The Association between SOCS1−1656G>A Polymorphism, Insulin Resistance and Obesity in Nonalcoholic Fatty Liver Disease (NAFLD) Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 2002, 346, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Verdelho Machado, M.; Diehl, A.M. The hedgehog pathway in nonalcoholic fatty liver disease. Crit. Rev. Biochem. Mol. Biol. 2018, 53, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Raszeja-Wyszomirska, J.; Szymanik, B.; Ławniczak, M.; Kajor, M.; Chwist, A.; Milkiewicz, P.; Hartleb, M. Validation of the BARD scoring system in Polish patients with nonalcoholic fatty liver disease (NAFLD). BMC Gastroenterol. 2010, 10, 67. [Google Scholar] [CrossRef]
- Patell, R.; Dosi, R.; Joshi, H.; Sheth, S.; Shah, P.; Jasdanwala, S. Non-Alcoholic fatty liver disease (NAFLD) in obesity. J. Clin. Diagn. Res. 2014, 8, 62. [Google Scholar]
- Duvnjak, M.; Barsić, N.; Tomasić, V.; Lerotić, I. Genetic polymorphisms in non-alcoholic fatty liver disease: Clues to pathogenesis and disease progression. World J. Gastroenterol. 2009, 15, 6023. [Google Scholar] [CrossRef]
- Del Campo, J.; Gallego-Durán, R.; Gallego, P.; Grande, L. Genetic and epigenetic regulation in nonalcoholic fatty liver disease (NAFLD). Int. J. Mol. Sci. 2018, 19, 911. [Google Scholar] [CrossRef]
- Fujimoto, M.; Naka, T. SOCS1, a Negative Regulator of Cytokine Signals and TLR Responses, in Human Liver Diseases. Gastroenterol. Res. Pract. 2010, 2010, 470468. [Google Scholar] [CrossRef]
- Galic, S.; Sachithanandan, N.; Kay, T.W.; Steinberg, G.R. Suppressor of cytokine signalling (SOCS) proteins as guardians of inflammatory responses critical for regulating insulin sensitivity. Biochem. J. 2014, 461, 177–188. [Google Scholar] [CrossRef]
- Ueki, K.; Kondo, T.; Kahn, C.R. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol. Cell. Biol. 2004, 24, 5434–5446. [Google Scholar] [CrossRef]
- Ueki, K.; Kondo, T.; Tseng, Y.-H.; Kahn, C.R. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc. Natl. Acad. Sci. USA 2004, 101, 10422–10427. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rui, L.; Yuan, M.; Frantz, D.; Shoelson, S.; White, M.F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem. 2002, 277, 42394–42398. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Chen, L.; Yang, K.; Jiang, H.; Xu, W.; Luan, J. SOCS molecules: The growing players in macrophage polarization and function. Oncotarget 2017, 8, 60710–60722. [Google Scholar] [CrossRef]
- Tamiya, T.; Kashiwagi, I.; Takahashi, R.; Yasukawa, H.; Yoshimura, A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 980–985. [Google Scholar] [CrossRef]
- Seif, F.; Khoshmirsafa, M.; Aazami, H.; Mohsenzadegan, M.; Sedighi, G.; Bahar, M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal. 2017, 15, 23. [Google Scholar] [CrossRef]
- Thomas, H.E.; Kay, T.W. Beta cell destruction in the development of autoimmune diabetes in the non-obese diabetic (NOD) mouse. Diabetes. Metab. Res. Rev. 2000, 16, 251–261. [Google Scholar] [CrossRef]
- Krebs, D.L.; Hilton, D.J. A new role for SOCS in insulin action. Suppressor of cytokine signaling. Sci. STKE 2003, 2003, PE6. [Google Scholar]
- Saad, M.J.; Araki, E.; Miralpeix, M.; Rothenberg, P.L.; White, M.F.; Kahn, C.R. Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance. J. Clin. Investig. 1992, 90, 1839–1849. [Google Scholar] [CrossRef]
- Gylvin, T.; Ek, J.; Nolsøe, R.; Albrechtsen, A.; Andersen, G.; Bergholdt, R.; Brorsson, C.; Bang-Berthelsen, C.H.; Hansen, T.; Karlsen, A.E.; et al. Functional SOCS1 polymorphisms are associated with variation in obesity in whites. Diabetes Obes. Metab. 2009, 11, 196–203. [Google Scholar] [CrossRef]
- Kempinska-Podhorodecka, A.; Milkiewicz, M.; Wasik, U.; Ligocka, J.; Zawadzki, M.; Krawczyk, M.; Milkiewicz, P. Decreased expression of vitamin D receptor affects an immune response in primary biliary cholangitis via the VDR-miRNA155-SOCS1 pathway. Int. J. Mol. Sci. 2017, 18, 289. [Google Scholar] [CrossRef]
- Hirschfield, G.M.; Xie, G.; Lu, E.; Sun, Y.; Juran, B.D.; Chellappa, V.; Coltescu, C.; Mason, A.L.; Milkiewicz, P.; Myers, R.P.; et al. Association of primary biliary cirrhosis with variants in the CLEC16A, SOCS1, SPIB and SIAE immunomodulatory genes. Genes Immun. 2012, 13, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, M.; Kojima, T.; Itoh, Y.; Harano, Y.; Fujii, K.; Nakajima, T.; Kato, T.; Takeda, N.; Okuda, J.; Ida, K.; et al. The Severity of Ultrasonographic Findings in Nonalcoholic Fatty Liver Disease Reflects the Metabolic Syndrome and Visceral Fat Accumulation. Am. J. Gastroenterol. 2007, 102, 2708–2715. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.; Stachowska, E.; Milkiewicz, P.; Lammert, F.; Milkiewicz, M. Reduction of Caloric Intake Might Override the Prosteatotic Effects of the PNPLA3 p.I148M and TM6SF2 p.E167K Variants in Patients with Fatty Liver: Ultrasound-Based Prospective Study. Digestion 2016, 93, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Arulanandan, A.; Ang, B.; Bettencourt, R.; Hooker, J.; Behling, C.; Lin, G.Y.; Valasek, M.A.; Ix, J.H.; Schnabl, B.; Sirlin, C.B.; et al. Association Between Quantity of Liver Fat and Cardiovascular Risk in Patients With Nonalcoholic Fatty Liver Disease Independent of Nonalcoholic Steatohepatitis. Clin. Gastroenterol. Hepatol. 2015, 13, 1513–1520. [Google Scholar] [CrossRef]
- Hillier, T.A.; Pedula, K.L. Characteristics of an adult population with newly diagnosed type 2 diabetes: The relation of obesity and age of onset. Diabetes Care 2001, 24, 1522–1527. [Google Scholar] [CrossRef]
- Lim, S.M.; Choi, D.P.; Rhee, Y.; Kim, H.C. Association between obesity indices and insulin resistance among healthy Korean adolescents: The JS High School Study. PLoS ONE 2015, 10, e0125238. [Google Scholar] [CrossRef]
- Bellentani, S.; Saccoccio, G.; Masutti, F.; Crocè, L.S.; Brandi, G.; Sasso, F.; Cristanini, G.; Tiribelli, C. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann. Intern. Med. 2000, 132, 112–117. [Google Scholar] [CrossRef]
- James, O.F.; Day, C.P. Non-alcoholic steatohepatitis (NASH): A disease of emerging identity and importance. J. Hepatol. 1998, 29, 495–501. [Google Scholar] [CrossRef]
- Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52, 102–110. [Google Scholar] [CrossRef]
- Ferrannini, E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: Problems and prospects. Endocr. Rev. 1998, 19, 477–490. [Google Scholar] [CrossRef]
- Suchy, D.; Łabuzek, K.; Machnik, G.; Kozłowski, M.; Okopień, B. SOCS and diabetes-ups and downs of a turbulent relationship. Cell Biochem. Funct. 2013, 31, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Younes, R.; Bugianesi, E. NASH in Lean Individuals. Semin. Liver Dis. 2019, 39, 086–095. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Utzschneider, K.M.; Kahn, S.E. The Role of insulin resistance in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2006, 91, 4753–4761. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Buey, G.; Núñez-Córdoba, J.M.; Llavero-Valero, M.; Gargallo, J.; Salvador, J.; Escalada, J. Is HOMA-IR a potential screening test for non-alcoholic fatty liver disease in adults with type 2 diabetes? Eur. J. Intern. Med. 2017, 41, 74–78. [Google Scholar] [CrossRef]
- Salgado, A.L.F.D.A.; Carvalho, L.D.; Oliveira, A.C.; Santos, V.N.D.; Vieira, J.G.; Parise, E.R. Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arq. Gastroenterol. 2010, 47, 165–169. [Google Scholar] [CrossRef][Green Version]
- Yang, K.C.; Hung, H.-F.; Lu, C.-W.; Chang, H.-H.; Lee, L.-T.; Huang, K.-C. Association of non-alcoholic fatty liver disease with metabolic syndrome independently of central obesity and insulin resistance. Sci. Rep. 2016, 6, 27034. [Google Scholar] [CrossRef]
- Chitturi, S.; Abeygunasekera, S.; Farrell, G.C.; Holmes-Walker, J.; Hui, J.M.; Fung, C.; Karim, R.; Lin, R.; Samarasinghe, D.; Liddle, C.; et al. NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology 2002, 35, 373–379. [Google Scholar] [CrossRef]
- Marchesini, G. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003, 37, 917–923. [Google Scholar] [CrossRef]
- Kim, N.H.; Park, J.; Kim, S.H.; Kim, Y.H.; Kim, D.H.; Cho, G.-Y.; Baik, I.; Lim, H.E.; Kim, E.J.; Na, J.O.; et al. Non-alcoholic fatty liver disease, metabolic syndrome and subclinical cardiovascular changes in the general population. Heart 2014, 100, 938–943. [Google Scholar] [CrossRef]
Variables | NAFLD | Controls | ||
---|---|---|---|---|
Male (n = 86) | Female (n = 52) | Male (n = 500) | Female (n = 500) | |
Age (years) | 44.5 (19–74) | 53.5 (18–72) | 26 (18–62) | 22.5 (18–66) |
Weight | 100.4 (69–149) | 81.6 (55–127) | 81 (50–150) | 62.5 (45–110) |
Height | 176.3 (162–194) | 158 (142–171) | 180 (157–200) | 167 (147–190) |
BMI (kg/m2) | 31.8 (23–46) | 32.5 (22–48) | 24.9 (17–45) | 22.7 (16–40) |
Hamaguchi score | 3 (2–4) | 3 (2–4) | N.D. | N.D. |
AST, IU/1 (normal: <35) | 31 (12–171) | 24 (13–125) | 21 (12–35) | 18 (10–35) |
ALT, IU/l (normal: <35) | 52 (17–187) | 34 (10–275) | 25 (10–34) | 21 (8–35) |
GGT, IU/l (normal: <35) | 47 (17–2690) | 43.5 (10–507) | 24 (9–35) | 22 (8–35) |
HOMA-IR | 2.9 (0.4–86.6) | 3.5 (0.4–23.8) | N.D. | N.D. |
Glucose (mg/dL) (normal: <99) | 102 (48–370) | 100.5 (83–282) | 80 (70–99) | 82 (73–98) |
TG (mg/dL) (normal: <150) | 125 (45–547) | 123.5 (27–190) | N.D. | N.D. |
Cholesterol (mg/dL) (normal: <190) | 189 (100–726) | 201 (116–420) | N.D. | N.D. |
Waist circumference (cm) | 106.8 (89–142) | 101 (74–146) | 89 (64–145) | 77 (57–120) |
Hip circumference (cm) | 109 (94–134) | 111 (89–145) | 103 (77–155) | 99 (78–138) |
WHR | 0.9 (0.8–1.2) | 0.9 (0.8–1) | 0.9 (0.7–1.1) | 0.8 (0.6–1) |
Fat (kg) | 35.1 (18–60) | 44.9 (30–56) | 26.7 (8–64) | 19 (5–52) |
Tissue activity (kg) | 64 (42–89) | 46.3 (35–62) | 54.6 (39–85) | 43.8 (31–62) |
Frequencies | NAFLD (n = 138) | Controls (n = 1000) | OR (95% CI) | p | x2 |
---|---|---|---|---|---|
Genotype | |||||
GG | 38 (27.5%) | 238 (23.8%) | 1.2 (0.9–1.8) | 0.3 | 0.9 |
GA | 73 (52.9%) | 494 (49.4%) | 1.1 (0.8–1.6) | 0.4 | 0.6 |
AA | 27 (19.6%) | 268 (26.8%) | 0.6 (0.4–1.1) | 0.07 | 3.3 |
Allele | |||||
G/A | 149 (54.8%)/127 (45.2%) | 970 (48.5%)/1030 (51.5%) | 1.0 (0.8–1.3) | 0.08 | 2.9 |
Frequencies | NAFLD BMI ≥ 30 (kg/m2) (n = 98) | Controls BMI ≥ 30 (kg/m2) (n = 104) | OR (95% CI) | p | x2 |
---|---|---|---|---|---|
Genotype | |||||
GG | 28 (28.6%) | 21 (20.2%) | 1.6 (0.8–3.0) | 0.2 | 1.9 |
GA | 54 (55.1%) | 48 (46.2%) | 1.4 (0.8–2.5) | 0.2 | 1.6 |
AA | 16 (16.3%) | 35 (33.6%) | 0.4 (0.2–0.7) | 0.004 | 8.0 |
Allele | |||||
G/A | 110 (56.1%)/86 (43.9%) | 90 (43.3%)/118 (56.7%) | 1.6 (1.1–2.5) | 0.009 | 6.7 |
Normal weight | Overweight | Obese | |||||
---|---|---|---|---|---|---|---|
Frequencies | BMI = 18.5–24.9 (kg/m2) (n = 610) | BMI = 25–29.9 (kg/m2) (n = 270) | OR (95% CI) | p vs. normal weight | BMI ≥ 30 (kg/m2) (n = 104) | OR (95% CI) | p vs. normal weight |
Genotype | |||||||
GG | 142 (23.3%) | 68 (25.2%) | 1.1 (0.8–1.5) | 0.5 | 21 (20.2%) | 0.8 (0.5–1.4) | 0.5 |
GA | 317 (52%) | 126 (46.7%) | 0.8 (0.6–1.1) | 0.1 | 48 (46.2%) | 0.8 (0.5–1.2) | 0.3 |
AA | 151 (24.7%) | 76 (28.1%) | 1.2 (0.9–1.6) | 0.3 | 35 (33.6%) | 1.5 (0.9–2.4) | 0.03 |
Allele | |||||||
G/A | 601 (49.3%)/ 619 (50.7%) | 262 (48.5%)/278 (51.5%) | 1.0 (0.8–1.3) | 0.8 | 90 (43.3%)/118 (56.7%) | 0.8 (0.6–1.0) | 0.09 |
Variables | SOCS1 | p–value GG vs. AA | ||
---|---|---|---|---|
GG | GA | AA | ||
N (male/female) | 38 (23/15) | 73 (48/25) | 27 (15/12) | NS |
Age (years) | 46 (18–63) | 48 (19–74) | 50 (26–62) | NS |
BMI (kg/m2) | 32.2 (23.5–48.1) | 32.0 (22.5–42.5) | 30.6 (24.2–46.5) | NS |
Hamaguchi score | 3 (2–4) | 3 (2–4) | 2 (2–4) | NS |
AST, IU/l (normal: <35) | 30 (13–171) | 28 (14–125) | 32 (12–85) | NS |
ALT, IU/l (normal: <35) | 51 (10–166) | 36 (12–275) | 50 (13–187) | NS |
GGT, IU/l (normal: <35) | 46 (10–2690) | 43 (11–507) | 55 (16–193) | NS |
HOMA-IR | 3.2 (0.4–19.6) | 3.0 (0.4–86.6) | 3.3 (0.4–23.5) | NS |
Glucose (mg/dL) (normal: <99) | 102 (84–232) | 102 (48–370) | 101 (83–247) | NS |
TG(mg/dL)(normal: <150) | 115 (27–299) | 122 (44–5473) | 148 (45–472) | NS |
Cholesterol (mg/dL) (normal: <190) | 198 (116–299) | 196 (100–726) | 189 (132–394) | NS |
Variables | Obese NAFLD BMI ≥30 (kg/m2) | Overweight NAFLD BMI = 25–29.9 (kg/m2) | ||||
---|---|---|---|---|---|---|
GG | AA | P–value GG vs. AA | GG | AA | p–value GG vs. AA | |
N (male/female) | 28 (15/13) | 16 (8/8) | NS | 10 (8/2) | 11 (7/4) | NS |
Age (years) | 46 (18–63) | 49 (26–62) | NS | 47 (26–60) | 50 (35–60) | NS |
BMI (kg/m2) | 33.4 (30–48) | 35.2 (30–46) | NS | 27.4 (23–29) | 29.2 (24–29) | 0.06 |
Hamaguchi score | 3 (2–4) | 2 (2–4) | NS | 3 (2–3) | 2 (2–3) | NS |
AST, IU/l (normal: <35) | 31 (13–171) | 34 (12–85) | NS | 26 (16–43) | 27 (14–75) | NS |
ALT, IU/l (normal: <35) | 51 (10–166) | 53 (17–170) | NS | 54.5 (17–87) | 41 (13–187) | 0.09 |
GGT, IU/l (normal: <35) | 47 (14–2690) | 57 (16–193) | NS | 39 (10–93) | 47 (20–190) | 0.05 |
HOMA-IR | 3.5 (0.4–19.6) | 3.2 (0.4–23.5) | NS | 2.1 (0.4–3.7) | 3.3 (0.6–9.5) | 0.03 |
Glucose (mg/dL) (normal: <99) | 105 (87–232) | 98 (83–247) | NS | 98 (84–108) | 106 (87–129) | NS |
TG (mg/dL) (normal: <150) | 133 (43–299) | 161 (111–422) | 0.02 | 98 (27–216) | 127 (45–472) | NS |
Cholesterol (mg/dL) (normal: <190) | 199 (128–299) | 188.5 (132–394) | NS | 185 (116–254) | 193 (142–267) | NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kempinska-Podhorodecka, A.; Wunsch, E.; Milkiewicz, P.; Stachowska, E.; Milkiewicz, M. The Association between SOCS1−1656G>A Polymorphism, Insulin Resistance and Obesity in Nonalcoholic Fatty Liver Disease (NAFLD) Patients. J. Clin. Med. 2019, 8, 1912. https://doi.org/10.3390/jcm8111912
Kempinska-Podhorodecka A, Wunsch E, Milkiewicz P, Stachowska E, Milkiewicz M. The Association between SOCS1−1656G>A Polymorphism, Insulin Resistance and Obesity in Nonalcoholic Fatty Liver Disease (NAFLD) Patients. Journal of Clinical Medicine. 2019; 8(11):1912. https://doi.org/10.3390/jcm8111912
Chicago/Turabian StyleKempinska-Podhorodecka, Agnieszka, Ewa Wunsch, Piotr Milkiewicz, Ewa Stachowska, and Malgorzata Milkiewicz. 2019. "The Association between SOCS1−1656G>A Polymorphism, Insulin Resistance and Obesity in Nonalcoholic Fatty Liver Disease (NAFLD) Patients" Journal of Clinical Medicine 8, no. 11: 1912. https://doi.org/10.3390/jcm8111912