The Predictive Accuracy of the General Movement Assessment for Cerebral Palsy: A Prospective, Observational Study of High-Risk Infants in a Clinical Follow-Up Setting
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. GMA and Neonatal Imaging
3.2. Prediction of CP
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cans, C. Surveillance of cerebral palsy in Europe: A collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev. Med. Child Neurol. 2000, 42, 816–824. [Google Scholar] [CrossRef]
- Oskoui, M.; Coutinho, F.; Dykeman, J.; Jette, N.; Pringsheim, T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2013, 55, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Gorter, J.W.; Ketelaar, M.; Rosenbaum, P.; Helders, P.J.; Palisano, R. Use of the GMFCS in infants with CP: The need for reclassification at age 2 years or older. Dev. Med. Child Neurol. 2009, 51, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Boychuck, Z.; Bussieres, A.; Goldschleger, J.; Majnemer, A. Age at referral for diagnosis and rehabilitation services for cerebral palsy: A scoping review. Dev. Med. Child Neurol. 2019, 61, 908–914. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, A.H.; Thompson, S.C.; Gecz, J. Cerebral palsy: Causes, pathways, and the role of genetic variants. Am. J. Obstet. Gynecol. 2015, 213, 779–788. [Google Scholar] [CrossRef]
- Anderson, V.; Spencer-Smith, M.; Wood, A. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain A J. Neurol. 2011, 134, 2197–2221. [Google Scholar] [CrossRef] [Green Version]
- Guttmann, K.; Flibotte, J.; DeMauro, S.B. Parental Perspectives on Diagnosis and Prognosis of Neonatal Intensive Care Unit Graduates with Cerebral Palsy. J. Pediatr. 2018, 203, 156–162. [Google Scholar] [CrossRef]
- Baird, G.; McConachie, H.; Scrutton, D. Parents’ perceptions of disclosure of the diagnosis of cerebral palsy. Arch. Dis. Child. 2000, 83, 475–480. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.C.; et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatrics 2017, 171, 897–907. [Google Scholar] [CrossRef]
- Bosanquet, M.; Copeland, L.; Ware, R.; Boyd, R. A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child Neurol. 2013, 55, 418–426. [Google Scholar] [CrossRef]
- Prechtl, H.F.; Einspieler, C.; Cioni, G.; Bos, A.F.; Ferrari, F.; Sontheimer, D. An early marker for neurological deficits after perinatal brain lesions. Lancet 1997, 349, 1361–1363. [Google Scholar] [CrossRef]
- Ferrari, F.; Cioni, G.; Einspieler, C.; Roversi, M.F.; Bos, A.F.; Paolicelli, P.B.; Ranzi, A.; Prechtl, H.F. Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch. Pediatr. Adolesc. Med. 2002, 156, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Romeo, D.M.; Guzzetta, A.; Scoto, M.; Cioni, M.; Patusi, P.; Mazzone, D.; Romeo, M.G. Early neurologic assessment in preterm-infants: Integration of traditional neurologic examination and observation of general movements. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 2008, 12, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Brogna, C.; Romeo, D.M.; Cervesi, C.; Scrofani, L.; Romeo, M.G.; Mercuri, E.; Guzzetta, A. Prognostic value of the qualitative assessments of general movements in late-preterm infants. Early Hum. Dev. 2013, 89, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Spittle, A.J.; Spencer-Smith, M.M.; Cheong, J.L.; Eeles, A.L.; Lee, K.J.; Anderson, P.J.; Doyle, L.W. General movements in very preterm children and neurodevelopment at 2 and 4 years. Pediatrics 2013, 132, e452–e458. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.; Crowle, C.; Goyen, T.A.; Hardman, C.; Jackman, M.; Novak, I.; Badawi, N. Sensitivity and specificity of General Movements Assessment for diagnostic accuracy of detecting cerebral palsy early in an Australian context. J Paediatr. Child Health 2016, 52, 54–59. [Google Scholar] [CrossRef]
- Einspieler, C.; Yang, H.; Bartl-Pokorny, K.D.; Chi, X.; Zang, F.F.; Marschik, P.B.; Guzzetta, A.; Ferrari, F.; Bos, A.F.; Cioni, G. Are sporadic fidgety movements as clinically relevant as is their absence? Early Hum. Dev. 2015, 91, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Einspieler, C.; Prechtl, H.F.R.; Bos, A.F.; Ferrari, F.C.G. Prechtl’s Method on the Qualitative Assessment of General Movements in Preterm, Term and Young Infants; Mac Keith Press: London, UK, 2004; Volume 167. [Google Scholar]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Rutherford, M.; Ramenghi, L.A.; Edwards, A.D.; Brocklehurst, P.; Halliday, H.; Levene, M.; Strohm, B.; Thoresen, M.; Whitelaw, A.; Azzopardi, D. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: A nested substudy of a randomised controlled trial. Lancet Neurol. 2010, 9, 39–45. [Google Scholar] [CrossRef]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef]
- Fjortoft, T.; Einspieler, C.; Adde, L.; Strand, L.I. Inter-observer reliability of the “Assessment of Motor Repertoire—3 to 5 Months” based on video recordings of infants. Early Hum. Dev. 2009, 85, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Darsaklis, V.; Snider, L.M.; Majnemer, A.; Mazer, B. Predictive validity of Prechtl’s Method on the Qualitative Assessment of General Movements: A systematic review of the evidence. Dev. Med. Child Neurol. 2011, 53, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Kwong, A.K.L.; Fitzgerald, T.L.; Doyle, L.W.; Cheong, J.L.Y.; Spittle, A.J. Predictive validity of spontaneous early infant movement for later cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2018, 60, 480–489. [Google Scholar] [CrossRef]
- Prechtl, H.F.; Ferrari, F.; Cioni, G. Predictive value of general movements in asphyxiated fullterm infants. Early Hum. Dev. 1993, 35, 91–120. [Google Scholar] [CrossRef]
- Cioni, G.; Bos, A.F.; Einspieler, C.; Ferrari, F.; Martijn, A.; Paolicelli, P.B.; Rapisardi, G.; Roversi, M.F.; Prechtl, H.F. Early neurological signs in preterm infants with unilateral intraparenchymal echodensity. Neuropediatrics 2000, 31, 240–251. [Google Scholar] [CrossRef]
- Bruggink, J.L.; Einspieler, C.; Butcher, P.R.; Van Braeckel, K.N.; Prechtl, H.F.; Bos, A.F. The quality of the early motor repertoire in preterm infants predicts minor neurologic dysfunction at school age. J. Pediatr. 2008, 153, 32–39. [Google Scholar] [CrossRef]
- Datta, A.N.; Furrer, M.A.; Bernhardt, I.; Huppi, P.S.; Borradori-Tolsa, C.; Bucher, H.U.; Latal, B.; Grunt, S.; Natalucci, G. Fidgety movements in infants born very preterm: Predictive value for cerebral palsy in a clinical multicentre setting. Dev. Med. Child Neurol. 2017, 59, 618–624. [Google Scholar] [CrossRef]
- Constantinou, J.C.; Adamson-Macedo, E.N.; Mirmiran, M.; Fleisher, B.E. Movement, imaging and neurobehavioral assessment as predictors of cerebral palsy in preterm infants. J. Perinatol. 2007, 27, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Maitre, N.L.; Slaughter, J.C.; Aschner, J.L. Early prediction of cerebral palsy after neonatal intensive care using motor development trajectories in infancy. Early Hum. Dev. 2013, 89, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, F.; Frassoldati, R.; Berardi, A.; Di Palma, F.; Ori, L.; Lucaccioni, L.; Bertoncelli, N.; Einspieler, C. The ontogeny of fidgety movements from 4 to 20weeks post-term age in healthy full-term infants. Early Hum. Dev. 2016, 103, 219–224. [Google Scholar] [CrossRef]
- Crowle, C.; Galea, C.; Walker, K.; Novak, I.; Badawi, N. Prediction of neurodevelopment at one year of age using the General Movements assessment in the neonatal surgical population. Early Hum. Dev. 2018, 118, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Adde, L.; Rygg, M.; Lossius, K.; Oberg, G.K.; Stoen, R. General movement assessment: Predicting cerebral palsy in clinical practise. Early Hum. Dev. 2007, 83, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Seme-Ciglenecki, P. Predictive values of cranial ultrasound and assessment of general movements for neurological development of preterm infants in the Maribor region of Slovenia. Wiener Klinische Wochenschrift 2007, 119, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Hafstrom, M.; Kallen, K.; Serenius, F.; Marsal, K.; Rehn, E.; Drake, H.; Aden, U.; Farooqi, A.; Thorngren-Jerneck, K.; Stromberg, B. Cerebral Palsy in Extremely Preterm Infants. Pediatrics 2018, 141, e20171433. [Google Scholar] [CrossRef] [Green Version]
- Hamer, E.G.; Bos, A.F.; Hadders-Algra, M. Assessment of specific characteristics of abnormal general movements: Does it enhance the prediction of cerebral palsy? Dev. Med. Child Neurol. 2011, 53, 751–756. [Google Scholar] [CrossRef]
- Fjortoft, T.; Evensen, K.A.; Oberg, G.K.; Songstad, N.T.; Labori, C.; Silberg, I.E.; Loennecken, M.; Moinichen, U.I.; Vagen, R.; Stoen, R.; et al. High prevalence of abnormal motor repertoire at 3 months corrected age in extremely preterm infants. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 2016, 20, 236–242. [Google Scholar] [CrossRef]
- Byrne, R.; Noritz, G.; Maitre, N.L. Implementation of Early Diagnosis and Intervention Guidelines for Cerebral Palsy in a High-Risk Infant Follow-Up Clinic. Pediatr. Neurol. 2017, 76, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Einspieler, C.; Sigafoos, J.; Bolte, S.; Bratl-Pokorny, K.D.; Landa, R.; Marschik, P.B. Highlighting the first 5 months of life: General movements in infants later diagnosed with autism spectrum disorder or Rett Syndrome. Res. Autism Spectr. Disord. 2014, 8, 286–291. [Google Scholar] [CrossRef]
Risk Groups | N (%) |
---|---|
BW ≤ 1000 g and/or GA < 28 weeks | 188 (46.4) |
Boys, n (%) | 102 (54.3) |
BW, mean (SD), grams | 826 (183) |
GA, mean (SD), weeks | 26.2 (1.7) |
BW > 1000 g and GA 280–306 weeks Neonatal arterial ischemic stroke | 54 (13.1) 15 (3.6) |
Neonatal encephalopathy | 57 (13.8) |
CHD w/surgery before 10 weeks | 41 (10.1) |
Others a | 50 (12.3) |
Predictive Accuracy/GMA and Imaging Results | Sensitivity % (CI 95%) | Specificity % (CI 95%) | PPV % (CI 95%) | NPV % (CI 95%) | Accuracy % (CI 95%) |
---|---|---|---|---|---|
Absent/sporadic FM FN = 10, FP = 64 | 76.2 (60.6–88.0) | 82.4 (78.1–86.2) | 33.3 (27.4–39.8) | 96.8 (94.6–98.1) | 81.7 (77.6–85.4) |
Absent FM FN = 13, FP = 31 | 69.1 (52.9–82.4) | 91.5 (88.1–94.1) | 48.3 (38.7–58.1) | 96.2 (94.2–97.6) | 89.1 (85.7–92.0) |
Abnormal neonatal imaging FN = 8, FP = 53 | 81.0 (65.9–91.4) | 85.3 (81.2–88.8) | 39.1 (32.5–46.1) | 97.5 (95.4–98.6) | 84.9 (81.0–88.2) |
Absent/sporadic FM and/or abnormal imaging FN = 5, FP = 107 | 88.1 (74.4–96.0) | 70.3 (65.3–75.0) | 25.7 (22.3–29.6) | 98.1 (95.7–99.1) | 72.1 (67.5–76.5) |
Absent/sporadic FM and abnormal imaging FN = 16, FP = 21 | 61.9 (45.6–76.4) | 94.2 (91.3–96.4) | 55.3 (43.4–66.6) | 95.5 (93.5–96.9) | 90.8 (87.6–93.5) |
Absent FM and/or abnormal imaging FN = 5, FP = 81 | 88.1 (74.4–96.0) | 77.6 (72.9–81.8) | 31.4 (26.8–36.3) | 98.3 (96.1–99.2) | 78.7 (74.3–82.6) |
Absent FM and abnormal imaging FN = 16, FP = 3 | 61.9 (45.6–76.4) | 99.2 (97.6–99.8) | 89.7 (73.3–96.5) | 95.7 (93.8–97.1) | 95.3 (92.7–97.1) |
Cerebral Palsy | ||||
---|---|---|---|---|
Unadjusted | Adjusted 1 | |||
OR (95 % CI) | p Value | OR (95 % CI) | p Value | |
Absent/sporadic FMs | 15.3 (7.0–32.0) | <0.001 | 13.9 (5.6–34.6) | <0.001 |
Abnormal neonatal imaging | 24.7 (10.8–56.3) | <0.001 | 29.3 (10.8–79.5) | <0.001 |
Gestational age Male sex | 0.93 (0.87–1.0) 1.8 (0.8–4.6) | 0.067 0.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Støen, R.; Boswell, L.; de Regnier, R.-A.; Fjørtoft, T.; Gaebler-Spira, D.; Ihlen, E.; Labori, C.; Loennecken, M.; Msall, M.; Möinichen, U.I.; et al. The Predictive Accuracy of the General Movement Assessment for Cerebral Palsy: A Prospective, Observational Study of High-Risk Infants in a Clinical Follow-Up Setting. J. Clin. Med. 2019, 8, 1790. https://doi.org/10.3390/jcm8111790
Støen R, Boswell L, de Regnier R-A, Fjørtoft T, Gaebler-Spira D, Ihlen E, Labori C, Loennecken M, Msall M, Möinichen UI, et al. The Predictive Accuracy of the General Movement Assessment for Cerebral Palsy: A Prospective, Observational Study of High-Risk Infants in a Clinical Follow-Up Setting. Journal of Clinical Medicine. 2019; 8(11):1790. https://doi.org/10.3390/jcm8111790
Chicago/Turabian StyleStøen, Ragnhild, Lynn Boswell, Raye-Ann de Regnier, Toril Fjørtoft, Deborah Gaebler-Spira, Espen Ihlen, Cathrine Labori, Marianne Loennecken, Michael Msall, Unn Inger Möinichen, and et al. 2019. "The Predictive Accuracy of the General Movement Assessment for Cerebral Palsy: A Prospective, Observational Study of High-Risk Infants in a Clinical Follow-Up Setting" Journal of Clinical Medicine 8, no. 11: 1790. https://doi.org/10.3390/jcm8111790