The Predictive Accuracy of the General Movement Assessment for Cerebral Palsy: A Prospective, Observational Study of High-Risk Infants in a Clinical Follow-Up Setting
Abstract
1. Introduction
2. Material and Methods
3. Results
3.1. GMA and Neonatal Imaging
3.2. Prediction of CP
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cans, C. Surveillance of cerebral palsy in Europe: A collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev. Med. Child Neurol. 2000, 42, 816–824. [Google Scholar] [CrossRef]
- Oskoui, M.; Coutinho, F.; Dykeman, J.; Jette, N.; Pringsheim, T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2013, 55, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Gorter, J.W.; Ketelaar, M.; Rosenbaum, P.; Helders, P.J.; Palisano, R. Use of the GMFCS in infants with CP: The need for reclassification at age 2 years or older. Dev. Med. Child Neurol. 2009, 51, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Boychuck, Z.; Bussieres, A.; Goldschleger, J.; Majnemer, A. Age at referral for diagnosis and rehabilitation services for cerebral palsy: A scoping review. Dev. Med. Child Neurol. 2019, 61, 908–914. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, A.H.; Thompson, S.C.; Gecz, J. Cerebral palsy: Causes, pathways, and the role of genetic variants. Am. J. Obstet. Gynecol. 2015, 213, 779–788. [Google Scholar] [CrossRef]
- Anderson, V.; Spencer-Smith, M.; Wood, A. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain A J. Neurol. 2011, 134, 2197–2221. [Google Scholar] [CrossRef]
- Guttmann, K.; Flibotte, J.; DeMauro, S.B. Parental Perspectives on Diagnosis and Prognosis of Neonatal Intensive Care Unit Graduates with Cerebral Palsy. J. Pediatr. 2018, 203, 156–162. [Google Scholar] [CrossRef]
- Baird, G.; McConachie, H.; Scrutton, D. Parents’ perceptions of disclosure of the diagnosis of cerebral palsy. Arch. Dis. Child. 2000, 83, 475–480. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.C.; et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatrics 2017, 171, 897–907. [Google Scholar] [CrossRef]
- Bosanquet, M.; Copeland, L.; Ware, R.; Boyd, R. A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child Neurol. 2013, 55, 418–426. [Google Scholar] [CrossRef]
- Prechtl, H.F.; Einspieler, C.; Cioni, G.; Bos, A.F.; Ferrari, F.; Sontheimer, D. An early marker for neurological deficits after perinatal brain lesions. Lancet 1997, 349, 1361–1363. [Google Scholar] [CrossRef]
- Ferrari, F.; Cioni, G.; Einspieler, C.; Roversi, M.F.; Bos, A.F.; Paolicelli, P.B.; Ranzi, A.; Prechtl, H.F. Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch. Pediatr. Adolesc. Med. 2002, 156, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Romeo, D.M.; Guzzetta, A.; Scoto, M.; Cioni, M.; Patusi, P.; Mazzone, D.; Romeo, M.G. Early neurologic assessment in preterm-infants: Integration of traditional neurologic examination and observation of general movements. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 2008, 12, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Brogna, C.; Romeo, D.M.; Cervesi, C.; Scrofani, L.; Romeo, M.G.; Mercuri, E.; Guzzetta, A. Prognostic value of the qualitative assessments of general movements in late-preterm infants. Early Hum. Dev. 2013, 89, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Spittle, A.J.; Spencer-Smith, M.M.; Cheong, J.L.; Eeles, A.L.; Lee, K.J.; Anderson, P.J.; Doyle, L.W. General movements in very preterm children and neurodevelopment at 2 and 4 years. Pediatrics 2013, 132, e452–e458. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.; Crowle, C.; Goyen, T.A.; Hardman, C.; Jackman, M.; Novak, I.; Badawi, N. Sensitivity and specificity of General Movements Assessment for diagnostic accuracy of detecting cerebral palsy early in an Australian context. J Paediatr. Child Health 2016, 52, 54–59. [Google Scholar] [CrossRef]
- Einspieler, C.; Yang, H.; Bartl-Pokorny, K.D.; Chi, X.; Zang, F.F.; Marschik, P.B.; Guzzetta, A.; Ferrari, F.; Bos, A.F.; Cioni, G. Are sporadic fidgety movements as clinically relevant as is their absence? Early Hum. Dev. 2015, 91, 247–252. [Google Scholar] [CrossRef]
- Einspieler, C.; Prechtl, H.F.R.; Bos, A.F.; Ferrari, F.C.G. Prechtl’s Method on the Qualitative Assessment of General Movements in Preterm, Term and Young Infants; Mac Keith Press: London, UK, 2004; Volume 167. [Google Scholar]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Rutherford, M.; Ramenghi, L.A.; Edwards, A.D.; Brocklehurst, P.; Halliday, H.; Levene, M.; Strohm, B.; Thoresen, M.; Whitelaw, A.; Azzopardi, D. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: A nested substudy of a randomised controlled trial. Lancet Neurol. 2010, 9, 39–45. [Google Scholar] [CrossRef]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef]
- Fjortoft, T.; Einspieler, C.; Adde, L.; Strand, L.I. Inter-observer reliability of the “Assessment of Motor Repertoire—3 to 5 Months” based on video recordings of infants. Early Hum. Dev. 2009, 85, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Darsaklis, V.; Snider, L.M.; Majnemer, A.; Mazer, B. Predictive validity of Prechtl’s Method on the Qualitative Assessment of General Movements: A systematic review of the evidence. Dev. Med. Child Neurol. 2011, 53, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Kwong, A.K.L.; Fitzgerald, T.L.; Doyle, L.W.; Cheong, J.L.Y.; Spittle, A.J. Predictive validity of spontaneous early infant movement for later cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2018, 60, 480–489. [Google Scholar] [CrossRef]
- Prechtl, H.F.; Ferrari, F.; Cioni, G. Predictive value of general movements in asphyxiated fullterm infants. Early Hum. Dev. 1993, 35, 91–120. [Google Scholar] [CrossRef]
- Cioni, G.; Bos, A.F.; Einspieler, C.; Ferrari, F.; Martijn, A.; Paolicelli, P.B.; Rapisardi, G.; Roversi, M.F.; Prechtl, H.F. Early neurological signs in preterm infants with unilateral intraparenchymal echodensity. Neuropediatrics 2000, 31, 240–251. [Google Scholar] [CrossRef]
- Bruggink, J.L.; Einspieler, C.; Butcher, P.R.; Van Braeckel, K.N.; Prechtl, H.F.; Bos, A.F. The quality of the early motor repertoire in preterm infants predicts minor neurologic dysfunction at school age. J. Pediatr. 2008, 153, 32–39. [Google Scholar] [CrossRef]
- Datta, A.N.; Furrer, M.A.; Bernhardt, I.; Huppi, P.S.; Borradori-Tolsa, C.; Bucher, H.U.; Latal, B.; Grunt, S.; Natalucci, G. Fidgety movements in infants born very preterm: Predictive value for cerebral palsy in a clinical multicentre setting. Dev. Med. Child Neurol. 2017, 59, 618–624. [Google Scholar] [CrossRef]
- Constantinou, J.C.; Adamson-Macedo, E.N.; Mirmiran, M.; Fleisher, B.E. Movement, imaging and neurobehavioral assessment as predictors of cerebral palsy in preterm infants. J. Perinatol. 2007, 27, 225–229. [Google Scholar] [CrossRef]
- Maitre, N.L.; Slaughter, J.C.; Aschner, J.L. Early prediction of cerebral palsy after neonatal intensive care using motor development trajectories in infancy. Early Hum. Dev. 2013, 89, 781–786. [Google Scholar] [CrossRef]
- Ferrari, F.; Frassoldati, R.; Berardi, A.; Di Palma, F.; Ori, L.; Lucaccioni, L.; Bertoncelli, N.; Einspieler, C. The ontogeny of fidgety movements from 4 to 20weeks post-term age in healthy full-term infants. Early Hum. Dev. 2016, 103, 219–224. [Google Scholar] [CrossRef]
- Crowle, C.; Galea, C.; Walker, K.; Novak, I.; Badawi, N. Prediction of neurodevelopment at one year of age using the General Movements assessment in the neonatal surgical population. Early Hum. Dev. 2018, 118, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Adde, L.; Rygg, M.; Lossius, K.; Oberg, G.K.; Stoen, R. General movement assessment: Predicting cerebral palsy in clinical practise. Early Hum. Dev. 2007, 83, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Seme-Ciglenecki, P. Predictive values of cranial ultrasound and assessment of general movements for neurological development of preterm infants in the Maribor region of Slovenia. Wiener Klinische Wochenschrift 2007, 119, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Hafstrom, M.; Kallen, K.; Serenius, F.; Marsal, K.; Rehn, E.; Drake, H.; Aden, U.; Farooqi, A.; Thorngren-Jerneck, K.; Stromberg, B. Cerebral Palsy in Extremely Preterm Infants. Pediatrics 2018, 141, e20171433. [Google Scholar] [CrossRef]
- Hamer, E.G.; Bos, A.F.; Hadders-Algra, M. Assessment of specific characteristics of abnormal general movements: Does it enhance the prediction of cerebral palsy? Dev. Med. Child Neurol. 2011, 53, 751–756. [Google Scholar] [CrossRef]
- Fjortoft, T.; Evensen, K.A.; Oberg, G.K.; Songstad, N.T.; Labori, C.; Silberg, I.E.; Loennecken, M.; Moinichen, U.I.; Vagen, R.; Stoen, R.; et al. High prevalence of abnormal motor repertoire at 3 months corrected age in extremely preterm infants. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 2016, 20, 236–242. [Google Scholar] [CrossRef]
- Byrne, R.; Noritz, G.; Maitre, N.L. Implementation of Early Diagnosis and Intervention Guidelines for Cerebral Palsy in a High-Risk Infant Follow-Up Clinic. Pediatr. Neurol. 2017, 76, 66–71. [Google Scholar] [CrossRef]
- Einspieler, C.; Sigafoos, J.; Bolte, S.; Bratl-Pokorny, K.D.; Landa, R.; Marschik, P.B. Highlighting the first 5 months of life: General movements in infants later diagnosed with autism spectrum disorder or Rett Syndrome. Res. Autism Spectr. Disord. 2014, 8, 286–291. [Google Scholar] [CrossRef]
Risk Groups | N (%) |
---|---|
BW ≤ 1000 g and/or GA < 28 weeks | 188 (46.4) |
Boys, n (%) | 102 (54.3) |
BW, mean (SD), grams | 826 (183) |
GA, mean (SD), weeks | 26.2 (1.7) |
BW > 1000 g and GA 280–306 weeks Neonatal arterial ischemic stroke | 54 (13.1) 15 (3.6) |
Neonatal encephalopathy | 57 (13.8) |
CHD w/surgery before 10 weeks | 41 (10.1) |
Others a | 50 (12.3) |
Predictive Accuracy/GMA and Imaging Results | Sensitivity % (CI 95%) | Specificity % (CI 95%) | PPV % (CI 95%) | NPV % (CI 95%) | Accuracy % (CI 95%) |
---|---|---|---|---|---|
Absent/sporadic FM FN = 10, FP = 64 | 76.2 (60.6–88.0) | 82.4 (78.1–86.2) | 33.3 (27.4–39.8) | 96.8 (94.6–98.1) | 81.7 (77.6–85.4) |
Absent FM FN = 13, FP = 31 | 69.1 (52.9–82.4) | 91.5 (88.1–94.1) | 48.3 (38.7–58.1) | 96.2 (94.2–97.6) | 89.1 (85.7–92.0) |
Abnormal neonatal imaging FN = 8, FP = 53 | 81.0 (65.9–91.4) | 85.3 (81.2–88.8) | 39.1 (32.5–46.1) | 97.5 (95.4–98.6) | 84.9 (81.0–88.2) |
Absent/sporadic FM and/or abnormal imaging FN = 5, FP = 107 | 88.1 (74.4–96.0) | 70.3 (65.3–75.0) | 25.7 (22.3–29.6) | 98.1 (95.7–99.1) | 72.1 (67.5–76.5) |
Absent/sporadic FM and abnormal imaging FN = 16, FP = 21 | 61.9 (45.6–76.4) | 94.2 (91.3–96.4) | 55.3 (43.4–66.6) | 95.5 (93.5–96.9) | 90.8 (87.6–93.5) |
Absent FM and/or abnormal imaging FN = 5, FP = 81 | 88.1 (74.4–96.0) | 77.6 (72.9–81.8) | 31.4 (26.8–36.3) | 98.3 (96.1–99.2) | 78.7 (74.3–82.6) |
Absent FM and abnormal imaging FN = 16, FP = 3 | 61.9 (45.6–76.4) | 99.2 (97.6–99.8) | 89.7 (73.3–96.5) | 95.7 (93.8–97.1) | 95.3 (92.7–97.1) |
Cerebral Palsy | ||||
---|---|---|---|---|
Unadjusted | Adjusted 1 | |||
OR (95 % CI) | p Value | OR (95 % CI) | p Value | |
Absent/sporadic FMs | 15.3 (7.0–32.0) | <0.001 | 13.9 (5.6–34.6) | <0.001 |
Abnormal neonatal imaging | 24.7 (10.8–56.3) | <0.001 | 29.3 (10.8–79.5) | <0.001 |
Gestational age Male sex | 0.93 (0.87–1.0) 1.8 (0.8–4.6) | 0.067 0.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Støen, R.; Boswell, L.; de Regnier, R.-A.; Fjørtoft, T.; Gaebler-Spira, D.; Ihlen, E.; Labori, C.; Loennecken, M.; Msall, M.; Möinichen, U.I.; et al. The Predictive Accuracy of the General Movement Assessment for Cerebral Palsy: A Prospective, Observational Study of High-Risk Infants in a Clinical Follow-Up Setting. J. Clin. Med. 2019, 8, 1790. https://doi.org/10.3390/jcm8111790
Støen R, Boswell L, de Regnier R-A, Fjørtoft T, Gaebler-Spira D, Ihlen E, Labori C, Loennecken M, Msall M, Möinichen UI, et al. The Predictive Accuracy of the General Movement Assessment for Cerebral Palsy: A Prospective, Observational Study of High-Risk Infants in a Clinical Follow-Up Setting. Journal of Clinical Medicine. 2019; 8(11):1790. https://doi.org/10.3390/jcm8111790
Chicago/Turabian StyleStøen, Ragnhild, Lynn Boswell, Raye-Ann de Regnier, Toril Fjørtoft, Deborah Gaebler-Spira, Espen Ihlen, Cathrine Labori, Marianne Loennecken, Michael Msall, Unn Inger Möinichen, and et al. 2019. "The Predictive Accuracy of the General Movement Assessment for Cerebral Palsy: A Prospective, Observational Study of High-Risk Infants in a Clinical Follow-Up Setting" Journal of Clinical Medicine 8, no. 11: 1790. https://doi.org/10.3390/jcm8111790
APA StyleStøen, R., Boswell, L., de Regnier, R.-A., Fjørtoft, T., Gaebler-Spira, D., Ihlen, E., Labori, C., Loennecken, M., Msall, M., Möinichen, U. I., Peyton, C., Russow, A., Schreiber, M. D., Silberg, I. E., Songstad, N. T., Vågen, R., Øberg, G. K., & Adde, L. (2019). The Predictive Accuracy of the General Movement Assessment for Cerebral Palsy: A Prospective, Observational Study of High-Risk Infants in a Clinical Follow-Up Setting. Journal of Clinical Medicine, 8(11), 1790. https://doi.org/10.3390/jcm8111790