Human Red Blood Cells as Oxygen Carriers to Improve Ex-Situ Liver Perfusion in a Rat Model
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals and Study Design
2.2. Blood Group Typing and Compatibility Testing
2.3. Reagents and Instruments
2.4. Anesthesia, Surgery, and In-Situ Perfusion
2.5. Surgical Procedure and In-Situ Perfusion
2.6. Ex-Situ Liver Perfusion
2.6.1. Perfusion Fluids Preparation
2.6.2. Normothermic Machine Perfusion Setup
2.6.3. Ex-Vivo Liver Perfusion Protocol
2.7. Perfusate Analysis
2.8. Sample Processing and Analysis
2.9. Tissue Analysis
2.10. Wet-to-Dry Ratio
2.11. ATP Content Assessment
2.12. Histology
2.13. Evaluation of Liver Metabolism
2.14. Statistical Analysis
3. Results
3.1. Perfusate Composition and Hemodynamic During NMP
3.2. Markers of Hepatocellular and Cholangiocellular Damage
3.3. Evaluation of Liver Tissue Integrity
3.4. Liver Metabolism During NMP
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guarrera, J.V.; Henry, S.D.; Samstein, B.; Odeh-Ramadan, R.; Kinkhabwala, M.; Goldstein, M.J.; Ratner, L.E.; Renz, J.F.; Lee, H.T.; Brown, R.S.; et al. Hypothermic Machine Preservation in human liver transplantation: The first clinical series. Am. J. Transplant. 2010, 10, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; Kron, P.; Graf, R.; Clavien, P.A.; Dutkowski, P. Hypothermic Oxygenated Perfusion (HOPE) downregulates the immune response in a rat model of liver transplantation. Ann. Surg. 2014, 260, 931–937, discussion 937–938. [Google Scholar] [CrossRef] [PubMed]
- Hessheimer, A.J.; Fondevila, C. Liver perfusion devices: How close are we to widespread application? Curr. Opin. Organ Transplant. 2017, 22, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.J.E.; Jochmans, I. From “Gut Feeling” to Objectivity: Machine Preservation of the Liver as a Tool to Assess Organ Viability. Curr. Transp. Rep. 2018, 5, 72–81. [Google Scholar] [CrossRef]
- Daniel, C.R.; Labens, R.; Argyle, D.; Licka, T.F. Extracorporeal perfusion of isolated organs of large animals—Bridging the gap between in vitro and in vivo studies. ALTEX 2018, 35, 77–98. [Google Scholar] [CrossRef]
- Amersi, F.; Shen, X.; Anselmo, D.; Melinek, J.; Iyer, S.; Southard, D.J.; Katori, M.; Volk, H.; Busuttil, R.W.; Buelow, R.; et al. Ex Vivo Exposure to Carbon Monoxide Prevents Hepatic Ischemia/Reperfusion Injury Through p38 MAP Kinase Pathway. Hepatology 2002, 35, 815–823. [Google Scholar] [CrossRef]
- Dutkowski, P.; Graf, R.; Clavien, P.A. Rescue of the Cold Preserved Rat Liver by Hypothermic Oxygenated Machine Perfusion. Am. J. Transplant. 2006, 6, 903–912. [Google Scholar] [CrossRef]
- Perk, S.; Izamis, M.L.; Tolboom, H.; Uygun, B.; Berthiaume, F.; Yarmush, M.L.; Uygun, K. A metabolic index of ischemic injury for Perfusion-Recovery of cadaveric rat livers. PLoS ONE 2011, 6, e28518. [Google Scholar] [CrossRef]
- Perk, S.; Izamis, M.L.; Tolboom, H.; Uygun, B.; Yarmush, M.L.; Uygun, K. A fitness index for transplantation of machine-perfused cadaveric rat livers. BMC Res. Notes 2012, 5, 325. [Google Scholar] [CrossRef]
- Bruinsma, B.G.; Berendsen, T.A.; Izamis, M.L.; Yarmush, M.L.; Uygun, K. Determination and extension of the limits to static cold storage using subnormothermic machine perfusion. Int. J. Artif. Organs 2013, 36, 775–780. [Google Scholar] [CrossRef]
- Schlegel, A.; Kron, P.; Graf, R.; Dutkowski, P.; Clavien, P.A. Warm vs. cold perfusion techniques to rescue rodent liver grafts. J. Hepatol. 2014, 61, 1267–1275. [Google Scholar] [CrossRef]
- Westerkamp, A.C.; Mahboub, P.; Meyer, S.L.; Hottenrott, M.; Ottens, P.J.; Wiersema-buist, J.; Gouw, A.S.H.; Lisman, T.; Leuvenink, H.G.D.; Porte, R.J. End-Ischemic Machine Perfusion Reduces Bile Duct Injury In Donation After Circulatory Death Rat Donor Livers Independent of the Machine Perfusion Temperature. Liver Transplant. 2015, 21, 1300–1311. [Google Scholar] [CrossRef] [PubMed]
- Op den Dries, S.; Karimian, N.; Westerkamp, A.C.; Sutton, M.E.; Kuipers, M.; Wiersema-Buist, J.; Ottens, P.J.; Kuipers, J.; Giepmans, B.N.; Leuvenink, H.G.D.; et al. Normothermic machine perfusion reduces bile duct injury and improves biliary epithelial function in rat donor livers. Liver Transplant. 2016, 22, 994–1005. [Google Scholar] [CrossRef] [PubMed]
- Rigo, F.; De Stefano, N.; Navarro-tableros, V.; David, E.; Rizza, G.; Catalano, G.; Gilbo, N.; Maione, F.; Gonella, F.; Roggio, D.; et al. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model. Trasplantation 2018, 102, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Tolboom, H.; Milwid, J.M.; Izamis, M.L.; Uygun, K.; Berthiaume, F.; Yarmush, M.L. Sequential cold storage and normothermic perfusion of the ischemic rat liver. Transplant. Proc. 2008, 40, 1306–1309. [Google Scholar] [CrossRef] [PubMed]
- Tolboom, H.; Izamis, M.-L.; Sharma, N.; Milwid, J.M.; Uygun, B.; Berthiaume, F.; Uygun, K.; Yarmush, M.L. Subnormothermic Machine Perfusion at Both 20°C and 30°C Recovers Ischemic Rat Livers for Successful. Trasplantation 2012, 175, 149–156. [Google Scholar] [CrossRef]
- Bjerkvig, C.K.; Strandenes, G.; Eliassen, H.S.; Spinella, P.C.; Fosse, T.K.; Cap, A.P.; Ward, K.R. “Blood failure” time to view blood as an organ: How oxygen debt contributes to blood failure and its implications for remote damage control resuscitation. Transfusion 2016, 56, 182–189. [Google Scholar] [CrossRef]
- Matton, A.P.M.; Burlage, L.C.; van Rijn, R.; de Vries, Y.; Karangwa, S.A.; Nijsten, M.W.; Gouw, A.S.H.; Wiersema-Buist, J.; Adelmeijer, J.; Westerkamp, A.C.; et al. Normothermic Machine Perfusion of Donor Livers Without the Need for Human Blood Products. Liver Transplant. 2018, 24, 528–538. [Google Scholar] [CrossRef]
- Arck, P.C. When 3 Rs meet a forth R: Replacement, reduction and refinement of animals in research on reproduction. J. Reprod. Immunol. 2019, 132, 54–59. [Google Scholar] [CrossRef]
- Guillen, J. FELASA Guidelines and Recommendations. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 311–321. [Google Scholar]
- Bassani, G.A.; Lonati, C.; Brambilla, D.; Rapido, F.; Valenza, F.; Gatti, S. Ex vivo lung perfusion in the rat: Detailed procedure and videos. PLoS ONE 2016, 11, e0167898. [Google Scholar] [CrossRef] [PubMed]
- Roffia, V.; De Palma, A.; Lonati, C.; Di Silvestre, D.; Rossi, R.; Mantero, M.; Gatti, S.; Dondossola, D.; Valenza, F.; Mauri, P.; et al. Proteome investigation of rat lungs subjected to Ex vivo perfusion (EVLP). Molecules 2018, 23, 3061. [Google Scholar] [CrossRef] [PubMed]
- Lonati, C.; Bassani, G.A.; Brambilla, D.; Leonardi, P.; Carlin, A.; Favesani, A.; Gatti, S.; Valenza, F. Influence of ex vivo perfusion on the biomolecular profile of rat lungs. FASEB J. 2018, 32, 5532–5549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonati, C.; Bassani, A.; Brambilla, D.; Leonardi, P.; Carlin, A.; Maggioni, M.; Zanella, A.; Dondossola, D.; Fonsato, V.; Grange, C.; et al. Mesenchymal stem cell-derived extracellular vesicles improve the molecular phenotype of isolated rat lungs during ischemia/reperfusion injury. J. Heart Lung Transplant. 2019, 24, 1053–2498. [Google Scholar] [CrossRef]
- Dondossola, D.; Lonati, C.; Rossi, G. Ex-vivo tissue determination of water fraction in associating liver partition with portal vein ligation for staged hepatectomy. Surgery 2018, 163, 971. [Google Scholar] [CrossRef]
- Brockmann, J.; Reddy, S.; Coussios, C.; Pigott, D.; Guirriero, D.; Hughes, D.; Morovat, A.; Roy, D.; Winter, L.; Friend, P.J. Normothermic Perfusion: A New Paradigm for Organ Preservation. Ann. Surg. 2009, 250, 1–6. [Google Scholar] [CrossRef]
- Kramer, L.; Bauer, E.; Joukhadar, C.; Strobl, W.; Gendo, A.; Madl, C.; Gangl, A. Citrate pharmacokinetics and metabolism in cirrhotic and noncirrhotic critically ill patients. Crit. Care Med. 2003, 31, 2450–2455. [Google Scholar] [CrossRef]
- Ravikumar, R.; Jassem, W.; Mergental, H.; Heaton, N.; Mirza, D.; Perera, M.T.P.R.; Quaglia, A.; Holroyd, D.; Vogel, T.; Coussios, C.C.; et al. Liver Transplantation After Ex Vivo Normothermic Machine Preservation: A Phase 1 (First-in-Man) Clinical Trial. Am. J. Transplant. 2016, 16, 1779–1787. [Google Scholar] [CrossRef]
- Banan, B.; Watson, R.; Xu, M.; Lin, Y.; Chapman, W. Development of a normothermic extracorporeal liver perfusion system toward improving viability and function of human extended criteria donor livers. Liver Transpl. 2016, 22, 979–993. [Google Scholar] [CrossRef] [Green Version]
- Nasralla, D.; Coussios, C.C.; Mergental, H.; Akhtar, M.Z.; Butler, A.J.; Ceresa, C.D.L.; Chiocchia, V.; Dutton, S.J.; García-valdecasas, J.C.; Heaton, N.; et al. A randomized trial of normothermic preservation in liver transplantation. Nature. 2018, 557, 50–56. [Google Scholar] [CrossRef]
- Mischinger, H.J.; Walsh, T.R.; Liu, T.; Rao, P.N.; Rubin, R.; Nakamura, K.; Todo, S.; Starzl, T.E.; Ph, D. An Improved Technique for Isolated Perfusion of Rat Livers and an Evaluation of Perfusates. J. Surg. Res. 1992, 53, 158–165. [Google Scholar] [CrossRef]
- Riedel, G.L.; Scholle, J.L.; Shepherd, P.; Ward, W. Effects of hematocrit on oxygenation of the isolated perfused rat liver. Am. J. Physiol. 1983, 245, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Imber, C.J.; St Peter, S.D.; Lopez de Cenarruzabeitia, I.; Pigott, D.; James, T.; Taylor, R.; Mcguire, J.; Hughes, D.; Butler, A.; Rees, M.; et al. Advantages of normothermic perfusion over cold storage in liver preservation. Transpation 2002, 73, 701–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izamis, M.L.; Tolboom, H.; Uygun, B.; Berthiaume, F.; Yarmush, M.L.; Uygun, K. Resuscitation of Ischemic Donor Livers with Normothermic Machine Perfusion: A Metabolic Flux Analysis of Treatment in Rats. PLoS ONE 2013, 8, e69758. [Google Scholar] [CrossRef]
- Dutkowski, P.; Furrer, K.; Tian, Y.; Graf, R.; Clavien, P.A. Novel Short-term Hypothermic Oxygenated Perfusion (HOPE) System Prevents Injury in Rat Liver Graft From Non-Heart Beating Donor. Ann. Surg. 2006, 244, 968–977. [Google Scholar] [CrossRef]
- Osei-Hwedieh, D.O.; Kanias, T.; Croix, C.S.; Jessup, M.; Xiong, Z.; Sinchar, D.; Franks, J.; Xu, Q.; Novelli, E.M.; Sertorio, J.T.; et al. Sickle Cell Trait Increases Red Blood Cell Storage Hemolysis and Post-Transfusion Clearance in Mice. EBioMedicine 2016, 11, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Burlage, L.C.; Hessels, L.; Van Rijn, R.; Matton, A.P.M.; Fujiyoshi, M.; Van Den Berg, A.P.; Reyntjens, K.M.E.M.; Meyer, P.; De Boer, M.T.; De Kleine, R.H.J.; et al. Opposite acute potassium and sodium shifts during transplantation of hypothermic machine perfused donor livers. Am. J. Transplant. 2019, 19, 1061–1071. [Google Scholar] [CrossRef]
- Orman, M.A.; Ierapetritou, M.G.; Androulakis, I.P.; Berthiaume, F. Metabolic Response of Perfused Livers to Various Oxygenation Conditions. Biotechnol. Bioeng. 2011, 108, 2947–2957. [Google Scholar] [CrossRef]
- Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015, 6, 524–551. [Google Scholar] [CrossRef] [Green Version]
- Mergental, H.; Stephenson, B.T.F.; Laing, R.W.; Kirkham, A.J.; Neil, D.A.H.; Wallace, L.L.; Boteon, Y.L.; Widmer, J.; Bhogal, R.H.; Perera, M.T.P.R.; et al. Development of Clinical Criteria for Functional Assessment to Predict Primary Nonfunction of High-Risk Livers Using Normothermic Machine Perfusion. Liver Transplant. 2018, 24, 1453–1469. [Google Scholar] [CrossRef]
- Straat, M.; Klei, T.; de Korte, D.; van Bruggen, R.; Juffermans, N. Accelerated clearance of human red blood cells in a rat transfusion model. Intensive Care Med. Exp. 2015, 3, 27. [Google Scholar] [CrossRef] [PubMed]
DMEM (n = 5) | BLOOD (n = 4) | p | |
---|---|---|---|
pH | 7.38 ± 0.09 | 7.18 ± 0.09 | 0.042 |
pCO2, mmHg | 40.5 ± 8 | 49.5 ± 13 | 0.231 |
pO2, mmHg | 540.25 ± 26 | 446 ± 179 | 0.317 |
Hb, g/dL | - | 4.4 ± 0.57 | na |
Htc, % | - | 14 ± 2.00 | na |
HbO2, % | 0 | 96.25 ± 0.07 | na |
Gluc, g/dL | 80 ± 0.50 | 136 ± 53 | 0.026 |
Lac, mmol/L | - | 2.3 ± 1.7 | na |
K+, mmol/L | 4.15 ± 0.05 | 4.5 ± 1 | 0.427 |
Na+, mmol/L | 149 ± 1 | 147 ± 3 | 0.553 |
Ca2+, mmol/L | 0.72 ± 0.28 | 0.70 ± 0.05 | 0.342 |
Cl−, mmol/L | 121 ± 2.38 | 117 ± 5.00 | 0.522 |
HCO3−, mmol/L | 23 ± 1.87 | 15 ± 1.00 | 0.011 |
Normothermic Phase (30-150 min) | |||||
---|---|---|---|---|---|
Min | DMEM (n = 5) | BLOOD (n = 4) | p (Graft) | p (Time) | |
AST, U/L/g | 30 | 0.862 ± 0.769 | 0.739 ± 0.215 | 0.358 | |
150 | 2.130 ± 1.591 | 2.273 ± 1.47 | |||
Potassium mEq/L | 30 | 5.45 ± 0.17 | 5.10 ± 0.62 | 0.657 | 0.01 |
150 | 5.40 ± 0.43 | 4.40 ± 0.61 | |||
Potassium uptake ratio | 0.006 ± 0.051 | 0.138 ± 0.028 | 0.03 | na | |
Bile, g | tot | 1.165 ± 0.22 | 2.25 ± 0.48 | 0.237 | |
W/D ratio * | 3.117 ± 0.136 | 2.995 ±. 0.85 | 0.208 | ||
ATP, pmol/mg ^ | 327.3 ± 26.6 | 565.8 ± 56.6 | 0.031 | ||
Glucose, mg/dL | 30 | 313 ± 59 | 310 ± 12 | 0.008 | <0.001 |
150 | 364 ± 101 | 202 ± 26 | |||
Glucose uptake ratio | −0.136 ± 0.154 | 0.346 ± 0.079 | 0.029 | ||
Lactate, mmol/L | 30 | 6.3 ± 0.5 | 4.5 ± 1.0 | 0.002 | <0.001 |
150 | 5.24 ± 1.2 | 1.6 ± 0.6 | |||
Lactate uptake ratio | 0.062 ± 0.359 | 0.643 ± 0.27 | 0.022 | na | |
Citrate | 30 | na | 0.37 ± 0.05 | 0.034 | |
150 | na | 0.29 ± 0.05 | |||
Citrate uptake | na | 0.228 ± 0.127 |
Author | Year | Blood Type | Htc | Blood Origin | pO2 | (mL/min) |
---|---|---|---|---|---|---|
Dutkowski P | 2006 | full blood | 6.4 | rat | 450 | 0.26 |
Izamis ML | 2013 | RBC | 18 | rat | 0.5 | |
Schlegel A | 2014 | full blood | 15 | rat | 300–375 | |
Tolboom H | 2012 | RBC | 18 | rat | 0.5 | |
Tolboom H | 2008 | RBC | 18 | rat | 0.4 | |
Westerkamp AC | 2015 | RBC | 25 | human | 450–600 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dondossola, D.; Santini, A.; Lonati, C.; Zanella, A.; Merighi, R.; Vivona, L.; Battistin, M.; Galli, A.; Biancolilli, O.; Maggioni, M.; et al. Human Red Blood Cells as Oxygen Carriers to Improve Ex-Situ Liver Perfusion in a Rat Model. J. Clin. Med. 2019, 8, 1918. https://doi.org/10.3390/jcm8111918
Dondossola D, Santini A, Lonati C, Zanella A, Merighi R, Vivona L, Battistin M, Galli A, Biancolilli O, Maggioni M, et al. Human Red Blood Cells as Oxygen Carriers to Improve Ex-Situ Liver Perfusion in a Rat Model. Journal of Clinical Medicine. 2019; 8(11):1918. https://doi.org/10.3390/jcm8111918
Chicago/Turabian StyleDondossola, Daniele, Alessandro Santini, Caterina Lonati, Alberto Zanella, Riccardo Merighi, Luigi Vivona, Michele Battistin, Alessandro Galli, Osvaldo Biancolilli, Marco Maggioni, and et al. 2019. "Human Red Blood Cells as Oxygen Carriers to Improve Ex-Situ Liver Perfusion in a Rat Model" Journal of Clinical Medicine 8, no. 11: 1918. https://doi.org/10.3390/jcm8111918
APA StyleDondossola, D., Santini, A., Lonati, C., Zanella, A., Merighi, R., Vivona, L., Battistin, M., Galli, A., Biancolilli, O., Maggioni, M., Villa, S., & Gatti, S. (2019). Human Red Blood Cells as Oxygen Carriers to Improve Ex-Situ Liver Perfusion in a Rat Model. Journal of Clinical Medicine, 8(11), 1918. https://doi.org/10.3390/jcm8111918