry, P.D.; et al. CY Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation 2013, 107, 2102–2108. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Jiang, W.; Yang, J.H.; Chang, P.Y.; Walterscheid, J.P.; Chen, H.H.; Marcelli, M.; Tang, D.; Lee, Y.T.; Liao, W.S.; et al. Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes 2008, 57, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Raya, J.L.; Chen, H.H.; Chen, C.H.; Abe, Y.; Pownall, H.J.; Taylor, A.A.; Smith, C.V. Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler. Thromb. Vasc. Biol. 2013, 23, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Mello, A.P.; da Silva, I.T.; Abdalla, D.S.; Damasceno, N.R. Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis 2011, 215, 257–265. [Google Scholar] [CrossRef]
- Sawamura, T.; Kume, N.; Aoyama, T.; Moriwaki, H.; Hoshikawa, H.; Aiba, Y.; Tanaka, T.; Miwa, S.; Katsura, Y.; Kita, T.; et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 1997, 386, 73–77. [Google Scholar] [CrossRef]
- Lu, J.; Yang, J.H.; Burns, A.R.; Chen, H.H.; Tang, D.; Walterscheid, J.P.; Suzuki, S.; Yang, C.Y.; Sawamura, T.; Chen, C.H. Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ. Res. 2009, 104, 619–627. [Google Scholar] [CrossRef]
- Chen, C.Y.; Hsu, H.C.; Lee, A.S.; Tang, D.; Chow, L.P.; Yang, C.Y.; Chen, H.; Lee, Y.T.; Chen, C.H. The most negatively charged low-density lipoprotein L5 induces stress pathways in vascular endothelial cells. J. Vasc. Res. 2012, 49, 329–341. [Google Scholar] [CrossRef]
- Takanabe-Mori, R.; Ono, K.; Wada, H.; Takaya, T.; Ura, S.; Yamakage, H.; Satoh-Asahara, N.; Shimatsu, A.; Takahashi, Y.; Fujita, M.; Fujita, Y.; et al. Lectin-like oxidized low-density lipoprotein receptor-1 plays an important role in vascular inflammation in current smokers. J. Atheroscler. Thromb. 2013, 20, 585–590. [Google Scholar] [CrossRef]
- Ishino, S.; Mukai, T.; Kume, N.; Asano, D.; Ogawa, M.; Kuge, Y.; Minami, M.; Kita, T.; Shiomi, M.; Saji, H. Lectin-like oxidized LDL receptor-1 (LOX-1) expression is associated with atherosclerotic plaque instability--analysis in hypercholesterolemic rabbits. Atherosclerosis 2007, 195, 48–56. [Google Scholar] [CrossRef]
- Kataoka, H.; Kume, N.; Miyamoto, S.; Minami, M.; Moriwaki, H.; Murase, T.; Sawamura, T.; Masaki, T.; Hashimoto, N.; Kita, T. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation 1999, 99, 3110–3117. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.L.; Sanada, N.; Hu, C.P.; Chen, J.; Dandapat, A.; Sugawara, F.; Satoh, H.; Inoue, K.; Kawase, Y.; Jishage, K.; et al. Deletion of LOX-1 reduces atherogenesis in LDLR knockout mice fed high cholesterol diet. Circ. Res. 2007, 100, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Agca, R.; Heslinga, S.C.; Rollefstad, S.; Heslinga, M.; McInnes, I.B.; Peters, M.J.; Kvien, K.; Dougados, M.; Radner, H.; Atzeni, F.; et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 2017, 76, 17–28. [Google Scholar] [CrossRef]
- Corrales, A.; Gonzalez-Juanatey, C.; Peiro, M.E.; Blanco, R.; Llorca, J.; Gonzalez-Gay, M.A. Carotid ultrasound is useful for the cardiovascular risk stratification of patients with rheumatoid arthritis: results of a population-based study. Ann. Rheum. Dis. 2014, 73, 722–727. [Google Scholar] [CrossRef]
- Evans, M.R.; Escalante, A.; Battafarano, D.F.; Freeman, G.L.; O’Leary, D.H.; del Rincon, I. Carotid atherosclerosis predicts incident acute coronary syndromes in rheumatoid arthritis. Arthritis Rheum. 2011, 63, 1211–1220. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Prevoo, M.L.; van ’t Hof, M.A.; Kuper, H.H.; van Leeuwen, M.A.; van de Putte, L.B.; van Riel, P. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995, 38, 44–48. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Coupland, C.; Vinogradova, Y.; Robson, J.; Minhas, R.; Sheikh, A.; Brindle, P. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008, 336, 1475–1482. [Google Scholar] [CrossRef]
- ClinRisk Ltd. Welcome to the QRISK®2-2017 risk calculator. 2007. Available online: https://www.qrisk.org (accessed on 1 May 2017).
- D’Agostino, R.B.S.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef]
- Eric, J. Topol, Medscape 1994. Framingham 10 Year Risk of General Cardiovascular Disease (2008 paper). Available online: https://reference.medscape.com/calculator/framingham-cardiovascular-disease-risk (accessed on 16 June 2015).
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Boyer, J.F.; Gourraud, P.A.; Cantagrel, A.; Davignon, J.L.; Constantin, A. Traditional cardiovascular risk factors in rheumatoid arthritis: A meta-analysis. Joint Bone Spine 2011, 78, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.T.; Wang, G.J.; Kuo, C.C.; Hsieh, J.Y.; Lee, A.S.; Chang, C.M.; Wang, C.C.; Shen, M.Y.; Huang, C.C.; Sawamura, T.; et al. Electronegative low-density lipoprotein increases coronary artery disease risk in uremia ratients on maintenance hemodialysis. Medicine 2016, 95, e2265. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Quesada, J.L.; Benitez, S.; Ordonez-Llanos, J. Electronegative low-density lipoprotein. Curr. Opin. Lipidol. 2004, 15, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Rigla, M.; Sánchez-Quesada, J.L.; Ordóñez-Llanos, J.; Prat, T.; Caixas, A.; Jorba, O.; Serra, J.R.; de Leiva, A.; Perez, A. Effect of physical exercise on lipoprotein(a) and low-density lipoprotein modifications in type 1 and type 2 diabetic patients. Metabolism 2000, 49, 640–647. [Google Scholar] [CrossRef]
- Lindhardsen, J.; Ahle, O.-O.; Gislason, G.H.; Madsen, O.R.; Olesen, J.B.; Torp-Pedersen, C.; Hansen, P.R. The risk of myocardial infarction in rheumatoid arthritis and diabetes mellitus: a Danish nationwide cohort study. Ann. Rheum. Dis. 2011, 70, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.P.; Giles, J.T.; Kronmal, R.A.; Post, W.S.; Gelber, A.C.; Petri, M.; Szklo, M.; Detrano, R.; Budoff, M.J.; Blumenthal, R.S.; et al. Progression of coronary artery atherosclerosis in rheumatoid arthritis: comparison with participants from the Multi-Ethnic Study of Atherosclerosis. Arthritis Res. Ther. 2013, 15, R134. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.T.; Shen, M.Y.; Lee, A.S.; Wang, C.C.; Chen, W.Y.; Chang, C.M.; Chang, K.C.; Stancel, N.; Chen, C.H. Electronegative low-density lipoprotein increases the risk of ischemic lower-extremity peripheral artery disease in uremia patients on maintenance hemodialysis. Sci. Rep. 2017, 7, 4654. [Google Scholar] [CrossRef]
- Wagan, A.A.; Mahmud, T.E.; Rasheed, A.; Zafar, Z.A.; Rehman, A.U.; Ali, A. Cardiovascular risk score in rheumatoid arthritis. Pak. J. Med. Sci. 2016, 32, 534–538. [Google Scholar] [CrossRef]
- Ishikawa, M.; Ito, H.; Akiyoshi, M.; Kume, N.; Yoshitomi, H.; Mitsuoka, H.; Tanida, S.; Murata, K.; Shibuya, H.; Kasahara, T.; et al. Lectin-like oxidized low-density lipoprotein receptor 1 signal is a potent biomarker and therapeutic target for human rheumatoid arthritis. Arthritis Rheum. 2012, 64, 1024–1034. [Google Scholar] [CrossRef]
- Ke, L.Y.; Engler, D.A.; Lu, J.; Matsunami, R.K.; Chan, H.C.; Wang, G.J.; Yang, C.Y.; Chang, J.G.; Chen, C.H. Chemical composition-oriented receptor selectivity of L5, a naturally occurring atherogenic low-density lipoprotein. Pure Appl. Chem. 2011, 83. [Google Scholar] [CrossRef]
- Chu, C.S.; Ke, L.Y.; Chan, H.C.; Chen, C.C.; Cheng, K.H. Four statin benefit groups defined by the 2013 ACC/AHA new cholesterol guideline are characterized by increased plasma level of electronegative low-density lipoprotein. Acta Cardiol. Sin. 2016, 32, 667–675. [Google Scholar] [PubMed]
RA with Subclinical Atherosclerosis (n = 30) | RA without Subclinical Atherosclerosis (n = 34) | Healthy Controls (n = 12) | |
---|---|---|---|
Median age at entry, years | 63.5 ± 9.1 b | 56.6 ± 11.5 | 55.1 ± 6.5 |
Women | 23 (76.7%) | 27 (79.4%) | 9 (75.0%) |
Duration of RA, months | 81.8 ± 20.5 | 72.3±22.6 | NA |
Body mass index, kg/m2 | 23.0 ± 2.8 | 21.7 ± 3.0 | 21.4 ± 2.3 |
RF positivity | 21 (70.0%) | 22 (64.7%) | NA |
ACPA positivity | 19 (63.3%) | 21 (61.8%) | NA |
ESR at entry, mm/1st hour | 18.0 ± 12.6 | 18.0 ± 20.2 | NA |
CRP at entry, mg/dL | 0.52 ± 0.53 | 0.42 ± 0.67 | NA |
DAS28 at entry | 3.50 ± 0.89 | 3.52 ± 1.29 | NA |
Daily steroid dose, mg/day | 3.8 ± 1.6 | 4.0 ± 2.3 | NA |
csDMARDs used at entry | NA | ||
Methotrexate | 25 (83.3%) | 28 (82.4%) | NA |
Sulfasalazine | 14 (46.7%) | 15 (44.1%) | NA |
Hydroxychloroquine | 12 (40.0%) | 13 (38.2%) | NA |
Biologics used at entry | |||
TNF-α inhibitors | 10 (33.3%) | 12 (35.3%) | NA |
IL-6 receptor inhibitor | 8 (26.7%) | 10 (29.4%) | NA |
Rituximab | 2 (6.7%) | 2 (5.9%) | NA |
Hypertension | 15 (50.0%) † | 7 (20.6%) | 1 (8.3%) |
Diabetes mellitus | 5 (16.7%) | 2 (5.9%) | 0 (0.0%) |
Current smoker | 4 (13.3%) | 4 (11.8%) | 1 (8.3%) |
Total cholesterol, mg/dL | 219 (193–245) | 225 (201–247) | 208 (201–231) |
HDL-C, mg/dL | 58.5 (48.0–66.0) | 72.5 (56.8–86.0) c | 59.0 (46.3–77.8) |
Triglyceride, mg/dL | 123 (87–170) | 94 (67.5–145) | 90 (72.8–126) |
LDL-C, mg/dL | 142 (111–168) | 148 (106–154) | 131 (120–155) |
Atherogenic index | 3.8 (2.8–4.7) | 3.1 (2.6–3.9) | 3.5 (2.9–4.8) |
QRISK-2 scores | 9.3 (5.5–14.0) d | 5.4 (2.3–8.7) | 3.8 (2.9–5.0) |
Framingham score (%) | 13.4 (8.5–19.4) e | 5.4 (3.8–5.4) | 3.6 (2.5–5.0) |
CVD events | 3 (10.0%) f | 0 (0.0%) | 0 (0.0%) |
Plasma LDL-C Levels | LDLR Expression | Plasma L5% | Plasma L5 Levels | LOX-1 Expression | |
---|---|---|---|---|---|
Right ccIMT, mm | 0.217 | 0.150 | 0.537 b | 0.611 b | 0.457 b |
Left ccIMT, mm | 0.245 | 0.223 | 0.457 b | 0.540 b | 0.507 b |
QRISK-2 scores | 0.072 | 0.244 | 0.256 a | 0.278 a | 0.339 a |
Framingham score (%) | 0.160 | 0.336a | 0.107 | 0.188 | 0.251 |
Atherogenic index | 0.635 b | 0.294 a | −0.024 | 0.281 a | 0.318 a |
LDL-C levels | - | 0.181 | −0.107 | 0.298 a | 0.117 |
LDLR expression | 0.181 | - | 0.102 | 0.182 | 0.298 a |
Plasma L5% | −0.107 | 0.102 | - | 0.895b | 0.497 b |
Plasma L5 levels | 0.298 a | 0.182 | 0.895 b | - | 0.588 b |
LOX-1 expression | 0.117 | 0.298 a | 0.497 b | 0.588 b | - |
Body mass index | 0.056 | 0.108 | 0.300 a | 0.317 a | 0.458 b |
DAS28 at entry | −0.225 | −0.015 | 0.361 b | 0.254 a | 0.166 |
Risk Factors | Odds Ratio | 95% Confidence Interval | P Value |
---|---|---|---|
Univariate | |||
Age | 1.07 | 1.01–1.14 | 0.017 |
Sex (female) | 0.26 | 0.08–0.86 | 0.027 |
Body mass index | 1.17 | 0.98–1.40 | 0.085 |
Smoking | 1.15 | 0.26–5.08 | 0.850 |
Hypertension | 3.86 | 1.29–11.55 | 0.016 |
Diabetes mellitus | 3.20 | 0.57–17.89 | 0.185 |
RA duration | 1.02 | 0.997–1.05 | 0.089 |
Steroid daily dose | 0.94 | 0.74–1.21 | 0.656 |
RF positivity | 1.27 | 0.44–3.64 | 0.653 |
ACPA positivity | 1.07 | 0.39–2.95 | 0.897 |
ESR | 1.00 | 0.97–1.03 | 0.994 |
CRP | 1.30 | 0.58–3.03 | 0.505 |
DAS28 score | 0.99 | 0.63–1.54 | 0.964 |
Total cholesterol | 1.00 | 0.99–1.01 | 0.622 |
Total triglyceride | 1.01 | 0.996–1.01 | 0.285 |
HDL-C | 0.97 | 0.94–0.995 | 0.022 |
LDL-C | 1.00 | 0.99–1.00 | 0.579 |
L5% | 2.95 | 1.34–6.50 | 0.007 |
L5 levels | 1.01 | 1.002–1.01 | 0.007 |
QRISK-2 scores | 1.16 | 1.05–1.29 | 0.005 |
Atherogenic index | 1.60 | 0.96–2.65 | 0.069 |
Multivariate | |||
Age | 1.27 | 1.04–1.55 | 0.021 |
Sex (female) | 0.15 | 0.02–1.09 | 0.061 |
RA duration | 1.01 | 0.97–1.05 | 0.580 |
Hypertension | 5.21 | 0.84–32.32 | 0.076 |
HDL-C | 0.96 | 0.91–1.01 | 0.120 |
L5% | 4.94 | 1.48–16.48 | 0.009 |
L5 levels | 1.01 | 1.001–1.02 | 0.010 |
QRISK-2 scores | 0.96 | 0.92–1.01 | 0.120 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-Y.; Chen, C.-H.; Chen, Y.-M.; Hsieh, T.-Y.; Li, J.-P.; Shen, M.-Y.; Lan, J.-L.; Chen, D.-Y. Association between Negatively Charged Low-Density Lipoprotein L5 and Subclinical Atherosclerosis in Rheumatoid Arthritis Patients. J. Clin. Med. 2019, 8, 177. https://doi.org/10.3390/jcm8020177
Chang C-Y, Chen C-H, Chen Y-M, Hsieh T-Y, Li J-P, Shen M-Y, Lan J-L, Chen D-Y. Association between Negatively Charged Low-Density Lipoprotein L5 and Subclinical Atherosclerosis in Rheumatoid Arthritis Patients. Journal of Clinical Medicine. 2019; 8(2):177. https://doi.org/10.3390/jcm8020177
Chicago/Turabian StyleChang, Chun-Yu, Chu-Huang Chen, Yi-Ming Chen, Tsu-Yi Hsieh, Ju-Pi Li, Ming-Yi Shen, Joung-Liang Lan, and Der-Yuan Chen. 2019. "Association between Negatively Charged Low-Density Lipoprotein L5 and Subclinical Atherosclerosis in Rheumatoid Arthritis Patients" Journal of Clinical Medicine 8, no. 2: 177. https://doi.org/10.3390/jcm8020177
APA StyleChang, C.-Y., Chen, C.-H., Chen, Y.-M., Hsieh, T.-Y., Li, J.-P., Shen, M.-Y., Lan, J.-L., & Chen, D.-Y. (2019). Association between Negatively Charged Low-Density Lipoprotein L5 and Subclinical Atherosclerosis in Rheumatoid Arthritis Patients. Journal of Clinical Medicine, 8(2), 177. https://doi.org/10.3390/jcm8020177