Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery
Abstract
:1. Background
2. In Vitro Evidence for ELF-PEMF Effects on Bone Cells
2.1. ELF-PEMF Effects on Viability of Bone Cells
2.2. ELF-PEMF Effects on Bone Cell Growth
2.3. ELF-PEMF Effects on Bone Cell Function
3. Clinical Studies on the Effect of ELF-PEMF Treatment on Bone
3.1. ELF-PEMF Treatment for Pseudarthrosis and Non-Union Fractures
3.2. ELF-PEMF Treatment to Support Acute Fracture Healing
3.3. ELF-PEMF Treatment to Support Healing of Osteotomies
3.4. ELF-PEMF Treatment for Osteoporosis
3.5. ELF-PEMF Treatment after Spinal Fusion
3.6. ELF-PEMF Effects on Osteoarthritis
4. Conclusions
5. Search Strategy
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | alkaline phosphatase |
BMD | bone mineral density |
BMP | bone morphogenetic protein |
COL | collagen |
ECM | extracellular matrix |
ELF | extremely low frequency |
ELF-PEMF | extremely low frequency pulsed electromagnetic field |
ELF-REMF | extremely low frequency rectangular electromagnetic field |
ELF-SEMF | extremely low frequency sinusoidal electromagnetic field |
ELF-TEMF | extremely low frequency triangular electromagnetic field |
FN | fibronectin |
KOOS | knee injury and osteoarthritis outcome score |
MMP | matrix metalloproteinase |
NPDS | Northwick Park dependency score |
OP | surgery |
OR | Odds Ratio |
OSW | Oswestry disability index |
ROM | range of motion |
ROS | reactive oxygen species |
TGF-β | transforming growth factor beta |
UV | ultraviolet |
VAS | visual analogue scale |
VLF | very low frequency |
WOMAC | Western Ontario and McMaster Universities osteoarthritis index |
References
- Frost, H.M. Wolff’s law and bone’s structural adaptations to mechanical usage: An overview for clinicians. Angle Orthod. 1994, 64, 175–188. [Google Scholar]
- Friedenberg, Z.B.; Brighton, C.T. Bioelectric potentials in bone. J. Bone Jt. Surg. Am. 1966, 48, 915–923. [Google Scholar] [CrossRef]
- Bassett, C.A.; Pawluk, R.J.; Becker, R.O. Effects of electric currents on bone in vivo. Nature 1964, 204, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Bassett, C.A.; Becker, R.O. Generation of electric potentials by bone in response to mechanical stress. Science 1962, 137, 1063–1064. [Google Scholar] [CrossRef] [PubMed]
- Ahn, A.C.; Grodzinsky, A.J. Relevance of collagen piezoelectricity to “wolff’s law”: A critical review. Med. Eng. Phys. 2009, 31, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Pienkowski, D.; Pollack, S.R. The origin of stress-generated potentials in fluid-saturated bone. J. Orthop. Res. 1983, 1, 30–41. [Google Scholar] [CrossRef]
- Dunn, A.W.; Rush, G.A., 3rd. Electrical stimulation in treatment of delayed union and nonunion of fractures and osteotomies. South. Med. J. 1984, 77, 1530–1534. [Google Scholar] [CrossRef]
- Bassett, C.A. The development and application of pulsed electromagnetic fields (pemfs) for ununited fractures and arthrodeses. Orthop. Clin. N. Am. 1984, 15, 61–87. [Google Scholar]
- Kort, J.S.; Schink, M.M.; Mitchell, S.N.; Bassett, C.A. Congenital pseudoarthrosis of the tibia: Treatment with pulsing electromagnetic fields. Clin. Orthop. Relat. Res. 1982, 165, 124–137. [Google Scholar]
- Bassett, C.A.; Caulo, N.; Kort, J. Congenital “pseudarthroses” of the tibia: Treatment with pulsing electromagnetic fields. Clin. Orthop. Relat. Res. 1981, 154, 136–148. [Google Scholar] [CrossRef]
- Goodman, R.; Shirley-Henderson, A. Exposure of cells to extremely low-frequency electromagnetic fields: Relationship to malignancy? Cancer Cells 1990, 2, 355–359. [Google Scholar]
- Binhi, V.N.; Savin, A.V. Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields. Phys. Rev. E 2002, 65, 051912. [Google Scholar] [CrossRef]
- Muehsam, D.J.; Pilla, A.A. A lorentz model for weak magnetic field bioeffects: Part I—Thermal noise is an essential component of ac/dc effects on bound ion trajectory. Bioelectromagnetics 2009, 30, 462–475. [Google Scholar] [CrossRef]
- Muehsam, D.J.; Pilla, A.A. A lorentz model for weak magnetic field bioeffects: Part II—Secondary transduction mechanisms and measures of reactivity. Bioelectromagnetics 2009, 30, 476–488. [Google Scholar] [CrossRef]
- Blank, M.; Goodman, R. DNA is a fractal antenna in electromagnetic fields. Int. J. Radiat. Biol. 2011, 87, 409–415. [Google Scholar] [CrossRef]
- Foley, L.E.; Gegear, R.J.; Reppert, S.M. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2011, 2, 356. [Google Scholar] [CrossRef]
- Bawin, S.M.; Kaczmarek, L.K.; Adey, W.R. Effects of modulated vhf fields on the central nervous system. Ann. N. Y. Acad. Sci. 1975, 247, 74–81. [Google Scholar] [CrossRef]
- Heilbrunn, L.V. The electrical charges of living cells. Science 1925, 61, 236–237. [Google Scholar] [CrossRef]
- Pchelintseva, E.; Djamgoz, M.B.A. Mesenchymal stem cell differentiation: Control by calcium-activated potassium channels. J. Cell. Physiol. 2018, 233, 3755–3768. [Google Scholar] [CrossRef]
- Pall, M.L. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 2013, 17, 958–965. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, X.; Yang, T.; Mei, Y.A.; Hu, C. Exposure to extremely low-frequency electromagnetic fields inhibits t-type calcium channels via aa/lte4 signaling pathway. Cell Calcium 2014, 55, 48–58. [Google Scholar] [CrossRef]
- Wertheimer, N.; Leeper, E. Electrical wiring configurations and childhood cancer. Am. J. Epidemiol. 1979, 109, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.; Kraus, S.; Hauptman, Y.; Schiff, Y.; Seger, R. Mechanism of short-term erk activation by electromagnetic fields at mobile phone frequencies. Biochem. J. 2007, 405, 559–568. [Google Scholar] [CrossRef]
- Ehnert, S.; Fentz, A.K.; Schreiner, A.; Birk, J.; Wilbrand, B.; Ziegler, P.; Reumann, M.K.; Wang, H.; Falldorf, K.; Nussler, A.K. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of *o2(-) and h2o2. Sci. Rep. 2017, 7, 14544. [Google Scholar] [CrossRef] [PubMed]
- Blank, M.; Goodman, R. Electromagnetic fields stress living cells. Pathophysiology 2009, 16, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Chang, W.H.; Tsai, M.T.; Shih, C. Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts. Connect. Tissue Res. 2006, 47, 222–228. [Google Scholar] [CrossRef]
- Tang, Q.; Zhao, N. Effects of low frequency electromagnetic fields on osteoblasts proliferation and cell cycle. Chin. Sci. Bull. 1999, 44, 2174–2177. [Google Scholar] [CrossRef]
- Mates, J.M.; Perez-Gomez, C.; Nunez de Castro, I. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603. [Google Scholar] [CrossRef]
- Raggi, F.; Vallesi, G.; Rufini, S.; Gizzi, S.; Ercolani, E.; Rossi, R. Elf magnetic therapy and oxidative balance. Electromagn. Biol. Med. 2008, 27, 325–339. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Qu, X.; Wen, J. Effects of different extremely low-frequency electromagnetic fields on osteoblasts. Electromagn. Biol. Med. 2007, 26, 167–177. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.Q.; Ge, B.F.; Ma, X.N.; Ma, H.P.; Xian, C.J.; Chen, K.M. Different electromagnetic field waveforms have different effects on proliferation, differentiation and mineralization of osteoblasts in vitro. Bioelectromagnetics 2014, 35, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Ehnert, S.; Falldorf, K.; Fentz, A.K.; Ziegler, P.; Schroter, S.; Freude, T.; Ochs, B.G.; Stacke, C.; Ronniger, M.; Sachtleben, J.; et al. Primary human osteoblasts with reduced alkaline phosphatase and matrix mineralization baseline capacity are responsive to extremely low frequency pulsed electromagnetic field exposure—Clinical implication possible. Bone Rep. 2015, 3, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Xiaolin, H.; Tao, S. Effects of extremely low-frequency-pulsed electromagnetic field on different-derived osteoblast-like cells. Electromagn. Biol. Med. 2008, 27, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Bique, A.M.; Kaivosoja, E.; Mikkonen, M.; Paulasto-Krockel, M. Choice of osteoblast model critical for studying the effects of electromagnetic stimulation on osteogenesis in vitro. Electromagn. Biol. Med. 2016, 35, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Kaivosoja, E.; Sariola, V.; Chen, Y.; Konttinen, Y.T. The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells. J. Tissue Eng. Regen. Med. 2015, 9, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, D.T.; Huang, J.; Ma, D.; Wang, P.K. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation. J. Cell. Physiol. 2002, 190, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, C.H.; Schwartz, Z.; Liu, Y.; Li, Z.; Simon, B.J.; Sylvia, V.L.; Dean, D.D.; Bonewald, L.F.; Donahue, H.J.; Boyan, B.D. Pulsed electromagnetic fields affect phenotype and connexin 43 protein expression in mlo-y4 osteocyte-like cells and ros 17/2.8 osteoblast-like cells. J. Orthop. Res. 2003, 21, 326–334. [Google Scholar] [CrossRef]
- Tong, J.; Sun, L.; Zhu, B.; Fan, Y.; Ma, X.; Yu, L.; Zhang, J. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients. Bioelectromagnetics 2017, 38, 541–549. [Google Scholar] [CrossRef]
- Zhou, P.; He, F.; Han, Y.; Liu, B.; Wei, S. Nanosecond pulsed electric field induces calcium mobilization in osteoblasts. Bioelectrochemistry 2018, 124, 7–12. [Google Scholar] [CrossRef]
- Wu, S.; Yu, Q.; Lai, A.; Tian, J. Pulsed electromagnetic field induces ca(2+)-dependent osteoblastogenesis in c3h10t1/2 mesenchymal cells through the wnt-ca(2+)/wnt-beta-catenin signaling pathway. Biochem. Biophys. Res. Commun. 2018, 503, 715–721. [Google Scholar] [CrossRef]
- Hanna, H.; Andre, F.M.; Mir, L.M. Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields. Stem Cell Res. Ther. 2017, 8, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spadaro, J.A.; Bergstrom, W.H. In vivo and in vitro effects of a pulsed electromagnetic field on net calcium flux in rat calvarial bone. Calcif. Tissue Int. 2002, 70, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Galli, C.; Pedrazzi, G.; Guizzardi, S. The cellular effects of pulsed electromagnetic fields on osteoblasts: A review. Bioelectromagnetics 2019, 40, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Udagawa, N.; Takahashi, N.; Yoshitake, F.; Narita, H.; Ebisu, S.; Ishihara, K. A critical role for interleukin-6 family-mediated stat3 activation in osteoblast differentiation and bone formation. Bone 2006, 39, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, N.; Kugimiya, F.; Oshima, Y.; Ohba, S.; Ikeda, T.; Saito, T.; Shinoda, Y.; Kawasaki, Y.; Ogata, N.; Hoshi, K.; et al. Akt1 in osteoblasts and osteoclasts controls bone remodeling. PLoS ONE 2007, 2, e1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Rotwein, P. Akt promotes bmp2-mediated osteoblast differentiation and bone development. J. Cell Sci. 2009, 122, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Sollazzo, V.; Palmieri, A.; Pezzetti, F.; Massari, L.; Carinci, F. Effects of pulsed electromagnetic fields on human osteoblastlike cells (mg-63): A pilot study. Clin. Orthop. Relat. Res. 2010, 468, 2260–2277. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.F.; Shi, W.G.; Zhou, J.; Gao, Y.H.; Li, S.F.; Fang, Q.Q.; Wang, M.G.; Ma, H.P.; Wang, J.F.; Xian, C.J.; et al. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of bmprii localized at the base of primary cilium. Bone 2016, 93, 22–32. [Google Scholar] [CrossRef]
- Yang, H.J.; Kim, R.Y.; Hwang, S.J. Pulsed electromagnetic fields enhance bone morphogenetic protein-2 dependent-bone regeneration. Tissue Eng. Part A 2015, 21, 2629–2637. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Kim, J.H.; Yoon, S.T.; Hutton, W.C. Pulsed electromagnetic field (pemf) plus bmp-2 upregulates intervertebral disc-cell matrix synthesis more than either bmp-2 alone or pemf alone. J. Spinal Disord. Tech. 2013, 26, E221–E226. [Google Scholar] [CrossRef]
- Schwartz, Z.; Simon, B.J.; Duran, M.A.; Barabino, G.; Chaudhri, R.; Boyan, B.D. Pulsed electromagnetic fields enhance bmp-2 dependent osteoblastic differentiation of human mesenchymal stem cells. J. Orthop. Res. 2008, 26, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Selvamurugan, N.; Kwok, S.; Vasilov, A.; Jefcoat, S.C.; Partridge, N.C. Effects of bmp-2 and pulsed electromagnetic field (pemf) on rat primary osteoblastic cell proliferation and gene expression. J. Orthop. Res. 2007, 25, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Aaron, R.K.; Wang, S.; Ciombor, D.M. Upregulation of basal tgfbeta1 levels by emf coincident with chondrogenesis—Implications for skeletal repair and tissue engineering. J. Orthop. Res. 2002, 20, 233–240. [Google Scholar] [CrossRef]
- Yang, X.; He, H.; Gao, Q.; He, C. Pulsed electromagnetic field improves subchondral bone microstructure in knee osteoarthritis rats through a wnt/beta-catenin signaling-associated mechanism. Bioelectromagnetics 2018, 39, 89–97. [Google Scholar] [CrossRef]
- Zhai, M.; Jing, D.; Tong, S.; Wu, Y.; Wang, P.; Zeng, Z.; Shen, G.; Wang, X.; Xu, Q.; Luo, E. Pulsed electromagnetic fields promote in vitro osteoblastogenesis through a wnt/beta-catenin signaling-associated mechanism. Bioelectromagnetics 2016, 37, 152–162. [Google Scholar] [CrossRef]
- Lin, C.C.; Lin, R.W.; Chang, C.W.; Wang, G.J.; Lai, K.A. Single-pulsed electromagnetic field therapy increases osteogenic differentiation through wnt signaling pathway and sclerostin downregulation. Bioelectromagnetics 2015, 36, 494–505. [Google Scholar] [CrossRef]
- Jing, D.; Li, F.; Jiang, M.; Cai, J.; Wu, Y.; Xie, K.; Wu, X.; Tang, C.; Liu, J.; Guo, W.; et al. Pulsed electromagnetic fields improve bone microstructure and strength in ovariectomized rats through a wnt/lrp5/beta-catenin signaling-associated mechanism. PLoS ONE 2013, 8, e79377. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; He, H.; Yang, L.; Chen, S.; Guo, H.; Xia, L.; Liu, H.; Qin, Y.; Liu, C.; Wei, X.; et al. Effects of pulsed electromagnetic fields on bone mass and wnt/beta-catenin signaling pathway in ovariectomized rats. Arch. Med. Res. 2012, 43, 274–282. [Google Scholar] [CrossRef]
- Wheway, G.; Nazlamova, L.; Hancock, J.T. Signaling through the primary cilium. Front. Cell Dev. Biol. 2018, 6, 8. [Google Scholar] [CrossRef]
- Pala, R.; Alomari, N.; Nauli, S.M. Primary cilium-dependent signaling mechanisms. Int. J. Mol. Sci. 2017, 18, 2272. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Tang, C.; Wu, J.; Yang, Y.; Yan, Z.; Liu, X.; Shao, X.; Zhai, M.; Gao, J.; Liang, S.; et al. Pulsed electromagnetic fields regulate osteocyte apoptosis, rankl/opg expression, and its control of osteoclastogenesis depending on the presence of primary cilia. J. Cell. Physiol. 2019, 234, 10588–10601. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.L.; Zhou, J.; Ma, H.P.; Ma, X.N.; Gao, Y.H.; Shi, W.G.; Fang, Q.Q.; Ren, Q.; Xian, C.J.; Chen, K.M. Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol. Cell. Endocrinol. 2015, 404, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Manolagas, S.C. From estrogen-centric to aging and oxidative stress: A revised perspective of the pathogenesis of osteoporosis. Endocr. Rev. 2010, 31, 266–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pi, Y.; Liang, H.; Yu, Q.; Yin, Y.; Xu, H.; Lei, Y.; Han, Z.; Tian, J. Lowfrequency pulsed electromagnetic field inhibits ranklinduced osteoclastic differentiation in raw264.7 cells by scavenging reactive oxygen species. Mol. Med. Rep. 2019, 19, 4129–4136. [Google Scholar]
- Zhang, J.; Xu, H.; Han, Z.; Chen, P.; Yu, Q.; Lei, Y.; Li, Z.; Zhao, M.; Tian, J. Pulsed electromagnetic field inhibits rankl-dependent osteoclastic differentiation in raw264.7 cells through the ca(2+)-calcineurin-nfatc1 signaling pathway. Biochem. Biophys. Res. Commun. 2017, 482, 289–295. [Google Scholar] [CrossRef]
- Lei, Y.; Su, J.; Xu, H.; Yu, Q.; Zhao, M.; Tian, J. Pulsed electromagnetic fields inhibit osteoclast differentiation in raw264.7 macrophages via suppression of the protein kinase b/mammalian target of rapamycin signaling pathway. Mol. Med. Rep. 2018, 18, 447–454. [Google Scholar] [CrossRef]
- He, Z.; Selvamurugan, N.; Warshaw, J.; Partridge, N.C. Pulsed electromagnetic fields inhibit human osteoclast formation and gene expression via osteoblasts. Bone 2018, 106, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Tschon, M.; Veronesi, F.; Contartese, D.; Sartori, M.; Martini, L.; Vincenzi, F.; Ravani, A.; Varani, K.; Fini, M. Effects of pulsed electromagnetic fields and platelet rich plasma in preventing osteoclastogenesis in an in vitro model of osteolysis. J. Cell. Physiol. 2018, 233, 2645–2656. [Google Scholar] [CrossRef]
- Catalano, A.; Loddo, S.; Bellone, F.; Pecora, C.; Lasco, A.; Morabito, N. Pulsed electromagnetic fields modulate bone metabolism via rankl/opg and wnt/beta-catenin pathways in women with postmenopausal osteoporosis: A pilot study. Bone 2018, 116, 42–46. [Google Scholar] [CrossRef]
- Borsje, M.A.; Ren, Y.; de Haan-Visser, H.W.; Kuijer, R. Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on opg and rankl expression in human osteoblast-like cells. Angle Orthod. 2010, 80, 498–503. [Google Scholar] [CrossRef]
- Schwartz, Z.; Fisher, M.; Lohmann, C.H.; Simon, B.J.; Boyan, B.D. Osteoprotegerin (opg) production by cells in the osteoblast lineage is regulated by pulsed electromagnetic fields in cultures grown on calcium phosphate substrates. Ann. Biomed. Eng. 2009, 37, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Chang, W.H.; Huang, S.; Huang, S.; Shih, C. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, rank ligand and macrophage colony-stimulating factor. J. Orthop. Res. 2005, 23, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, J.; Yang, Y.; Zhai, M.; Shao, X.; Yan, Z.; Zhang, X.; Wu, Y.; Cao, L.; Sui, B.; et al. Differential intensity-dependent effects of pulsed electromagnetic fields on rankl-induced osteoclast formation, apoptosis, and bone resorbing ability in raw264.7 cells. Bioelectromagnetics 2017, 38, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Li, F.; Liang, Z.; Tang, C.; Xie, K.; Wang, P.; Dong, X.; Shan, S.; Liu, J.; Xu, Q.; et al. Effects of four kinds of electromagnetic fields (emf) with different frequency spectrum bands on ovariectomized osteoporosis in mice. Sci. Rep. 2017, 7, 553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehnert, S.; van Griensven, M.; Unger, M.; Scheffler, H.; Falldorf, K.; Fentz, A.K.; Seeliger, C.; Schroter, S.; Nussler, A.K.; Balmayor, E.R. Co-culture with human osteoblasts and exposure to extremely low frequency pulsed electromagnetic fields improve osteogenic differentiation of human adipose-derived mesenchymal stem cells. Int. J. Mol. Sci. 2018, 19, 994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, L.; Pellati, A.; Rizzo, P.; Aquila, G.; Massari, L.; De Mattei, M.; Ongaro, A. Notch pathway is active during osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. J. Tissue Eng. Regen. Med. 2018, 12, 304–315. [Google Scholar] [CrossRef]
- Goodman, R.; Lin-Ye, A.; Geddis, M.S.; Wickramaratne, P.J.; Hodge, S.E.; Pantazatos, S.P.; Blank, M.; Ambron, R.T. Extremely low frequency electromagnetic fields activate the erk cascade, increase hsp70 protein levels and promote regeneration in planaria. Int. J. Radiat. Biol. 2009, 85, 851–859. [Google Scholar] [CrossRef]
- Lin, H.; Blank, M.; Rossol-Haseroth, K.; Goodman, R. Regulating genes with electromagnetic response elements. J. Cell. Biochem. 2001, 81, 143–148. [Google Scholar] [CrossRef]
- Lu, T.; Huang, Y.X.; Zhang, C.; Chai, M.X.; Zhang, J. Effect of pulsed electromagnetic field therapy on the osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. Genet. Mol. Res. GMR 2015, 14, 11535–11542. [Google Scholar] [CrossRef]
- Martino, C.F.; Belchenko, D.; Ferguson, V.; Nielsen-Preiss, S.; Qi, H.J. The effects of pulsed electromagnetic fields on the cellular activity of saos-2 cells. Bioelectromagnetics 2008, 29, 125–132. [Google Scholar] [CrossRef]
- Hannay, G.; Leavesley, D.; Pearcy, M. Timing of pulsed electromagnetic field stimulation does not affect the promotion of bone cell development. Bioelectromagnetics 2005, 26, 670–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Li, W.; Sun, T.; Li, X.; Luo, E.; Jing, D. Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseointegration by promoting bone anabolism in type 1 diabetic rabbits. Osteoporos. Int. 2018, 29, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zeng, Z.; Zhao, Y.; Jing, D.; Tang, C.; Ding, Y.; Feng, X. Effects of low-intensity pulsed electromagnetic fields on bone microarchitecture, mechanical strength and bone turnover in type 2 diabetic db/db mice. Sci. Rep. 2017, 7, 10834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, D.; Cai, J.; Shen, G.; Huang, J.; Li, F.; Li, J.; Lu, L.; Luo, E.; Xu, Q. The preventive effects of pulsed electromagnetic fields on diabetic bone loss in streptozotocin-treated rats. Osteoporos. Int. 2011, 22, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Liang, Z.; Li, F.; Tang, C.; Xie, K.; Wang, P.; Dong, X.; Shan, S.; Jiang, M.; Xu, Q.; et al. Pulsed electromagnetic fields (pemf) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice. Bone 2018, 108, 10–19. [Google Scholar] [CrossRef]
- Li, B.; Bi, J.; Li, W.; Huang, S.; Zhang, S.; Zhao, J.; Meng, Q.; Fei, J. Effects of pulsed electromagnetic fields on histomorphometry and osteocalcin in disuse osteoporosis rats. Technol. Health Care 2017, 25, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liao, Y.; Zeng, Y.; Xie, H.; Fu, C.; Li, N. Effect of intervention initiation timing of pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats. Bioelectromagnetics 2017, 38, 456–465. [Google Scholar] [CrossRef]
- Zhou, J.; Liao, Y.; Xie, H.; Liao, Y.; Zeng, Y.; Li, N.; Sun, G.; Wu, Q.; Zhou, G. Effects of combined treatment with ibandronate and pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats. Bioelectromagnetics 2017, 38, 31–40. [Google Scholar] [CrossRef]
- Androjna, C.; Fort, B.; Zborowski, M.; Midura, R.J. Pulsed electromagnetic field treatment enhances healing callus biomechanical properties in an animal model of osteoporotic fracture. Bioelectromagnetics 2014, 35, 396–405. [Google Scholar] [CrossRef]
- Park, P.; Lau, D.; Brodt, E.D.; Dettori, J.R. Electrical stimulation to enhance spinal fusion: A systematic review. Evid. Based Spine-Care J. 2014, 5, 87–94. [Google Scholar]
- Hannemann, P.F.; Mommers, E.H.; Schots, J.P.; Brink, P.R.; Poeze, M. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: A systematic review and meta-analysis of randomized controlled trials. Arch. Orthop. Trauma Surg. 2014, 134, 1093–1106. [Google Scholar] [CrossRef] [PubMed]
- Ryang We, S.; Koog, Y.H.; Jeong, K.I.; Wi, H. Effects of pulsed electromagnetic field on knee osteoarthritis: A systematic review. Rheumatology 2013, 52, 815–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vavken, P.; Arrich, F.; Schuhfried, O.; Dorotka, R. Effectiveness of pulsed electromagnetic field therapy in the management of osteoarthritis of the knee: A meta-analysis of randomized controlled trials. J. Rehabil. Med. 2009, 41, 406–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biering-Sorensen, F.; Hansen, B.; Lee, B.S. Non-pharmacological treatment and prevention of bone loss after spinal cord injury: A systematic review. Spinal Cord 2009, 47, 508–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, N.A.; Denegar, C.R.; Preische, J. Low-intensity pulsed ultrasound and pulsed electromagnetic field in the treatment of tibial fractures: A systematic review. J. Athl. Train. 2007, 42, 530–535. [Google Scholar]
- Ebrahim, S.; Mollon, B.; Bance, S.; Busse, J.W.; Bhandari, M. Low-intensity pulsed ultrasonography versus electrical stimulation for fracture healing: A systematic review and network meta-analysis. Can. J. Surg. 2014, 57, E105–E118. [Google Scholar] [CrossRef] [Green Version]
- Mollon, B.; da Silva, V.; Busse, J.W.; Einhorn, T.A.; Bhandari, M. Electrical stimulation for long-bone fracture-healing: A meta-analysis of randomized controlled trials. J. Bone Jt. Surg. Am. 2008, 90, 2322–2330. [Google Scholar] [CrossRef]
- Aleem, I.S.; Aleem, I.; Evaniew, N.; Busse, J.W.; Yaszemski, M.; Agarwal, A.; Einhorn, T.; Bhandari, M. Efficacy of electrical stimulators for bone healing: A meta-analysis of randomized sham-controlled trials. Sci. Rep. 2016, 6, 31724. [Google Scholar] [CrossRef] [Green Version]
- Barker, A.T.; Dixon, R.A.; Sharrard, W.J.; Sutcliffe, M.L. Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial. Lancet 1984, 1, 994–996. [Google Scholar] [CrossRef]
- Shi, H.F.; Xiong, J.; Chen, Y.X.; Wang, J.F.; Qiu, X.S.; Wang, Y.H.; Qiu, Y. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: A prospective randomized controlled study. BMC Musculoskelet. Disord. 2013, 14, 35. [Google Scholar] [CrossRef] [Green Version]
- Poll, G.; Monte, A.D.; Cosco, F. Treatment of congenital pseudarthrosis with endomedullary nail and low frequency pulsing electromagnetic fields: A controlled study. J. Bioelectr. 1985, 4, 195–210. [Google Scholar] [CrossRef]
- Simonis, R.B.; Parnell, E.J.; Ray, P.S.; Peacock, J.L. Electrical treatment of tibial non-union: A prospective, randomised, double-blind trial. Injury 2003, 34, 357–362. [Google Scholar] [CrossRef]
- Sharrard, W.J. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J. Bone Jt. Surg. Br. 1990, 72, 347–355. [Google Scholar] [CrossRef]
- Murray, H.B.; Pethica, B.A. A follow-up study of the in-practice results of pulsed electromagnetic field therapy in the management of nonunion fractures. Orthop. Res. Rev. 2016, 8, 67–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, R.K.; Do, T.P.; Critchlow, C.W.; Dent, R.E.; Jick, S.S. Patient-related risk factors for fracture-healing complications in the united kingdom general practice research database. Acta. Orthop. 2012, 83, 653–660. [Google Scholar] [CrossRef]
- Massari, L.; Benazzo, F.; Falez, F.; Cadossi, R.; Perugia, D.; Pietrogrande, L.; Aloj, D.C.; Capone, A.; D’Arienzo, M.; Cadossi, M.; et al. Can clinical and surgical parameters be combined to predict how long it will take a tibia fracture to heal? A prospective multicentre observational study: The fracting study. BioMed Res. Int. 2018, 2018, 1809091. [Google Scholar] [CrossRef] [Green Version]
- Neyeloff, J.L.; Fuchs, S.C.; Moreira, L.B. Meta-analyses and forest plots using a microsoft excel spreadsheet: Step-by-step guide focusing on descriptive data analysis. BMC Res. Notes 2012, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Faldini, C.; Cadossi, M.; Luciani, D.; Betti, E.; Chiarello, E.; Giannini, S. Electromagnetic bone growth stimulation in patients with femoral neck fractures treated with screws: Prospective randomized double-blind study. Curr. Orthop. Pract. 2010, 21, 282–287. [Google Scholar] [CrossRef]
- Martinez-Rondanelli, A.; Martinez, J.P.; Moncada, M.E.; Manzi, E.; Pinedo, C.R.; Cadavid, H. Electromagnetic stimulation as coadjuvant in the healing of diaphyseal femoral fractures: A randomized controlled trial. Colomb. Med. 2014, 45, 67–71. [Google Scholar]
- Adie, S.; Harris, I.A.; Naylor, J.M.; Rae, H.; Dao, A.; Yong, S.; Ying, V. Pulsed electromagnetic field stimulation for acute tibial shaft fractures: A multicenter, double-blind, randomized trial. J. Bone Jt. Surg. Am. 2011, 93, 1569–1576. [Google Scholar] [CrossRef] [Green Version]
- Hannemann, P.F.; Gottgens, K.W.; van Wely, B.J.; Kolkman, K.A.; Werre, A.J.; Poeze, M.; Brink, P.R. The clinical and radiological outcome of pulsed electromagnetic field treatment for acute scaphoid fractures: A randomised double-blind placebo-controlled multicentre trial. J. Bone Jt. Surg. Br. 2012, 94, 1403–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannemann, P.F.; van Wezenbeek, M.R.; Kolkman, K.A.; Twiss, E.L.; Berghmans, C.H.; Dirven, P.A.; Brink, P.R.; Poeze, M. Ct scan-evaluated outcome of pulsed electromagnetic fields in the treatment of acute scaphoid fractures: A randomised, multicentre, double-blind, placebo-controlled trial. Bone Jt. J. 2014, 96, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Cheing, G.L.; Wan, J.W.; Kai Lo, S. Ice and pulsed electromagnetic field to reduce pain and swelling after distal radius fractures. J. Rehabil. Med. 2005, 37, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazovic, M.; Kocic, M.; Dimitrijevic, L.; Stankovic, I.; Spalevic, M.; Ciric, T. Pulsed electromagnetic field during cast immobilization in postmenopausal women with colles’ fracture. Srp. Arh. Za Celok. Lek. 2012, 140, 619–624. [Google Scholar] [CrossRef]
- Jin, J.; Sklar, G.E.; Min Sen Oh, V.; Chuen Li, S. Factors affecting therapeutic compliance: A review from the patient’s perspective. Clin. Risk Manag. 2008, 4, 269–286. [Google Scholar]
- Borsalino, G.; Bagnacani, M.; Bettati, E.; Fornaciari, F.; Rocchi, R.; Uluhogian, S.; Ceccherelli, G.; Cadossi, R.; Traina, G.C. Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clin. Orthop. Relat. Res. 1988, 237, 256–263. [Google Scholar]
- Mammi, G.I.; Rocchi, R.; Cadossi, R.; Massari, L.; Traina, G.C. The electrical stimulation of tibial osteotomies. Double-blind study. Clin. Orthop. Relat. Res. 1993, 288, 246–253. [Google Scholar] [CrossRef]
- Eyres, K.S.; Saleh, M.; Kanis, J.A. Effect of pulsed electromagnetic fields on bone formation and bone loss during limb lengthening. Bone 1996, 18, 505–509. [Google Scholar] [CrossRef]
- Luna Gonzalez, F.; Lopez Arevalo, R.; Meschian Coretti, S.; Urbano Labajos, V.; Delgado Rufino, B. Pulsed electromagnetic stimulation of regenerate bone in lengthening procedures. Acta Orthop. Belg. 2005, 71, 571–576. [Google Scholar]
- Ziegler, P.N.; Nussler, A.K.; Wilbrand, B.; Falldorf, K.; Springer, F.; Fentz, A.K.; Eschenburg, G.; Ziegler, A.; Stöckle, U.; Wintermeyer, E.; et al. Pulsed electromagnetic field therapy improves osseous consolidation after high tibial osteotomy in elderly patients—A randomized, placebo-controlled, double-blind trial. J. Clin. Med. 2019, 8, 2008. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahim, A.; Hassanein, H.R.; Dahaba, M. Effect of pulsed electromagnetic field on healing of mandibular fracture: A preliminary clinical study. J. Oral Maxillofac. Surg. 2011, 69, 1708–1717. [Google Scholar] [CrossRef] [PubMed]
- Dallari, D.; Fini, M.; Giavaresi, G.; Del Piccolo, N.; Stagni, C.; Amendola, L.; Rani, N.; Gnudi, S.; Giardino, R. Effects of pulsed electromagnetic stimulation on patients undergoing hip revision prostheses: A randomized prospective double-blind study. Bioelectromagnetics 2009, 30, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jiang, H.; Wang, B.; Gu, M.; Bi, X.; Yin, Y.; Wang, Y. Magnetic resonance spectroscopy for evaluating the effect of pulsed electromagnetic fields on marrow adiposity in postmenopausal women with osteopenia. J. Comput. Assist. Tomogr. 2018, 42, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Elsisi, H.F.; Mousa, G.S.; ELdesoky, M.T. Electromagnetic field versus circuit weight training on bone mineral density in elderly women. Clin. Interv. Aging 2015, 10, 539–547. [Google Scholar] [PubMed] [Green Version]
- Tabrah, F.; Hoffmeier, M.; Gilbert, F., Jr.; Batkin, S.; Bassett, C.A. Bone density changes in osteoporosis-prone women exposed to pulsed electromagnetic fields (pemfs). J. Bone Min. Res. 1990, 5, 437–442. [Google Scholar] [CrossRef]
- Liu, H.F.; Yang, L.; He, H.C.; Zhou, J.; Liu, Y.; Wang, C.Y.; Wu, Y.C.; He, C.Q. Pulsed electromagnetic fields on postmenopausal osteoporosis in southwest china: A randomized, active-controlled clinical trial. Bioelectromagnetics 2013, 34, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Mooney, V. A randomized double-blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine 1990, 15, 708–712. [Google Scholar] [CrossRef]
- Jenis, L.G.; An, H.S.; Stein, R.; Young, B. Prospective comparison of the effect of direct current electrical stimulation and pulsed electromagnetic fields on instrumented posterolateral lumbar arthrodesis. J. Spinal Disord. 2000, 13, 290–296. [Google Scholar] [CrossRef]
- Risso Neto, M.I.; Zuiani, G.R.; Cavali, P.D.M.; Veiga, I.G.; Pasqualini, W.; Amato Filho, A.C.S.; Cliquet Júnior, A.; Landim, E.; Miranda, J.B.D. Effect of pulsed electromagnetic fields on the consolidation of posterolateral arthrodeses in the lumbosacral spine: A prospective, double-blind, randomized study. Coluna/Columna 2017, 16, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Foley, K.T.; Mroz, T.E.; Arnold, P.M.; Chandler, H.C., Jr.; Dixon, R.A.; Girasole, G.J.; Renkens, K.L., Jr.; Riew, K.D.; Sasso, R.C.; Smith, R.C.; et al. Randomized, prospective, and controlled clinical trial of pulsed electromagnetic field stimulation for cervical fusion. Spine J. 2008, 8, 436–442. [Google Scholar] [CrossRef]
- Haefeli, M.; Elfering, A. Pain assessment. Eur. Spine J. 2006, 15 (Suppl. 1), S17–S24. [Google Scholar] [CrossRef] [PubMed]
- Fairbank, J.C.; Couper, J.; Davies, J.B.; O’Brien, J.P. The oswestry low back pain disability questionnaire. Physiotherapy 1980, 66, 271–273. [Google Scholar] [PubMed]
- Omar, A.S.; Awadalla, M.A.; El-Latif, M.A. Evaluation of pulsed electromagnetic field therapy in the management of patients with discogenic lumbar radiculopathy. Int. J. Rheum. Dis. 2012, 15, e101–e108. [Google Scholar] [CrossRef] [PubMed]
- Bolognese, J.A.; Schnitzer, T.J.; Ehrich, E.W. Response relationship of vas and likert scales in osteoarthritis efficacy measurement. Osteoarthr. Cartil. 2003, 11, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.C.; Clement, N.D.; Bardgett, M.; Weir, D.; Holland, J.; Gerrand, C.; Deehan, D.J. The womac score can be reliably used to classify patient satisfaction after total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3333–3341. [Google Scholar] [CrossRef]
- Roos, E.M.; Lohmander, L.S. The knee injury and osteoarthritis outcome score (koos): From joint injury to osteoarthritis. Health Qual. Life Outcomes 2003, 1, 64. [Google Scholar] [CrossRef] [Green Version]
- Soucie, J.M.; Wang, C.; Forsyth, A.; Funk, S.; Denny, M.; Roach, K.E.; Boone, D.; Hemophilia Treatment Center, N. Range of motion measurements: Reference values and a database for comparison studies. Haemophilia 2011, 17, 500–507. [Google Scholar] [CrossRef]
- Trock, D.H.; Bollet, A.J.; Markoll, R. The effect of pulsed electromagnetic fields in the treatment of osteoarthritis of the knee and cervical spine. Report of randomized, double blind, placebo controlled trials. J. Rheumatol. 1994, 21, 1903–1911. [Google Scholar]
- Prevoo, M.L.; van Riel, P.L.; van’t Hof, M.A.; van Rijswijk, M.H.; van Leeuwen, M.A.; Kuper, H.H.; van de Putte, L.B. Validity and reliability of joint indices. A longitudinal study in patients with recent onset rheumatoid arthritis. Br. J. Rheumatol. 1993, 32, 589–594. [Google Scholar] [CrossRef]
- Devlin, N.J.; Brooks, R. Eq-5d and the euroqol group: Past, present and future. Appl. Health Econ. Health Policy 2017, 15, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Turner-Stokes, L.; Tonge, P.; Nyein, K.; Hunter, M.; Nielson, S.; Robinson, I. The northwick park dependency score (npds): A measure of nursing dependency in rehabilitation. Clin. Rehabil. 1998, 12, 304–318. [Google Scholar] [CrossRef] [PubMed]
- Sutbeyaz, S.T.; Sezer, N.; Koseoglu, B.F. The effect of pulsed electromagnetic fields in the treatment of cervical osteoarthritis: A randomized, double-blind, sham-controlled trial. Rheumatol. Int. 2006, 26, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Reilingh, M.L.; van Bergen, C.J.; Gerards, R.M.; van Eekeren, I.C.; de Haan, R.J.; Sierevelt, I.N.; Kerkhoffs, G.M.; Krips, R.; Meuffels, D.E.; van Dijk, C.N.; et al. Effects of pulsed electromagnetic fields on return to sports after arthroscopic debridement and microfracture of osteochondral talar defects: A randomized, double-blind, placebo-controlled, multicenter trial. Am. J. Sports Med. 2016, 44, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Cadossi, M.; Buda, R.E.; Ramponi, L.; Sambri, A.; Natali, S.; Giannini, S. Bone marrow-derived cells and biophysical stimulation for talar osteochondral lesions: A randomized controlled study. Foot Ankle Int. 2014, 35, 981–987. [Google Scholar] [CrossRef]
- Trock, D.H.; Bollet, A.J.; Dyer, R.H., Jr.; Fielding, L.P.; Miner, W.K.; Markoll, R. A double-blind trial of the clinical effects of pulsed electromagnetic fields in osteoarthritis. J. Rheumatol. 1993, 20, 456–460. [Google Scholar] [CrossRef]
- Pipitone, N.; Scott, D.L. Magnetic pulse treatment for knee osteoarthritis: A randomised, double-blind, placebo-controlled study. Curr. Med. Res. Opin. 2001, 17, 190–196. [Google Scholar] [CrossRef]
- Thamsborg, G.; Florescu, A.; Oturai, P.; Fallentin, E.; Tritsaris, K.; Dissing, S. Treatment of knee osteoarthritis with pulsed electromagnetic fields: A randomized, double-blind, placebo-controlled study. Osteoarthr. Cartil. 2005, 13, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.; Pelka, R.B.; Barovic, J. Adjuvant treatment of knee osteoarthritis with weak pulsing magnetic fields. Results of a placebo-controlled trial prospective clinical trial. Z. Orthop. Ihre Grenzgeb. 2005, 143, 544–550. [Google Scholar] [CrossRef]
- Lee, P.; Kim, Y.; Lim, Y.; Lee, C.; Choi, S.; Park, S.; Lee, J.; Lee, S. Efficacy of pulsed electromagnetic therapy for chronic lower back pain: A randomized, double-blind, placebo-controlled study. J. Int. Med. Res. 2006, 34, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Ay, S.; Evcik, D. The effects of pulsed electromagnetic fields in the treatment of knee osteoarthritis: A randomized, placebo-controlled trial. Rheumatol. Int. 2009, 29, 663–666. [Google Scholar] [CrossRef]
- Ozguclu, E.; Cetin, A.; Cetin, M.; Calp, E. Additional effect of pulsed electromagnetic field therapy on knee osteoarthritis treatment: A randomized, placebo-controlled study. Clin. Rheumatol. 2010, 29, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Iannitti, T.; Fistetto, G.; Esposito, A.; Rottigni, V.; Palmieri, B. Pulsed electromagnetic field therapy for management of osteoarthritis-related pain, stiffness and physical function: Clinical experience in the elderly. Clin. Interv. Aging 2013, 8, 1289–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dundar, U.; Asik, G.; Ulasli, A.M.; Sinici, S.; Yaman, F.; Solak, O.; Toktas, H.; Eroglu, S. Assessment of pulsed electromagnetic field therapy with serum ykl-40 and ultrasonography in patients with knee osteoarthritis. Int. J. Rheum. Dis. 2016, 19, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Daish, C.; Blanchard, R.; Fox, K.; Pivonka, P.; Pirogova, E. The application of pulsed electromagnetic fields (pemfs) for bone fracture repair: Past and perspective findings. Ann. Biomed. Eng. 2018, 46, 525–542. [Google Scholar] [CrossRef]
# | Year | Ref | Frequency | Peak Amplitude Intensity | Pulse & Burst Pattern | Daily PEMF Exposure | Treatment Period | all | + | − | Mean Age | Follow-Up | Compared to Placebo | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
f | Pain | Stiffness | Mobility | Quality of Life | ||||||||||||
1 | 1993 | [145] | 5–12 Hz | n.s. | n.s. | 4.5 * 30 min/week | 4 weeks | 25 | 13 | 12 | ≥ 60 years | 2, 4, 8 weeks | VAS ↘ motion ↘ | n.s. | n.s. | n.s. |
2 | 1994 | [138] | 5–12 Hz | n.s. | n.s. | 4.5 * 30 min/week | 4 weeks | 86 | 42 | 44 | 67 years | 2, 4, 8 weeks | VAS ↘ motion ↘ | n.s. | n.s. | n.s. |
4 | 2001 | [146] | 3, 7.8, 20 Hz 1 | < 50 µT | n.s. | 3 * 10 min/d | 6 weeks | 69 | 34 | 35 | 63 years | 2, 4, 6 weeks | WOMAC ↘ | WOMAC ↘ | WOMAC ↘ | EQ-5D ↗ |
5 | 2005 | [147] | 50 Hz 2 | n.s. | ∆tp = 6 ms | 5 * 2 h/week | 6 weeks | 83 | 42 | 41 | 60 years | 2, 12 weeks | WOMAC = | WOMAC ↘ | WOMAC = | n.s. |
6 | 2005 | [148] | 10–300 Hz | 13.6 µT | n.s. | 16 min/d | 6 weeks | 71 | 35 | 36 | 60.2 years | 6 weeks | KSS ↘ | KSS ↘ | KSS ↘ | n.s. |
7 | 2006 | [149] | 5 Hz/10 Hz 3 | 1.3–2.1 T | ∆tp = 270 µs | 3 * 15 min/week | 3 weeks | 36 | 17 | 19 | 74,5 years | 3, 4, 7 weeks | NRS ↘ | OSW ↘ | OSW ↘ | n.s. |
8 | 2006 | [142] | 0.1–64 Hz 4 | n.s. | n.s. | 2 * 30 min/d | 3 weeks | 32 | 17 | 15 | 42.5 years | 3 weeks | VAS ↘ | ROM ↗ | mobility ↗ | NPDS ↘ |
9 | 2009 | [150] | 50 Hz 4 | 105 µT | n.s. | 5 * 30 min/week | 3 weeks | 55 | 30 | 25 | 58 years | 3 weeks | VAS = Likert = | Lequesne = ROM = | Lequesne = | n.s. |
10 | 2010 | [151] | 50 Hz 5 | 3 mT | Tb = 90 s | 5 * 30 min/week | 2 weeks | 40 | 20 | 20 | 61.3 years | 2 weeks | VAS = WOMAC = | WOMAC = | WOMAC = | n.s. |
11 | 2013 | [152] | 6–100 Hz 6 (0.1–3 kHz) | n.s. | n.s. | 3 * 20 min/week | 6 weeks | 28# | 28 | 28 | 69.9 years | 3 months | VAS ↘ WOMAC ↘ | WOMAC ↘ ROM ↗ | WOMAC ↘ | n.s. |
12 | 2016 | [153] | 50 Hz 7 | 100 µT | n.s. | 5 * 60 min/week | 4 weeks | 29 | 14 | 15 | 57.2 years | 4 weeks | VAS = WOMAC = | WOMAC = | WOMAC = | n.s. |
Search Terms | All | Reviews | Clinical | |
---|---|---|---|---|
1 | “PEMF” or “pulsed electromagnetic” and “bone” | 554 | 70 | 45 |
2 | “PEMF” or “pulsed electromagnetic” and “osteopenia” | 56 | 9 | 11 |
3 | “PEMF” or “pulsed electromagnetic” and “osteoporosis” | 85 | 12 | 11 |
4 | “PEMF” or “pulsed electromagnetic” and “osteomalacia” | 0 | 0 | 0 |
5 | “PEMF” or “pulsed electromagnetic” and “fracture” | 230 | 40 | 22 |
6 | “PEMF” or “pulsed electromagnetic” and “non-union” | 14 | 1 | 2 |
7 | “PEMF” or “pulsed electromagnetic” and “pseudarthrosis” | 29 | 5 | 4 |
8 | “PEMF” or “pulsed electromagnetic” and “osteolysis” | 5 | 0 | 0 |
9 | “PEMF” or “pulsed electromagnetic” and “osteoarthritis” | 83 | 22 | 22 |
10 | “PEMF” or “pulsed electromagnetic” and “osteogenesis” | 124 | 10 | 4 |
11 | “PEMF” or “pulsed electromagnetic” and “osteogenic” | 67 | 2 | 1 |
12 | “PEMF” or “pulsed electromagnetic” and “MSC” | 17 | 3 | 0 |
13 | “PEMF” or “pulsed electromagnetic” and ”mesenchymal * cells” | 70 | 3 | 1 |
14 | “PEMF” or “pulsed electromagnetic” and “osteoblast” | 124 | 6 | 0 |
15 | “PEMF” or “pulsed electromagnetic” and “osteocyte” | 9 | 1 | 0 |
16 | “PEMF” or “pulsed electromagnetic” and “osteoclastogenesis” | 130 | 11 | 4 |
17 | “PEMF” or “pulsed electromagnetic” and “osteoclast” | 34 | 2 | 0 |
Sum | 1631 | 197 | 127 | |
Removal of Duplicates | 692 | 93 | 68 | |
plus Manuscripts from other sources | 710 | 97 | 81 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehnert, S.; Schröter, S.; Aspera-Werz, R.H.; Eisler, W.; Falldorf, K.; Ronniger, M.; Nussler, A.K. Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery. J. Clin. Med. 2019, 8, 2028. https://doi.org/10.3390/jcm8122028
Ehnert S, Schröter S, Aspera-Werz RH, Eisler W, Falldorf K, Ronniger M, Nussler AK. Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery. Journal of Clinical Medicine. 2019; 8(12):2028. https://doi.org/10.3390/jcm8122028
Chicago/Turabian StyleEhnert, Sabrina, Steffen Schröter, Romina H. Aspera-Werz, Wiebke Eisler, Karsten Falldorf, Michael Ronniger, and Andreas K. Nussler. 2019. "Translational Insights into Extremely Low Frequency Pulsed Electromagnetic Fields (ELF-PEMFs) for Bone Regeneration after Trauma and Orthopedic Surgery" Journal of Clinical Medicine 8, no. 12: 2028. https://doi.org/10.3390/jcm8122028