The Association between SOCS1−1656G>A Polymorphism, Insulin Resistance and Obesity in Nonalcoholic Fatty Liver Disease (NAFLD) Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 2002, 346, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Verdelho Machado, M.; Diehl, A.M. The hedgehog pathway in nonalcoholic fatty liver disease. Crit. Rev. Biochem. Mol. Biol. 2018, 53, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Raszeja-Wyszomirska, J.; Szymanik, B.; Ławniczak, M.; Kajor, M.; Chwist, A.; Milkiewicz, P.; Hartleb, M. Validation of the BARD scoring system in Polish patients with nonalcoholic fatty liver disease (NAFLD). BMC Gastroenterol. 2010, 10, 67. [Google Scholar] [CrossRef]
- Patell, R.; Dosi, R.; Joshi, H.; Sheth, S.; Shah, P.; Jasdanwala, S. Non-Alcoholic fatty liver disease (NAFLD) in obesity. J. Clin. Diagn. Res. 2014, 8, 62. [Google Scholar]
- Duvnjak, M.; Barsić, N.; Tomasić, V.; Lerotić, I. Genetic polymorphisms in non-alcoholic fatty liver disease: Clues to pathogenesis and disease progression. World J. Gastroenterol. 2009, 15, 6023. [Google Scholar] [CrossRef]
- Del Campo, J.; Gallego-Durán, R.; Gallego, P.; Grande, L. Genetic and epigenetic regulation in nonalcoholic fatty liver disease (NAFLD). Int. J. Mol. Sci. 2018, 19, 911. [Google Scholar] [CrossRef]
- Fujimoto, M.; Naka, T. SOCS1, a Negative Regulator of Cytokine Signals and TLR Responses, in Human Liver Diseases. Gastroenterol. Res. Pract. 2010, 2010, 470468. [Google Scholar] [CrossRef]
- Galic, S.; Sachithanandan, N.; Kay, T.W.; Steinberg, G.R. Suppressor of cytokine signalling (SOCS) proteins as guardians of inflammatory responses critical for regulating insulin sensitivity. Biochem. J. 2014, 461, 177–188. [Google Scholar] [CrossRef]
- Ueki, K.; Kondo, T.; Kahn, C.R. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol. Cell. Biol. 2004, 24, 5434–5446. [Google Scholar] [CrossRef]
- Ueki, K.; Kondo, T.; Tseng, Y.-H.; Kahn, C.R. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc. Natl. Acad. Sci. USA 2004, 101, 10422–10427. [Google Scholar] [CrossRef] [PubMed]
- Rui, L.; Yuan, M.; Frantz, D.; Shoelson, S.; White, M.F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem. 2002, 277, 42394–42398. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Chen, L.; Yang, K.; Jiang, H.; Xu, W.; Luan, J. SOCS molecules: The growing players in macrophage polarization and function. Oncotarget 2017, 8, 60710–60722. [Google Scholar] [CrossRef]
- Tamiya, T.; Kashiwagi, I.; Takahashi, R.; Yasukawa, H.; Yoshimura, A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 980–985. [Google Scholar] [CrossRef]
- Seif, F.; Khoshmirsafa, M.; Aazami, H.; Mohsenzadegan, M.; Sedighi, G.; Bahar, M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal. 2017, 15, 23. [Google Scholar] [CrossRef]
- Thomas, H.E.; Kay, T.W. Beta cell destruction in the development of autoimmune diabetes in the non-obese diabetic (NOD) mouse. Diabetes. Metab. Res. Rev. 2000, 16, 251–261. [Google Scholar] [CrossRef]
- Krebs, D.L.; Hilton, D.J. A new role for SOCS in insulin action. Suppressor of cytokine signaling. Sci. STKE 2003, 2003, PE6. [Google Scholar]
- Saad, M.J.; Araki, E.; Miralpeix, M.; Rothenberg, P.L.; White, M.F.; Kahn, C.R. Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance. J. Clin. Investig. 1992, 90, 1839–1849. [Google Scholar] [CrossRef]
- Gylvin, T.; Ek, J.; Nolsøe, R.; Albrechtsen, A.; Andersen, G.; Bergholdt, R.; Brorsson, C.; Bang-Berthelsen, C.H.; Hansen, T.; Karlsen, A.E.; et al. Functional SOCS1 polymorphisms are associated with variation in obesity in whites. Diabetes Obes. Metab. 2009, 11, 196–203. [Google Scholar] [CrossRef]
- Kempinska-Podhorodecka, A.; Milkiewicz, M.; Wasik, U.; Ligocka, J.; Zawadzki, M.; Krawczyk, M.; Milkiewicz, P. Decreased expression of vitamin D receptor affects an immune response in primary biliary cholangitis via the VDR-miRNA155-SOCS1 pathway. Int. J. Mol. Sci. 2017, 18, 289. [Google Scholar] [CrossRef]
- Hirschfield, G.M.; Xie, G.; Lu, E.; Sun, Y.; Juran, B.D.; Chellappa, V.; Coltescu, C.; Mason, A.L.; Milkiewicz, P.; Myers, R.P.; et al. Association of primary biliary cirrhosis with variants in the CLEC16A, SOCS1, SPIB and SIAE immunomodulatory genes. Genes Immun. 2012, 13, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, M.; Kojima, T.; Itoh, Y.; Harano, Y.; Fujii, K.; Nakajima, T.; Kato, T.; Takeda, N.; Okuda, J.; Ida, K.; et al. The Severity of Ultrasonographic Findings in Nonalcoholic Fatty Liver Disease Reflects the Metabolic Syndrome and Visceral Fat Accumulation. Am. J. Gastroenterol. 2007, 102, 2708–2715. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.; Stachowska, E.; Milkiewicz, P.; Lammert, F.; Milkiewicz, M. Reduction of Caloric Intake Might Override the Prosteatotic Effects of the PNPLA3 p.I148M and TM6SF2 p.E167K Variants in Patients with Fatty Liver: Ultrasound-Based Prospective Study. Digestion 2016, 93, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Arulanandan, A.; Ang, B.; Bettencourt, R.; Hooker, J.; Behling, C.; Lin, G.Y.; Valasek, M.A.; Ix, J.H.; Schnabl, B.; Sirlin, C.B.; et al. Association Between Quantity of Liver Fat and Cardiovascular Risk in Patients With Nonalcoholic Fatty Liver Disease Independent of Nonalcoholic Steatohepatitis. Clin. Gastroenterol. Hepatol. 2015, 13, 1513–1520. [Google Scholar] [CrossRef]
- Hillier, T.A.; Pedula, K.L. Characteristics of an adult population with newly diagnosed type 2 diabetes: The relation of obesity and age of onset. Diabetes Care 2001, 24, 1522–1527. [Google Scholar] [CrossRef]
- Lim, S.M.; Choi, D.P.; Rhee, Y.; Kim, H.C. Association between obesity indices and insulin resistance among healthy Korean adolescents: The JS High School Study. PLoS ONE 2015, 10, e0125238. [Google Scholar] [CrossRef]
- Bellentani, S.; Saccoccio, G.; Masutti, F.; Crocè, L.S.; Brandi, G.; Sasso, F.; Cristanini, G.; Tiribelli, C. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann. Intern. Med. 2000, 132, 112–117. [Google Scholar] [CrossRef]
- James, O.F.; Day, C.P. Non-alcoholic steatohepatitis (NASH): A disease of emerging identity and importance. J. Hepatol. 1998, 29, 495–501. [Google Scholar] [CrossRef]
- Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003, 52, 102–110. [Google Scholar] [CrossRef]
- Ferrannini, E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: Problems and prospects. Endocr. Rev. 1998, 19, 477–490. [Google Scholar] [CrossRef]
- Suchy, D.; Łabuzek, K.; Machnik, G.; Kozłowski, M.; Okopień, B. SOCS and diabetes-ups and downs of a turbulent relationship. Cell Biochem. Funct. 2013, 31, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Younes, R.; Bugianesi, E. NASH in Lean Individuals. Semin. Liver Dis. 2019, 39, 086–095. [Google Scholar] [CrossRef] [PubMed]
- Utzschneider, K.M.; Kahn, S.E. The Role of insulin resistance in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2006, 91, 4753–4761. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Buey, G.; Núñez-Córdoba, J.M.; Llavero-Valero, M.; Gargallo, J.; Salvador, J.; Escalada, J. Is HOMA-IR a potential screening test for non-alcoholic fatty liver disease in adults with type 2 diabetes? Eur. J. Intern. Med. 2017, 41, 74–78. [Google Scholar] [CrossRef]
- Salgado, A.L.F.D.A.; Carvalho, L.D.; Oliveira, A.C.; Santos, V.N.D.; Vieira, J.G.; Parise, E.R. Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arq. Gastroenterol. 2010, 47, 165–169. [Google Scholar] [CrossRef]
- Yang, K.C.; Hung, H.-F.; Lu, C.-W.; Chang, H.-H.; Lee, L.-T.; Huang, K.-C. Association of non-alcoholic fatty liver disease with metabolic syndrome independently of central obesity and insulin resistance. Sci. Rep. 2016, 6, 27034. [Google Scholar] [CrossRef]
- Chitturi, S.; Abeygunasekera, S.; Farrell, G.C.; Holmes-Walker, J.; Hui, J.M.; Fung, C.; Karim, R.; Lin, R.; Samarasinghe, D.; Liddle, C.; et al. NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology 2002, 35, 373–379. [Google Scholar] [CrossRef]
- Marchesini, G. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003, 37, 917–923. [Google Scholar] [CrossRef]
- Kim, N.H.; Park, J.; Kim, S.H.; Kim, Y.H.; Kim, D.H.; Cho, G.-Y.; Baik, I.; Lim, H.E.; Kim, E.J.; Na, J.O.; et al. Non-alcoholic fatty liver disease, metabolic syndrome and subclinical cardiovascular changes in the general population. Heart 2014, 100, 938–943. [Google Scholar] [CrossRef]
Variables | NAFLD | Controls | ||
---|---|---|---|---|
Male (n = 86) | Female (n = 52) | Male (n = 500) | Female (n = 500) | |
Age (years) | 44.5 (19–74) | 53.5 (18–72) | 26 (18–62) | 22.5 (18–66) |
Weight | 100.4 (69–149) | 81.6 (55–127) | 81 (50–150) | 62.5 (45–110) |
Height | 176.3 (162–194) | 158 (142–171) | 180 (157–200) | 167 (147–190) |
BMI (kg/m2) | 31.8 (23–46) | 32.5 (22–48) | 24.9 (17–45) | 22.7 (16–40) |
Hamaguchi score | 3 (2–4) | 3 (2–4) | N.D. | N.D. |
AST, IU/1 (normal: <35) | 31 (12–171) | 24 (13–125) | 21 (12–35) | 18 (10–35) |
ALT, IU/l (normal: <35) | 52 (17–187) | 34 (10–275) | 25 (10–34) | 21 (8–35) |
GGT, IU/l (normal: <35) | 47 (17–2690) | 43.5 (10–507) | 24 (9–35) | 22 (8–35) |
HOMA-IR | 2.9 (0.4–86.6) | 3.5 (0.4–23.8) | N.D. | N.D. |
Glucose (mg/dL) (normal: <99) | 102 (48–370) | 100.5 (83–282) | 80 (70–99) | 82 (73–98) |
TG (mg/dL) (normal: <150) | 125 (45–547) | 123.5 (27–190) | N.D. | N.D. |
Cholesterol (mg/dL) (normal: <190) | 189 (100–726) | 201 (116–420) | N.D. | N.D. |
Waist circumference (cm) | 106.8 (89–142) | 101 (74–146) | 89 (64–145) | 77 (57–120) |
Hip circumference (cm) | 109 (94–134) | 111 (89–145) | 103 (77–155) | 99 (78–138) |
WHR | 0.9 (0.8–1.2) | 0.9 (0.8–1) | 0.9 (0.7–1.1) | 0.8 (0.6–1) |
Fat (kg) | 35.1 (18–60) | 44.9 (30–56) | 26.7 (8–64) | 19 (5–52) |
Tissue activity (kg) | 64 (42–89) | 46.3 (35–62) | 54.6 (39–85) | 43.8 (31–62) |
Frequencies | NAFLD (n = 138) | Controls (n = 1000) | OR (95% CI) | p | x2 |
---|---|---|---|---|---|
Genotype | |||||
GG | 38 (27.5%) | 238 (23.8%) | 1.2 (0.9–1.8) | 0.3 | 0.9 |
GA | 73 (52.9%) | 494 (49.4%) | 1.1 (0.8–1.6) | 0.4 | 0.6 |
AA | 27 (19.6%) | 268 (26.8%) | 0.6 (0.4–1.1) | 0.07 | 3.3 |
Allele | |||||
G/A | 149 (54.8%)/127 (45.2%) | 970 (48.5%)/1030 (51.5%) | 1.0 (0.8–1.3) | 0.08 | 2.9 |
Frequencies | NAFLD BMI ≥ 30 (kg/m2) (n = 98) | Controls BMI ≥ 30 (kg/m2) (n = 104) | OR (95% CI) | p | x2 |
---|---|---|---|---|---|
Genotype | |||||
GG | 28 (28.6%) | 21 (20.2%) | 1.6 (0.8–3.0) | 0.2 | 1.9 |
GA | 54 (55.1%) | 48 (46.2%) | 1.4 (0.8–2.5) | 0.2 | 1.6 |
AA | 16 (16.3%) | 35 (33.6%) | 0.4 (0.2–0.7) | 0.004 | 8.0 |
Allele | |||||
G/A | 110 (56.1%)/86 (43.9%) | 90 (43.3%)/118 (56.7%) | 1.6 (1.1–2.5) | 0.009 | 6.7 |
Normal weight | Overweight | Obese | |||||
---|---|---|---|---|---|---|---|
Frequencies | BMI = 18.5–24.9 (kg/m2) (n = 610) | BMI = 25–29.9 (kg/m2) (n = 270) | OR (95% CI) | p vs. normal weight | BMI ≥ 30 (kg/m2) (n = 104) | OR (95% CI) | p vs. normal weight |
Genotype | |||||||
GG | 142 (23.3%) | 68 (25.2%) | 1.1 (0.8–1.5) | 0.5 | 21 (20.2%) | 0.8 (0.5–1.4) | 0.5 |
GA | 317 (52%) | 126 (46.7%) | 0.8 (0.6–1.1) | 0.1 | 48 (46.2%) | 0.8 (0.5–1.2) | 0.3 |
AA | 151 (24.7%) | 76 (28.1%) | 1.2 (0.9–1.6) | 0.3 | 35 (33.6%) | 1.5 (0.9–2.4) | 0.03 |
Allele | |||||||
G/A | 601 (49.3%)/ 619 (50.7%) | 262 (48.5%)/278 (51.5%) | 1.0 (0.8–1.3) | 0.8 | 90 (43.3%)/118 (56.7%) | 0.8 (0.6–1.0) | 0.09 |
Variables | SOCS1 | p–value GG vs. AA | ||
---|---|---|---|---|
GG | GA | AA | ||
N (male/female) | 38 (23/15) | 73 (48/25) | 27 (15/12) | NS |
Age (years) | 46 (18–63) | 48 (19–74) | 50 (26–62) | NS |
BMI (kg/m2) | 32.2 (23.5–48.1) | 32.0 (22.5–42.5) | 30.6 (24.2–46.5) | NS |
Hamaguchi score | 3 (2–4) | 3 (2–4) | 2 (2–4) | NS |
AST, IU/l (normal: <35) | 30 (13–171) | 28 (14–125) | 32 (12–85) | NS |
ALT, IU/l (normal: <35) | 51 (10–166) | 36 (12–275) | 50 (13–187) | NS |
GGT, IU/l (normal: <35) | 46 (10–2690) | 43 (11–507) | 55 (16–193) | NS |
HOMA-IR | 3.2 (0.4–19.6) | 3.0 (0.4–86.6) | 3.3 (0.4–23.5) | NS |
Glucose (mg/dL) (normal: <99) | 102 (84–232) | 102 (48–370) | 101 (83–247) | NS |
TG(mg/dL)(normal: <150) | 115 (27–299) | 122 (44–5473) | 148 (45–472) | NS |
Cholesterol (mg/dL) (normal: <190) | 198 (116–299) | 196 (100–726) | 189 (132–394) | NS |
Variables | Obese NAFLD BMI ≥30 (kg/m2) | Overweight NAFLD BMI = 25–29.9 (kg/m2) | ||||
---|---|---|---|---|---|---|
GG | AA | P–value GG vs. AA | GG | AA | p–value GG vs. AA | |
N (male/female) | 28 (15/13) | 16 (8/8) | NS | 10 (8/2) | 11 (7/4) | NS |
Age (years) | 46 (18–63) | 49 (26–62) | NS | 47 (26–60) | 50 (35–60) | NS |
BMI (kg/m2) | 33.4 (30–48) | 35.2 (30–46) | NS | 27.4 (23–29) | 29.2 (24–29) | 0.06 |
Hamaguchi score | 3 (2–4) | 2 (2–4) | NS | 3 (2–3) | 2 (2–3) | NS |
AST, IU/l (normal: <35) | 31 (13–171) | 34 (12–85) | NS | 26 (16–43) | 27 (14–75) | NS |
ALT, IU/l (normal: <35) | 51 (10–166) | 53 (17–170) | NS | 54.5 (17–87) | 41 (13–187) | 0.09 |
GGT, IU/l (normal: <35) | 47 (14–2690) | 57 (16–193) | NS | 39 (10–93) | 47 (20–190) | 0.05 |
HOMA-IR | 3.5 (0.4–19.6) | 3.2 (0.4–23.5) | NS | 2.1 (0.4–3.7) | 3.3 (0.6–9.5) | 0.03 |
Glucose (mg/dL) (normal: <99) | 105 (87–232) | 98 (83–247) | NS | 98 (84–108) | 106 (87–129) | NS |
TG (mg/dL) (normal: <150) | 133 (43–299) | 161 (111–422) | 0.02 | 98 (27–216) | 127 (45–472) | NS |
Cholesterol (mg/dL) (normal: <190) | 199 (128–299) | 188.5 (132–394) | NS | 185 (116–254) | 193 (142–267) | NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kempinska-Podhorodecka, A.; Wunsch, E.; Milkiewicz, P.; Stachowska, E.; Milkiewicz, M. The Association between SOCS1−1656G>A Polymorphism, Insulin Resistance and Obesity in Nonalcoholic Fatty Liver Disease (NAFLD) Patients. J. Clin. Med. 2019, 8, 1912. https://doi.org/10.3390/jcm8111912
Kempinska-Podhorodecka A, Wunsch E, Milkiewicz P, Stachowska E, Milkiewicz M. The Association between SOCS1−1656G>A Polymorphism, Insulin Resistance and Obesity in Nonalcoholic Fatty Liver Disease (NAFLD) Patients. Journal of Clinical Medicine. 2019; 8(11):1912. https://doi.org/10.3390/jcm8111912
Chicago/Turabian StyleKempinska-Podhorodecka, Agnieszka, Ewa Wunsch, Piotr Milkiewicz, Ewa Stachowska, and Malgorzata Milkiewicz. 2019. "The Association between SOCS1−1656G>A Polymorphism, Insulin Resistance and Obesity in Nonalcoholic Fatty Liver Disease (NAFLD) Patients" Journal of Clinical Medicine 8, no. 11: 1912. https://doi.org/10.3390/jcm8111912
APA StyleKempinska-Podhorodecka, A., Wunsch, E., Milkiewicz, P., Stachowska, E., & Milkiewicz, M. (2019). The Association between SOCS1−1656G>A Polymorphism, Insulin Resistance and Obesity in Nonalcoholic Fatty Liver Disease (NAFLD) Patients. Journal of Clinical Medicine, 8(11), 1912. https://doi.org/10.3390/jcm8111912